Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part III: microstructure

  • Maryam Akhlaghi 1
  • Esmaeil Salahi 2
  • Seyed Ali Tayebifard 1
  • Gert Schmidt 3
  • 1 Semiconductors Department, Materials and Energy Research Center (MERC), Karaj, Iran
  • 2 Ceramics Department, Materials and Energy Research Center (MERC), Karaj, Iran
  • 3 Faculty of Mechanical, Process and Energy Engineering, TU Bergakademie, Freiberg, Germany

Abstract

In this paper, the 3rd part of a series of publications on the sinterability and characteristics of TiAl–Ti3AlC2 composites, the microstructure development during the synthesis and sintering processes was studied by scanning electron microscopy (SEM). Chemical evaluation of various phases in the developed microstructures was performed using energy-dispersive X-ray spectroscopy (EDS) in different ways such as point, line scan and two-dimensional elemental map analyses. For this purpose, five samples were fabricated with different percentages of Ti3AlC2 MAX phase additive (10, 15, 20, 25, and 30 wt%). Ball-milling and spark plasma sintering (SPS: 900 °C/7 min/40 MPa) of as-purchased Al and Ti powders with already-synthesized Ti3AlC2 additive were selected as composite making methodology. SEM/EDS analyses verified the in-situ manufacturing of TiAl/Ti3Al intermetallics as the matrix during the SPS process and the presence of Ti3AlC2 as the ex-situ added secondary phase. Moreover, the in-situ synthesis of Ti2AlC, another member of MAX phases in Ti-Al-C system, was also detected in titanium aluminide grain boundaries and attributed to a chemical reaction between TiC (an impurity in the initial Ti3AlC2 additive) and TiAl components.

Downloads

Download data is not yet available.
Keywords: Microstructure, SPS, In-situ synthesis, TiAl–Ti3AlC2 composites, SEM/EDS analysis

References

[1] Y. Pan, X. Lu, C. Liu, T. Hui, C. Zhang, X. Qu, Sintering densification, microstructure and mechanical properties of Sn-doped high Nb-containing TiAl alloys fabricated by pressureless sintering, Intermetallics. 125 (2020) 106891. https://doi.org/10.1016/j.intermet.2020.106891.
[2] M. Yan, F. Yang, B. Lu, C. Chen, Y. Sui, Z. Guo, Microstructure and mechanical properties of high relative density γ-TiAl alloy using irregular pre-alloyed powder, Metals (Basel). 11 (2021) 635. https://doi.org/10.3390/met11040635.
[3] D. Martins, F. Grumbach, A. Simoulin, P. Sallot, K. Mocellin, et al., Spark plasma sintering of a commercial TiAl 48-2-2 powder: Densification and creep analysis, Mater. Sci. Eng. A. 711 (2018) 313–316. https://doi.org/10.1016/j.msea.2017.11.041.
[4] M. Musi, B. Galy, J.-P. Monchoux, A. Couret, H. Clemens, S. Mayer, In-situ observation of the phase evolution during an electromagnetic-assisted sintering experiment of an intermetallic γ-TiAl based alloy, Scr. Mater. 206 (2022) 114233. https://doi.org/10.1016/j.scriptamat.2021.114233.
[5] A. Couret, G. Molénat, J. Galy, M. Thomas, Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering, Intermetallics. 16 (2008) 1134–1141. https://doi.org/10.1016/j.intermet.2008.06.015.
[6] D. Wimler, J. Lindemann, H. Clemens, S. Mayer, Microstructural evolution and mechanical properties of an advanced γ-TiAl based alloy processed by spark plasma sintering, Materials (Basel). 12 (2019) 1523. https://doi.org/10.3390/ma12091523.
[7] A. Mohammadnejad, A. Bahrami, L. Tafaghodi Khajavi, Microstructure and mechanical properties of spark plasma sintered nanocrystalline TiAl-xB composites (0.0 https://doi.org/10.1007/s11665-021-05773-6.
[8] X. Liu, Q. Lin, W. Zhang, C. Van Horne, L. Cha, Microstructure design and its effect on mechanical properties in gamma titanium aluminides, Metals (Basel). 11 (2021) 1644. https://doi.org/10.3390/met11101644.
[9] L. Wang, Y. Zhang, X. Hua, C. Shen, F. Li, et al., Fabrication of γ-TiAl intermetallic alloy using the twin-wire plasma arc additive manufacturing process: Microstructure evolution and mechanical properties, Mater. Sci. Eng. A. 812 (2021) 141056. https://doi.org/10.1016/j.msea.2021.141056.
[10] M. Shahedi Asl, B. Nayebi, M. Farvizi, R. Alaghmandfard, M. Shokouhimehr, et al., Formation of Al–Al2O3 core–shell nanosphere chains during electron beam melting of γ-TiAl, Intermetallics. 136 (2021) 107261. https://doi.org/10.1016/j.intermet.2021.107261.
[11] A. Couret, M. Allen, M.W. Rackel, B. Galy, J.-P. Monchoux, et al., Chemical heterogeneities in tungsten containing TiAl alloys processed by powder metallurgy, Materialia. 18 (2021) 101147. https://doi.org/10.1016/j.mtla.2021.101147.
[12] C. Zhang, Y. Pan, T. Hui, W. Xu, S. Zhang, et al., The sintering densification, microstructure and mechanical properties of Ti–48Al–2Cr–2Nb by a small addition of Sn–Al powder, J. Mater. Res. Technol. 15 (2021) 6947–6955. https://doi.org/10.1016/j.jmrt.2021.11.096.
[13] F. Wenbin, H. Lianxi, H. Wenxiong, W. Erde, L. Xiaoqing, Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering, Mater. Sci. Eng. A. 403 (2005) 186–190. https://doi.org/10.1016/j.msea.2005.04.049.
[14] S. Xiao, J. Tian, L. Xu, Y. Chen, H. Yu, J. Han, Microstructures and mechanical properties of TiAl alloy prepared by spark plasma sintering, Trans. Nonferrous Met. Soc. China. 19 (2009) 1423–1427. https://doi.org/10.1016/S1003-6326(09)60044-3.
[15] Y.A. Kozhakhmetov, М.K. Skakov, S.R. Kurbanbekov, N.M. Mukhamedov, N.Y. Mukhamedov, Powder composition sructurization of the Ti-25Al-25Nb (at.%) system upon mechanical activation and subsequent spark plasma sintering, Eurasian Chem.-Technol. J. 23 (2021) 37. https://doi.org/10.18321/ectj1032.
[16] M. Akhlaghi, S.A. Tayebifard, E. Salahi, M. Shahedi Asl, Spark plasma sintering of TiAl–Ti3AlC2 composite, Ceram. Int. 44 (2018) 21759–21764. https://doi.org/10.1016/j.ceramint.2018.08.272.
[17] H. Jabbar, A. Couret, L. Durand, J.-P. Monchoux, Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering, J. Alloys Compd. 509 (2011) 9826–9835. https://doi.org/10.1016/j.jallcom.2011.08.008.
[18] N.F. Mogale, W.R. Matizamhuka, Spark plasma sintering of titanium aluminides: a progress review on processing, structure-property relations, alloy development and challenges, Metals (Basel). 10 (2020) 1080. https://doi.org/10.3390/met10081080.
[19] Y. Kozhakhmetov, M. Skakov, N. Mukhamedova, S. Kurbanbekov, S. Ramankulov, W. Wieleba, Changes in the microstructural state of Ti-Al-Nb-based alloys depending on the temperature cycle during spark plasma sintering, Mater. Test. 63 (2021) 119–123. https://doi.org/10.1515/mt-2020-0017.
[20] Z.M. Sun, Q. Wang, H. Hashimoto, S. Tada, T. Abe, Synthesis and consolidation of TiAl by MA–PDS process from sponge-Ti and chip-Al, Intermetallics. 11 (2003) 63–69. https://doi.org/10.1016/S0966-9795(02)00183-8.
[21] D. Wimler, J. Lindemann, T. Kremmer, H. Clemens, S. Mayer, Microstructure and mechanical properties of novel TiAl alloys tailored via phase and precipitate morphology, Intermetallics. 138 (2021) 107316. https://doi.org/10.1016/j.intermet.2021.107316.
[22] M. Cabibbo, A. Knaislová, P. Novák, F. Průša, C. Paoletti, Role of Si on lamellar formation and mechanical response of two SPS Ti–15Al–15Si and Ti–10Al–20Si intermetallic alloys, Intermetallics. 131 (2021) 107099. https://doi.org/10.1016/j.intermet.2021.107099.
[23] B.-A. Behrens, K. Brunotte, J. Peddinghaus, A. Heymann, Influence of dwell time and pressure on SPS process with titanium aluminides, Metals (Basel). 12 (2022) 83. https://doi.org/10.3390/met12010083.
[24] Y. Su, Y. Lin, N. Zhang, D. Zhang, Microstructures and mechanical properties of TiAl alloy fabricated by spark plasma sintering, Int. J. Mod. Phys. B. 34 (2020) 2040036. https://doi.org/10.1142/S0217979220400366.
[25] H. Jabbar, J.-P. Monchoux, F. Houdellier, M. Dollé, F.-P. Schimansky, et al., Microstructure and mechanical properties of high niobium containing TiAl alloys elaborated by spark plasma sintering, Intermetallics. 18 (2010) 2312–2321. https://doi.org/10.1016/j.intermet.2010.07.024.
[26] X. Gu, F. Cao, N. Liu, G. Zhang, D. Yang, et al., Microstructural evolution and mechanical properties of a high yttrium containing TiAl based alloy densified by spark plasma sintering, J. Alloys Compd. 819 (2020) 153264. https://doi.org/10.1016/j.jallcom.2019.153264.
[27] Y.Y. Chen, H.B. Yu, D.L. Zhang, L.H. Chai, Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy, Mater. Sci. Eng. A. 525 (2009) 166–173. https://doi.org/10.1016/j.msea.2009.06.056.
[28] T. Voisin, J.-P. Monchoux, M. Hantcherli, S. Mayer, H. Clemens, A. Couret, Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering, Acta Mater. 73 (2014) 107–115. https://doi.org/10.1016/j.actamat.2014.03.058.
[29] Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang, G.L. Chen, Fabrication and SPS microstructures of Ti–45Al–8.5Nb–(W,B,Y) alloying powders, Intermetallics. 16 (2008) 215–224. https://doi.org/10.1016/j.intermet.2007.09.010.
[30] D. Zhu, L. Liu, D. Dong, X. Wang, Y. Liu, et al., Microstructure and compression behavior of in-situ synthesized Ti2AlC reinforced Ti-48Al-2Cr alloy with carbon nanotubes addition, J. Alloys Compd. 862 (2021) 158646. https://doi.org/10.1016/j.jallcom.2021.158646.
[31] F. Zakeri Shahroudi, B. Ghasemi, H. Abdolahpour, M. Razavi, Sintering behavior of Cr2AlC MAX phase synthesized by Spark plasma sintering, Int. J. Appl. Ceram. Technol. 19 (2022) 1309–1318. https://doi.org/10.1111/ijac.13995.
[32] S. Haji Amiri, M. Ghassemi Kakroudi, N. Pourmohammadie Vafa, M. Shahedi Asl, Synthesis and sintering of Ti3SiC2–SiC composites through reactive hot-pressing of TiC and Si precursors, Silicon. 14 (2021) 4227–4235. https://doi.org/10.1007/s12633-021-01207-z.
[33] S. Haji Amiri, N. Pourmohammadie Vafa, Microstructure and mechanical properties of Ti3SiC2 MAX phases sintered by hot pressing, Synth. Sinter. 1 (2021) 216–222. https://doi.org/10.53063/synsint.2021.1472.
[34] E. Gholami nejad, M. Farvizi, A. Habibolahzadeh, Microstructure and tribological behavior of Ti2AlN MAX phase synthesized through mechanical activation–spark plasma sintering method, J. Mater. Eng. Perform. 31 (2022) 5050–5062. https://doi.org/10.1007/s11665-021-06559-6.
[35] J. Lyu, E.B. Kashkarov, N. Travitzky, M.S. Syrtanov, A.M. Lider, Sintering of MAX-phase materials by spark plasma and other methods, J. Mater. Sci. 56 (2021) 1980–2015. https://doi.org/10.1007/s10853-020-05359-y.
[36] S. Haji Amiri, M. Ghassemi Kakroudi, T. Rabizadeh, M. Shahedi Asl, Characterization of hot-pressed Ti3SiC2–SiC composites, Int. J. Refract. Met. Hard Mater. 90 (2020) 105232. https://doi.org/10.1016/j.ijrmhm.2020.105232.
[37] B. Mei, Y. Miyamoto, Investigation of TiAl/Ti2AlC composites prepared by spark plasma sintering, Mater. Chem. Phys. 75 (2002) 291–295. https://doi.org/10.1016/S0254-0584(02)00078-0.
[38] Y.-L. Chen, M. Yan, Y.-M. Sun, B.-C. Mei, J.-Q. Zhu, The phase transformation and microstructure of TiAl/Ti2AlC composites caused by hot pressing, Ceram. Int. 35 (2009) 1807–1812. https://doi.org/10.1016/j.ceramint.2008.10.009.
[39] F. Yang, F.T. Kong, Y.Y. Chen, S.L. Xiao, Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite, J. Alloys Compd. 496 (2010) 462–466. https://doi.org/10.1016/j.jallcom.2010.02.077.
[40] C. Liu, Y. Wang, W. Han, T. Ma, D. Ma, Y. Zhang, Achieving superior high-temperature strength and oxidation resistance of TiAl nanocomposite through in situ semicoherent MAX phase precipitation, ACS Appl. Mater. Interfaces. 14 (2022) 8394–8403. https://doi.org/10.1021/acsami.1c21719.
[41] D. Wang, D. Sun, X. Han, Q. Wang, In situ Ti2AlN reinforced TiAl-based composite with a novel network structure: Microstructure and flexural property at elevated temperatures, Mater. Sci. Eng. A. 742 (2019) 231–240. https://doi.org/10.1016/j.msea.2018.11.018.
[42] M. Akhlaghi, E. Salahi, S.A. Tayebifard, G. Schmidt, Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part I: sintering and densification, Synth. Sinter. 1 (2021) 169–175. https://doi.org/10.53063/synsint.2021.1347.
[43] M. Akhlaghi, E. Salahi, S.A. Tayebifard, G. Schmidt, Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part II: Phase evolution, Synth. Sinter. 1 (2021) 211–216. https://doi.org/10.53063/synsint.2021.1453.
[44] M. Akhlaghi, S.A. Tayebifard, E. Salahi, M. Shahedi Asl, G. Schmidt, Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture, Ceram. Int. 44 (2018) 9671–9678. https://doi.org/10.1016/j.ceramint.2018.02.195.
[45] C.L. Yeh, S.H. Su, In situ formation of TiAl–TiB2 composite by SHS, J. Alloys Compd. 407 (2006) 150–156. https://doi.org/10.1016/j.jallcom.2005.06.053.
[46] R. Orrú, G. Cao, Z.A. Munir, Field-activated combustion synthesis of titanium aluminides, Metall. Mater. Trans. A. 30 (1999) 1101–1108. https://doi.org/10.1007/s11661-999-0162-1.
[47] T.T. Ai, Microstructures and mechanical properties of in-situ Al2O3/TiAl composites by exothermic dispersion method, Acta Metall. Sin. (Engl. Lett.). 21 (2008) 437–443. https://doi.org/10.1016/S1006-7191(09)60006-5.

Cited By

Crossref Google Scholar
Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part III: microstructure
Submitted
2021-12-26
Published
2022-03-20
How to Cite
Akhlaghi, M., Salahi, E., Tayebifard, S. A., & Schmidt, G. (2022). Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part III: microstructure. Synthesis and Sintering, 2(1), 20-25. https://doi.org/10.53063/synsint.2022.2182