Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part I: sintering and densification

  • Maryam Akhlaghi 1
  • Esmaeil Salahi 2
  • Seyed Ali Tayebifard 3
  • Gert Schmidt 4
  • 1 Central Reference Laboratory, Iran University of Science and Technology, Narmak, Tehran, 16844, Iran
  • 2 Ceramics Department, Materials and Energy Research Center (MERC), Karaj, Iran
  • 3 Semiconductors Department, Materials and Energy Research Center (MERC), Karaj, Iran
  • 4 Faculty of Mechanical, Process and Energy Engineering, TU Bergakademie, Freiberg, Germany

Abstract

Five TiAl–Ti3AlC2 composite samples containing (10, 15, 20, 25 and 30 wt% Ti3AlC2 MAX phase) were prepared by spark plasma sintering technique at 900 °C for 7 min under 40 MPa. For this purpose, metallic titanium and aluminum powders (aiming at the in-situ formation of the TiAl matrix phase) were ball-milled with predetermined contents of Ti3AlC2 MAX phase, which already was synthesized using the same metallic powders as well as graphite flakes. Displacement-time-temperature variations during the heating and sintering steps, displacement rate versus temperature, displacement rate versus time, and densification behavior were studied. Two sharp changes were detected in the diagrams: the first one, ~16 min after the start of the heating process due to the melting of Al, and the second one, after ~35 min because of the sintering progression and the applied final pressure. The highest relative densities were measured for the samples doped with 20 and 25 wt% Ti3AlC2 additives. More Ti3AlC2 addition resulted in decreased relative density because of the agglomeration of MAX phase particles.

Downloads

Download data is not yet available.
Keywords: In-situ TiAl, Ti3AlC2 MAX phase, Spark plasma sintering, DTT graphs, Densification

References

[1] Z. Duan, Y. Han, X. Song, H. Chen, Creep behaviour of equiaxed fine-grain γ-TiAl-based alloy prepared by powder metallurgy, Mater. Sci. Technol. 36 (2020) 1457–1464. https://doi.org/10.1080/02670836.2020.1790098.
[2] H.P. Lim, W.Y.H. Liew, G.J.H. Melvin, Z.-T. Jiang, A Short Review on the Phase Structures, Oxidation Kinetics, and Mechanical Properties of Complex Ti-Al Alloys, Materials (Basel). 14 (2021) 1677. https://doi.org/10.3390/ma14071677.
[3] H. Huang, H. Ding, X. Xu, R. Chen, J. Guo, H. Fu, Phase transformation and microstructure evolution of a beta-solidified gamma-TiAl alloy, J. Alloys Compd. 860 (2021) 158082. https://doi.org/10.1016/j.jallcom.2020.158082.
[4] M.-P. Bacos, S. Ceccacci, J.-P. Monchoux, C. Davoine, T. Gheno, et al., Oxidation Behavior of a Spark Plasma Sintered Ti–48Al–2W–0.1B Alloy at 800 °C, Oxid. Met. 93 (2020) 587–600. https://doi.org/10.1007/s11085-020-09973-8.
[5] Y. Jiang, Y. He, H. Gao, Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties, J. Mater. Sci. Technol. 74 (2021) 89–104. https://doi.org/10.1016/j.jmst.2020.10.007.
[6] Z. Trzaska, G. Bonnefont, G. Fantozzi, J.-P. Monchoux, Comparison of densification kinetics of a TiAl powder by spark plasma sintering and hot pressing, Acta Mater. 135 (2017) 1–13. https://doi.org/10.1016/j.actamat.2017.06.004.
[7] G.H. Cao, A.M. Russell, C.-G. Oertel, W. Skrotzki, Microstructural evolution of TiAl-based alloys deformed by high-pressure torsion, Acta Mater. 98 (2015) 103–112. https://doi.org/10.1016/j.actamat.2015.07.012.
[8] C.Y. Teng, N. Zhou, Y. Wang, D.S. Xu, A. Du, et al., Phase-field simulation of twin boundary fractions in fully lamellar TiAl alloys, Acta Mater. 60 (2012) 6372–6381. https://doi.org/10.1016/j.actamat.2012.08.016.
[9] Y. Garip, Investigation of isothermal oxidation performance of TiAl alloys sintered by different processing methods, Intermetallics. 127 (2020) 106985. https://doi.org/10.1016/j.intermet.2020.106985.
[10] J. Shen, L. Hu, L. Zhang, W. Liu, A. Fang, Y. Sun, Synthesis of TiAl/Nb composites with concurrently enhanced strength and plasticity by powder metallurgy, Mater. Sci. Eng. A. 795 (2020) 139997. https://doi.org/10.1016/j.msea.2020.139997.
[11] Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, S.-L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications, Mater. Des. 191 (2020) 108662. https://doi.org/10.1016/j.matdes.2020.108662.
[12] N.F. Mogale, W.R. Matizamhuka, Spark Plasma Sintering of Titanium Aluminides: A Progress Review on Processing, Structure-Property Relations, Alloy Development and Challenges, Metals (Basel). 10 (2020) 1080. https://doi.org/10.3390/met10081080.
[13] M. Musi, B. Galy, J.-P. Monchoux, A. Couret, H. Clemens, S. Mayer, In-situ observation of the phase evolution during an electromagnetic-assisted sintering experiment of an intermetallic γ-TiAl based alloy, Scr. Mater. 206 (2022) 114233. https://doi.org/10.1016/j.scriptamat.2021.114233.
[14] D. Wimler, J. Lindemann, T. Kremmer, H. Clemens, S. Mayer, Microstructure and mechanical properties of novel TiAl alloys tailored via phase and precipitate morphology, Intermetallics. 138 (2021) 107316. https://doi.org/10.1016/j.intermet.2021.107316.
[15] Y. Su, Y. Lin, N. Zhang, D. Zhang, Microstructures and mechanical properties of TiAl alloy fabricated by spark plasma sintering, Int. J. Mod. Phys. B. 34 (2020) 2040036. https://doi.org/10.1142/S0217979220400366.
[16] E. Hug, G. Dirras, News Trends in Powder Metallurgy: Microstructures, Properties, Durability, Metals. 11 (2021) 1216. https://doi.org/10.3390/met11081216.
[17] S. Shu, F. Qiu, C. Tong, X. Shan, Q. Jiang, Effects of Fe, Co and Ni elements on the ductility of TiAl alloy, J. Alloys Compd. 617 (2014) 302–305. https://doi.org/10.1016/j.jallcom.2014.07.199.
[18] X. Gu, F. Cao, N. Liu, G. Zhang, D. Yang, et al., Microstructural evolution and mechanical properties of a high yttrium containing TiAl based alloy densified by spark plasma sintering, J. Alloys Compd. 819 (2020) 153264. https://doi.org/10.1016/j.jallcom.2019.153264.
[19] P.V. Cobbinah, W. Matizamhuka, R. Machaka, M.B. Shongwe, Y. Yamabe-Mitarai, The effect of Ta additions on the oxidation resistance of SPS-produced TiAl alloys, Int. J. Adv. Manuf. Technol. 106 (2020) 3203–3215. https://doi.org/10.1007/s00170-019-04885-7.
[20] L. Wang, A.K. Tieu, Q. Zhu, J. Chen, J. Cheng, et al., Achieving the excellent self-lubricity and low wear of TiAl intermetallics through the addition of copper coated graphite, Compos. Part B: Eng. 198 (2020) 108223. https://doi.org/10.1016/j.compositesb.2020.108223.
[21] S. Shu, B. Xing, F. Qiu, S. Jin, Q. Jiang, Comparative study of the compression properties of TiAl matrix composites reinforced with nano-TiB2 and nano-Ti5Si3 particles, Mater. Sci. Eng. A. 560 (2013) 596–600. https://doi.org/10.1016/j.msea.2012.10.001.
[22] C.L. Yeh, S.H. Su, In situ formation of TiAl–TiB2 composite by SHS, J. Alloys Compd. 407 (2006) 150–156. https://doi.org/10.1016/j.jallcom.2005.06.053.
[23] Y. Guo, Y. Liang, J. Lin, F. Yang, Effect of Nano-Y2O3 Addition on Microstructure and Tensile Properties of High-Nb TiAl Alloy Prepared by Spark Plasma Sintering, Metals (Basel). 11 (2021) 1048. https://doi.org/10.3390/met11071048.
[24] M. Radovic, M.W. Barsoum, MAX phases: bridging the gap between metals and ceramics, Am. Ceram. Soc. Bull. 92 (2013) 20–27.
[25] X.H. Wang, Y.C. Zhou, Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review, J. Mater. Sci. Technol. 26 (2010) 385–416. https://doi.org/10.1016/S1005-0302(10)60064-3.
[26] C.L. Yeh, Y.G. Shen, Formation of TiAl–Ti2AlC in situ composites by combustion synthesis, Intermetallics. 17 (2009) 169–173. https://doi.org/10.1016/j.intermet.2008.10.014.
[27] X.-J. Song, H.-Z. Cui, N. Hou, N. Wei, Y. Han, et al., Lamellar structure and effect of Ti2AlC on properties of prepared in-situ TiAl matrix composites, Ceram. Int. 42 (2016) 13586–13592. https://doi.org/10.1016/j.ceramint.2016.05.152.
[28] C. Yang, F. Wang, T. Ai, J. Zhu, Microstructure and mechanical properties of in situ TiAl/Ti2AlC composites prepared by reactive hot pressing, Ceram. Int. 40 (2014) 8165–8171. https://doi.org/10.1016/j.ceramint.2014.01.012.
[29] F. Yang, F.T. Kong, Y.Y. Chen, S.L. Xiao, Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite, J. Alloys Compd. 496 (2010) 462–466. https://doi.org/10.1016/j.jallcom.2010.02.077.
[30] M. Akhlaghi, S.A. Tayebifard, E. Salahi, M. Shahedi Asl, Spark plasma sintering of TiAl–Ti3AlC2 composite, Ceram. Int. 44 (2018) 21759–21764. https://doi.org/10.1016/j.ceramint.2018.08.272.
[31] M. Akhlaghi, S.A. Tayebifard, E. Salahi, M. Shahedi Asl, G. Schmidt, Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture, Ceram. Int. 44 (2018) 9671–9678. https://doi.org/10.1016/j.ceramint.2018.02.195.
[32] B. Nayebi, M. Shahedi Asl, M. Akhlaghi, Z. Ahmadi, S.A. Tayebifard, et al., Spark plasma sintering of TiB2-based ceramics with Ti3AlC2, Ceram. Int. 47 (2021) 11929–11934. https://doi.org/10.1016/j.ceramint.2021.01.033.
[33] M. Shahedi Asl, B. Nayebi, M. Akhlaghi, Z. Ahmadi, S.A. Tayebifard, et al., A novel ZrB2-based composite manufactured with Ti3AlC2 additive, Ceram. Int. 47 (2020) 817–827. https://doi.org/10.1016/j.ceramint.2020.08.193.
[34] F. Sadegh Moghanlou, M. Vajdi, M. Sakkaki, S. Azizi, Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride, Synth. Sinter. 1 (2021) 54–61. https://doi.org/10.53063/synsint.2021.117.
[35] S. Jafargholinejad, S. Soleymani, Effects of carbon nano-additives on characteristics of TiC ceramics prepared by field-assisted sintering, Synth. Sinter. 1 (2021) 62–68. https://doi.org/10.53063/synsint.2021.1123.

Cited By

Crossref Google Scholar
Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part I: sintering and densification
Submitted
2021-09-04
Available online
2021-09-26
How to Cite
Akhlaghi, M., Salahi, E., Tayebifard, S. A., & Schmidt, G. (2021). Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part I: sintering and densification . Synthesis and Sintering, 1(3), 169-175. https://doi.org/10.53063/synsint.2021.1347