Role of SPS temperature and holding time on the properties of Ti3AlC2-doped TiAl composites

  • Maryam Akhlaghi 1
  • Esmaeil Salahi 2
  • Seyed Ali Tayebifard 1
  • Gert Schmidt 3
  • 1 Semiconductors Department, Materials and Energy Research Center (MERC), Karaj, Iran
  • 2 Ceramics Department, Materials and Energy Research Center (MERC), Karaj, Iran
  • 3 Faculty of Mechanical, Process and Energy Engineering, TU Bergakademie, Freiberg, Germany

Abstract

In order to study the effects of sintering conditions on the properties of TiAl-based materials, two different compositions (TiAl-15 wt% Ti3AlC2 and TiAl-25 wt% Ti3AlC2) were chosen and manufactured by spark plasma sintering at 900 °C/7 min and 1000 °C/15 min. The results showed that increasing the MAX phase content had a positive effect on the relative density and mechanical properties, but simultaneous increasing the temperature and holding time is more effective in the improvement of properties. For TiAl-15 wt% Ti3AlC2 sample, the relative density, Vickers hardness, fracture toughness, and bending strength increased from 92.3%, 3.6 GPa, 10.9 MPa.m1/2, and 206 MPa to 95.2%, 4.5 GPa, 12.0 MPa.m1/2, and 336 MPa, respectively, as the sintering temperature and holding time increased from 900 °C/7 min to 1000 °C/15 min. In the case of the TiAl-25 wt% Ti3AlC2 sample, increasing the sintering temperature and holding time from 900 °C/7 min to 1000 °C/15 min led to the improvement of relative density, Vickers hardness, fracture toughness, and bending strength from 92.8%, 4.1 GPa, 11.2 MPa.m1/2, and 270 MPa to 97.5%, 4.6 GPa, 11.8 MPa.m1/2, and 340 MPa, respectively.

Downloads

Download data is not yet available.
Keywords: TiAl-Ti3AlC2 composites, Relative density, Flexural strength, Hardness, Fracture toughness

References

[1] H. Huang, H. Ding, X. Xu, R. Chen, J. Guo, H. Fu, Phase transformation and microstructure evolution of a beta-solidified gamma-TiAl alloy, J. Alloys Compd. 860 (2021) 158082. https://doi.org/10.1016/j.jallcom.2020.158082.
[2] Z. Trzaska, G. Bonnefont, G. Fantozzi, J.-P. Monchoux, Comparison of densification kinetics of a TiAl powder by spark plasma sintering and hot pressing, Acta Mater. 135 (2017) 1–13. https://doi.org/10.1016/j.actamat.2017.06.004.
[3] H.P. Lim, W.Y.H. Liew, G.J.H. Melvin, Z.-T. Jiang, A Short Review on the Phase Structures, Oxidation Kinetics, and Mechanical Properties of Complex Ti-Al Alloys, Materials (Basel). 14 (2021) 1677. https://doi.org/10.3390/ma14071677.
[4] Y. Jiang, Y. He, H. Gao, Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties, J. Mater. Sci. Technol. 74 (2021) 89–104. https://doi.org/10.1016/j.jmst.2020.10.007.
[5] A. Couret, G. Molénat, J. Galy, M. Thomas, Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering, Intermetallics. 16 (2008) 1134–1141. https://doi.org/10.1016/j.intermet.2008.06.015.
[6] X. Liu, Q. Lin, W. Zhang, C. Van Horne, L. Cha, Microstructure Design and Its Effect on Mechanical Properties in Gamma Titanium Aluminides, Metals (Basel). 11 (2021) 1644. https://doi.org/10.3390/met11101644.
[7] A. Mohammadnejad, A. Bahrami, L. Tafaghodi Khajavi, Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline TiAl-xB Composites (0.0 https://doi.org/10.1007/s11665-021-05773-6.
[8] H.P. Qu, P. Li, S.Q. Zhang, A. Li, H.M. Wang, The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys, Mater. Des. 31 (2010) 2201–2210. https://doi.org/10.1016/j.matdes.2009.10.045.
[9] L. Xiang, F. Wang, J. Zhu, X. Wang, Mechanical properties and microstructure of Al2O3/TiAl in situ composites doped with Cr2O3, Mater. Sci. Eng. A. 528 (2011) 3337–3341. https://doi.org/10.1016/j.msea.2011.01.006.
[10] H. Clemens, A. Bartels, S. Bystrzanowski, H. Chladil, H. Leitner, G. Dehm, R. Gerling, F.P. Schimansky, Grain refinement in γ-TiAl-based alloys by solid state phase transformations, Intermetallics. 14 (2006) 1380–1385. https://doi.org/10.1016/j.intermet.2005.11.015.
[11] M. Akhlaghi, E. Salahi, S.A. Tayebifard, G. Schmidt, Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part II: Phase evolution, Synth. Sinter. 1 (2021) 211–216. https://doi.org/10.53063/synsint.2021.1453.
[12] N.F. Mogale, W.R. Matizamhuka, Spark Plasma Sintering of Titanium Aluminides: A Progress Review on Processing, Structure-Property Relations, Alloy Development and Challenges, Metals (Basel). 10 (2020) 1080. https://doi.org/10.3390/met10081080.
[13] H. Jabbar, A. Couret, L. Durand, J.-P. Monchoux, Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering, J. Alloys Compd. 509 (2011) 9826–9835. https://doi.org/10.1016/j.jallcom.2011.08.008.
[14] M. Akhlaghi, E. Salahi, S.A. Tayebifard, G. Schmidt, Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part III: microstructure, Synth. Sinter. 2 (2022) 20–25. https://doi.org/10.53063/synsint.2022.2182.
[15] Y. Kozhakhmetov, M. Skakov, N. Mukhamedova, S. Kurbanbekov, S. Ramankulov, W. Wieleba, Changes in the microstructural state of Ti-Al-Nb-based alloys depending on the temperature cycle during spark plasma sintering, Mater. Test. 63 (2021) 119–123. https://doi.org/10.1515/mt-2020-0017.
[16] M. Cabibbo, A. Knaislová, P. Novák, F. Průša, C. Paoletti, Role of Si on lamellar formation and mechanical response of two SPS Ti–15Al–15Si and Ti–10Al–20Si intermetallic alloys, Intermetallics. 131 (2021) 107099. https://doi.org/10.1016/j.intermet.2021.107099.
[17] B.-A. Behrens, K. Brunotte, J. Peddinghaus, A. Heymann, Influence of Dwell Time and Pressure on SPS Process with Titanium Aluminides, Metals (Basel). 12 (2022) 83. https://doi.org/10.3390/met12010083.
[18] Z.M. Sun, Q. Wang, H. Hashimoto, S. Tada, T. Abe, Synthesis and consolidation of TiAl by MA–PDS process from sponge-Ti and chip-Al, Intermetallics. 11 (2003) 63–69. https://doi.org/10.1016/S0966-9795(02)00183-8.
[19] D. Wimler, J. Lindemann, T. Kremmer, H. Clemens, S. Mayer, Microstructure and mechanical properties of novel TiAl alloys tailored via phase and precipitate morphology, Intermetallics. 138 (2021) 107316. https://doi.org/10.1016/j.intermet.2021.107316.
[20] H. Jabbar, J.-P. Monchoux, F. Houdellier, M. Dollé, F.-P. Schimansky, et al., Microstructure and mechanical properties of high niobium containing TiAl alloys elaborated by spark plasma sintering, Intermetallics. 18 (2010) 2312–2321. https://doi.org/10.1016/j.intermet.2010.07.024.
[21] Y. Su, Y. Lin, N. Zhang, D. Zhang, Microstructures and mechanical properties of TiAl alloy fabricated by spark plasma sintering, Int. J. Mod. Phys. B. 34 (2020) 2040036. https://doi.org/10.1142/S0217979220400366.
[22] X. Gu, F. Cao, N. Liu, G. Zhang, D. Yang, et al., Microstructural evolution and mechanical properties of a high yttrium containing TiAl based alloy densified by spark plasma sintering, J. Alloys Compd. 819 (2020) 153264. https://doi.org/10.1016/j.jallcom.2019.153264.
[23] Y.Y. Chen, H.B. Yu, D.L. Zhang, L.H. Chai, Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy, Mater. Sci. Eng. A. 525 (2009) 166–173. https://doi.org/10.1016/j.msea.2009.06.056.
[24] T. Voisin, J.-P. Monchoux, M. Hantcherli, S. Mayer, H. Clemens, A. Couret, Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering, Acta Mater. 73 (2014) 107–115. https://doi.org/10.1016/j.actamat.2014.03.058.
[25] D. Zhu, L. Liu, D. Dong, X. Wang, Y. Liu, et al., Microstructure and compression behavior of in-situ synthesized Ti2AlC reinforced Ti-48Al-2Cr alloy with carbon nanotubes addition, J. Alloys Compd. 862 (2021) 158646. https://doi.org/10.1016/j.jallcom.2021.158646.
[26] S. Haji Amiri, M. Ghassemi Kakroudi, T. Rabizadeh, M. Shahedi Asl, Characterization of hot-pressed Ti3SiC2–SiC composites, Int. J. Refract. Met. Hard Mater. 90 (2020) 105232. https://doi.org/10.1016/j.ijrmhm.2020.105232.
[27] S. Haji Amiri, M. Ghassemi Kakroudi, N. Pourmohammadie Vafa, M. Shahedi Asl, Synthesis and Sintering of Ti3SiC2–SiC Composites through Reactive Hot-Pressing of TiC and Si Precursors, Silicon. 14 (2022) 4227–4235. https://doi.org/10.1007/s12633-021-01207-z.
[28] X.H. Wang, Y.C. Zhou, Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review, J. Mater. Sci. Technol. 26 (2010) 385–416. https://doi.org/10.1016/S1005-0302(10)60064-3.
[29] B. Mei, Y. Miyamoto, Investigation of TiAl/Ti2AlC composites prepared by spark plasma sintering, Mater. Chem. Phys. 75 (2002) 291–295. https://doi.org/10.1016/S0254-0584(02)00078-0.
[30] F. Yang, F.T. Kong, Y.Y. Chen, S.L. Xiao, Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite, J. Alloys Compd. 496 (2010) 462–466. https://doi.org/10.1016/j.jallcom.2010.02.077.
[31] C. Liu, Y. Wang, W. Han, T. Ma, D. Ma, Y. Zhang, Achieving Superior High-Temperature Strength and Oxidation Resistance of TiAl Nanocomposite through In Situ Semicoherent MAX Phase Precipitation, ACS Appl. Mater. Interfaces. 14 (2022) 8394–8403. https://doi.org/10.1021/acsami.1c21719.
[32] M. Akhlaghi, S.A. Tayebifard, E. Salahi, M. Shahedi Asl, G. Schmidt, Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture, Ceram. Int. 44 (2018) 9671–9678. https://doi.org/10.1016/j.ceramint.2018.02.195.
[33] M. Akhlaghi, E. Salahi, S.A. Tayebifard, G. Schmidt, Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part I: sintering and densification, Synth. Sinter. 1 (2021) 169–175. https://doi.org/10.53063/synsint.2021.1347.
[34] D. Demirskyi, H. Borodianska, D. Agrawal, A. Ragulya, Y. Sakka, O. Vasylkiv, Peculiarities of the neck growth process during initial stage of spark-plasma, microwave and conventional sintering of WC spheres, J. Alloys Compd. 523 (2012) 1–10. https://doi.org/10.1016/j.jallcom.2012.01.146.
[35] J. Zhu, W. Yang, H. Yang, F. Wang, Effect of Nb2O5 on the microstructure and mechanical properties of TiAl based composites produced by hot pressing, Mater. Sci. Eng. A. 528 (2011) 6642–6646. https://doi.org/10.1016/j.msea.2011.04.062.
[36] J. Cheng, S. Zhu, Y. Yu, J. Yang, W. Liu, Microstructure, mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly network Ti 2 AlC particulates, J. Mater. Sci. Technol. 34 (2018) 670–678. https://doi.org/10.1016/j.jmst.2017.09.007.
[37] Y. Liu, W. Zhang, Y. Peng, G. Fan, B. Liu, Effects of TiAl Alloy as a Binder on Cubic Boron Nitride Composites, Materials (Basel). 14 (2021) 6335. https://doi.org/10.3390/ma14216335.
[38] L. Rangaraj, V. Kashimatt, Pooja, B. Suresha, Reaction, densification and mechanical properties of Ti 2 AlC x ceramics at low applied pressure and temperature, Int. J. Appl. Ceram. Technol. 19 (2022) 2807–2816. https://doi.org/10.1111/ijac.14064.
[39] J. Wang, N. Zhao, P. Nash, E. Liu, C. He, et al., In situ synthesis of Ti2AlC–Al2O3/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs, J. Alloys Compd. 578 (2013) 481–487. https://doi.org/10.1016/j.jallcom.2013.06.109.
[40] M. Liu, J. Chen, H. Cui, X. Sun, S. Liu, M. Xie, Ag/Ti3AlC2 composites with high hardness, high strength and high conductivity, Mater. Lett. 213 (2018) 269–273. https://doi.org/10.1016/j.matlet.2017.11.038.
[41] Y. Liu, Z. Li, Y. Peng, Y. Huang, Z. Huang, D. Zhang, Effect of sintering temperature and TiB2 content on the grain size of B4C-TiB2 composites, Mater. Today Commun. 23 (2020) 100875. https://doi.org/10.1016/j.mtcomm.2019.100875.
[42] C.L. Yeh, C.Y. Ke, Y.C. Chen, In situ formation of TiB 2 /TiC and TiB 2 /TiN reinforced NiAl by self-propagating combustion synthesis, Vacuum. 151 (2018) 185–188. https://doi.org/10.1016/j.vacuum.2018.02.024.
[43] Z. Aygüzer Yaşar, A.M. Celik, R.A. Haber, Improving fracture toughness of B4C – SiC composites by TiB2 addition, Int. J. Refract. Met. Hard Mater. 108 (2022) 105930. https://doi.org/10.1016/j.ijrmhm.2022.105930.
[44] Y. Wang, M. Yao, Z. Hu, H. Li, J.-H. Ouyang, et al., Microstructure and mechanical properties of TiB2-40 wt% TiC composites: Effects of adding a low-temperature hold prior to sintering at high temperatures, Ceram. Int. 44 (2018) 23297–23300. https://doi.org/10.1016/j.ceramint.2018.09.048.
[45] M. Akhlaghi, E. Salahi, S.A. Tayebifard, G. Schmidt, Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part IV: mechanical properties, Synth. Sinter. 2 (2022) 99–104. https://doi.org/10.53063/synsint.2022.22103.

Cited By

Crossref Google Scholar
Role of SPS temperature and holding time on the properties of Ti3AlC2-doped TiAl composites
Submitted
2021-12-26
Published
2022-09-30
How to Cite
Akhlaghi, M., Salahi, E., Tayebifard, S. A., & Schmidt, G. (2022). Role of SPS temperature and holding time on the properties of Ti3AlC2-doped TiAl composites. Synthesis and Sintering, 2(3), 138-145. https://doi.org/10.53063/synsint.2022.2383