Effects of clay and fireclay addition on the properties of magnesia–forsterite–spinel refractories synthesized at different firing temperatures

  • Esmaeil Salahi 1
  • Mehran Ghaffari 1
  • A. Faeghinia 1
  • Armin Rajabi 2
  • 1 Ceramics Department, Materials and Energy Research Center (MERC), Karaj, Iran
  • 2 Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia

Abstract

This study investigates the effects of adding clay and fireclay on the physical and mechanical properties of magnesia-based refractories such as contraction, bending strength, bulk density, and apparent porosity. Domestic raw materials were used for the preparation of samples fired at 1350, 1450, and 1550 °C for 2 h. Adding clay exhibited no significant effect on the density and porosity, whereas adding fireclay had a remarkable influence on the shrinkage. Nevertheless, the effects of clay and fireclay on the strength of magnesia were unnoticeable. X-ray diffraction results showed that, after firing, the main phase compositions of the samples with clay addition were periclase and forsterite. Adding fireclay led to the synthesis of magnesite spinel, which can be attributed to the high alumina content. Based on scanning electron microscopy, no liquid phase was formed indicating that the sintering was a solid-state evolution with the synthesis of forsterite.

Downloads

Download data is not yet available.
Keywords: Magnesia, Firing, Clay, Fireclay, Refractories, Synthesis

References

[1] M. Mansoor, M. Mansoor, M. Mansoor, T. Themelis, F. Çinar Şahin, Sintered transparent polycrystalline ceramics: the next generation of fillers for clarity enhancement in corundum, Synth. Sinter. 1 (2021) 183–188. https://doi.org/10.53063/synsint.2021.1342.
[2] W. Zhang, S. Song, M. Nath, Z. Xue, G. Ma, Y. Li, Inhibition of Cr6+ by the formation of in-situ Cr3+ containing solid-solution in Al2O3–CaO–Cr2O3–SiO2 system, Ceram. Int. 47 (2021) 9578–9584. https://doi.org/10.1016/j.ceramint.2020.12.092.
[3] A. Valenzuela-Gutiérrez, J. López-Cuevas, A. González-Ángeles, N. Pilalua-Díaz, Addition of ceramics materials to improve the corrosion resistance of alumina refractories, SN Appl. Sci. 1 (2019) 784. https://doi.org/10.1007/s42452-019-0789-5.
[4] A. Faeghinia, Impact of bridging oxygens formation on optical properties of Fe3+ doped Li2O–Al2O3–SiO2–TiO2 glasses, Synth. Sinter. 2 (2022) 14–19. https://doi.org/10.53063/synsint.2022.2179.
[5] P. Das, S. Sinhamahapatra, K. Dana, S. Mukhopadhyay, Improvement of thermal conductivity of carbonaceous matrix in monolithic Al2O3–C refractory composite by surface-modified graphites, Ceram. Int. 46 (2020) 29173–29181. https://doi.org/10.1016/j.ceramint.2020.08.090.
[6] A.G.M. Othman, Effect of talc and bauxite on sintering, microstructure, and refractory properties of Egyptian dolomitic magnesite, Br. Ceram. Trans. 102 (2003) 265–271. https://doi.org/10.1179/096797803225009391.
[7] F. Boenzi, Possible ecological advantages from use of carbonless magnesia refractory bricks in secondary steelmaking: a framework LCA perspective, Int. J. Environ. Sci. Technol. 19 (2022) 5877–5896. https://doi.org/10.1007/s13762-021-03553-2.
[8] L. Xu, M. Chen, N. Wang, S. Gao, Chemical wear mechanism of magnesia-chromite refractory for an oxygen bottom-blown copper-smelting furnace: A post-mortem analysis, Ceram. Int. 47 (2021) 2908–2915. https://doi.org/10.1016/j.ceramint.2020.09.124.
[9] P. Yang, G. Xiao, D. Ding, Y. Ren, S. Yang, et al., Antioxidant properties of low-carbon magnesia-carbon refractories containing AlB2–Al–Al2O3 composites, Ceram. Int. 48 (2022) 1375–1381. https://doi.org/10.1016/j.ceramint.2021.09.223.
[10] Y. Mi, Y. Xu, Y. Li, S. Sang, Q. Wang, Fabrication and thermal shock behavior of ZrO2 toughened magnesia aggregates, Ceram. Int. 47 (2021) 26475–26483. https://doi.org/10.1016/j.ceramint.2021.06.060.
[11] N.V. Buchilin, V.Y. Nikitina, A.A. Lugovoi, N.M. Varrik, V.G. Babashov, Preparation of alumina-magnesia spinel based high-porosity ceramic materials, Glas. Ceram. 77 (2021) 372–378. https://doi.org/10.1007/s10717-021-00310-2.
[12] Y. Dai, C. Wu, Study on properties of magnesium phosphosilicate cement using different reactive magnesia, J. Ceram. Soc. Jpn. 129 (2021) 540–550. https://doi.org/10.2109/jcersj2.21022.
[13] S. Xuan, X. Wang, Y. Tian, J. Hao, Properties of magnesium‐aluminate spinel derived from bauxite and magnesia, Int. J. Appl. Ceram. Technol. 18 (2021) 1205–1212. https://doi.org/10.1111/ijac.13740.
[14] F. Gu, Z. Peng, Y. Zhang, H. Tang, L. Ye, et al., Thermodynamic characteristics of ferronickel slag sintered in the presence of magnesia, The Minerals, Metals & Materials Series, Springer, Cham. (2019) 379–388. https://doi.org/10.1007/978-3-030-05749-7_38.
[15] K. Li, F. Zhao, X. Liu, H. Mai, E. Xu, et al., Fabrication of porous forsterite-spinel-periclase ceramics by transient liquid phase diffusion process for high-temperature thermal isolation, Ceram. Int. 48 (2022) 2330–2336. https://doi.org/10.1016/j.ceramint.2021.10.012.
[16] Z. Peng, L. Yuan, X. Luo, J. Yu, C. Tian, Z. Liu, Mechanical properties and thermal shock resistance performance of spark plasma sintered MgO–Al2O3–SiO2 ceramics, Ceram. Int. 48 (2022) 28548–28556. https://doi.org/10.1016/j.ceramint.2022.06.168.
[17] X. Ren, B. Ma, G. Fu, F. Qian, G. Liu, et al., Facile synthesis of MgO–Mg2SiO4 composite ceramics with high strength and low thermal conductivity, Ceram. Int. 47 (2021) 19959–19969. https://doi.org/10.1016/j.ceramint.2021.03.331.
[18] M. Nguyen, R. Sokolář, Thermal and thermomechanical properties of refractory forsterite-spinel ceramics, Solid State Phenom. 325 (2021) 174–180. https://doi.org/10.4028/www.scientific.net/SSP.325.174.
[19] M. Nguyen, R. Sokolář, Corrosion resistance of novel fly ash-based forsterite-spinel refractory ceramics, Materials (Basel). 15 (2022) 1363. https://doi.org/10.3390/ma15041363.
[20] F. Zhao, L. Zhang, Z. Ren, J. Gao, X. Chen, et al., A novel and green preparation of porous forsterite ceramics with excellent thermal isolation properties, Ceram. Int. 45 (2019) 2953–2961. https://doi.org/10.1016/j.ceramint.2018.09.296.
[21] H. Liu, C. Jie, Y. Ma, Z. Wang, X. Wang, Synthesis and processing effects on microstructure and mechanical properties of forsterite ceramics, Trans. Indian Ceram. Soc. 79 (2020) 83–87. https://doi.org/10.1080/0371750X.2020.1722754.
[22] J. Nishizawa, T. Ikeda-Fukazawa, Surface structures and properties of forsterite in crystalline and glassy states, Chem. Phys. Lett. 714 (2019) 197–201. https://doi.org/10.1016/j.cplett.2018.11.014.
[23] Y. Zou, H. Gu, A. Huang, Y. Huo, L. Fu, Y. Li, Characterisation and properties of low-conductivity microporous magnesia based aggregates with in-situ intergranular spinel phases, Ceram. Int. 47 (2021) 11063–11071. https://doi.org/10.1016/j.ceramint.2020.12.229.
[24] S. Lamara, D. Redaoui, F. Sahnoune, M. Heraiz, N. Saheb, Microstructure, thermal expansion, hardness and thermodynamic parameters of cordierite materials synthesized from Algerian natural clay minerals and magnesia, Bol. Soc. Esp. Cerám. Vidr. 60 (2021) 291–306. https://doi.org/10.1016/j.bsecv.2020.03.008.
[25] Z. Quan, Z. Wang, X. Wang, H. Liu, Y. Ma, Effects of Sm2O3 addition on sintering behavior of pre-synthesized magnesia-rich magnesium aluminate spinel, J. Rare Earths. 39 (2021) 1450–1454. https://doi.org/10.1016/j.jre.2021.01.020.
[26] S.S. Hossain, P.K. Roy, Preparation of multi-layered (dense-porous) lightweight magnesium-aluminum spinel refractory, Ceram. Int. 47 (2021) 13216–13220. https://doi.org/10.1016/j.ceramint.2021.01.076.
[27] F.G. Khomidov, Z.R. Kadyrova, K.L. Usmanov, S.M. Niyazova, B.T. Sabirov, Peculiarities of sol-gel synthesis of aluminum-magnesium spinel, Glass Ceram. 78 (2021) 251–254. https://doi.org/10.1007/s10717-021-00389-7.
[28] F.N. Cunha-Duncan, R.C. Bradt, Synthesis of Magnesium Aluminate Spinels from Bauxites and Magnesias, J. Am. Ceram. Soc. 85 (2004) 2995–3003. https://doi.org/10.1111/j.1151-2916.2002.tb00569.x.
[29] N. Petric, V. Martinac, E. Tkalcec, H. Ivankovic, B. Petric, Thermodynamic analysis of results obtained by examination of the forsterite and spinel formation reactions in the process of magnesium oxide sintering, Ind. Eng. Chem. Res. 28 (1989) 298–302. https://doi.org/10.1021/ie00087a008.
[30] V.A. Perepelitsyn, Y.I. Savchenko, V.M. Bezhaev, S.N. Tabatchikova, Petrochemical calculations in the production of forsterite-spinel refractories from carbon ferrochrome slags, Refractories. 27 (1986) 568–572. https://doi.org/10.1007/BF01387278.
[31] N.M. Khalil, Refractory aspects of Egyptian alum-waste material, Ceram. Int. 27 (2001) 695–700. https://doi.org/10.1016/S0272-8842(01)00022-0.
[32] A.G.M. Othman, N.M. Khalil, Sintering of magnesia refractories through the formation of periclase–forsterite–spinel phases, Ceram. Int. 31 (2005) 1117–1121. https://doi.org/10.1016/j.ceramint.2004.11.011.
[33] M.J. Trindade, M.I. Dias, J. Coroado, F. Rocha, Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal, Appl. Clay Sci. 42 (2009) 345–355. https://doi.org/10.1016/j.clay.2008.02.008.
[34] P. Schjønning, R.A. McBride, T. Keller, P.B. Obour, Predicting soil particle density from clay and soil organic matter contents, Geoderma. 286 (2017) 83–87. https://doi.org/10.1016/j.geoderma.2016.10.020.
[35] Y. Zou, H. Gu, A. Huang, L. Fu, G. Li, et al., Pore evolution of microporous magnesia aggregates with the introduction of nano-sized MgO, Ceram. Int. 48 (2022) 18513–18521. https://doi.org/10.1016/j.ceramint.2022.03.121.

Cited By

Crossref Google Scholar
Effects of clay and fireclay addition on the properties of magnesia–forsterite–spinel refractories synthesized at different firing temperatures
Submitted
2021-12-25
Available online
2022-06-29
How to Cite
Salahi, E., Ghaffari, M., Faeghinia, A., & Rajabi, A. (2022). Effects of clay and fireclay addition on the properties of magnesia–forsterite–spinel refractories synthesized at different firing temperatures. Synthesis and Sintering, 2(2), 92-98. https://doi.org/10.53063/synsint.2022.2280

Most read articles by the same author(s)