Hydrogen evolution via noble metals based photocatalysts: A review

  • Asieh Akhoondi 1
  • Ankush Sharma 2
  • Dinesh Pathak 2
  • Mohammad Yusuf 3
  • Taye B. Demissie 4
  • Rui-tang Guo 5
  • Adnan Ali 6
  • 1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 2 School of Physics and Materials Science, Shoolini University of Biotechnology and Management Sciences, Solan 173212, India
  • 3 Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
  • 4 Department of Chemistry, University of Botswana, Notwane Rd, P/bag UB 00704, Gaborone, Botswana
  • 5 College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People’s Republic of China
  • 6 Luxi Polymetal Co. Ltd., Abuja, Nigeria

Abstract

In recent decades, the use of photocatalysts in the evolution of hydrogen (H2) has received much attention. However, the use of the well-known titanium oxide and another photocatalyst as a base for noble metals is limited due to their major weakness in electron-hole pair separation. The use of cocatalysts can be a good way to overcome this problem and provide better performance for the evolution of hydrogen. In this review, suitable high-efficiency cocatalysts for solar hydrogen production have been thoroughly reviewed. New strategies and solutions were examined in terms of increasing the recombination of charge carriers, designing reactive sites, and enhancing the wavelengths of light absorption. Several new types of cocatalysts based on semiconductors in noble groups and dual metals have been evaluated. It is expected that these photocatalysts will be able to reduce the activation energy of reaction and charge separation. In this regard, the existing views and challenges in the field of photocatalysts are presented. The characteristics of monoatomic photocatalysts are reviewed in this manuscript and the latest advances in this field are summarized. Further, the future trends and upcoming research are also briefly discussed. Finally, this review presents noble metal-based photocatalysts for providing suitable photocatalysts on a larger scale and improving their applicability.

Downloads

Download data is not yet available.
Keywords: Photocatalyst, H2 production, Semiconductor, Visible light, Bandgap, Synthesis

References

[1] S. O’Meara, China’s plan to cut coal and boost green growth, Nature. 584 (2020) S1–S3. https://doi.org/10.1038/d41586-020-02464-5.
[2] S. Impram, S.V. Nese, B. Oral, Challenges of renewable energy penetration on power system flexibility: A survey, Energy Strategy Rev. 31 (2020) 100539. https://doi.org/10.1016/j.esr.2020.100539.
[3] P.A. Owusu, S. Asumadu-Sarkodie, S. Dubey, A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Eng. 3 (2016) 1167990. https://doi.org/10.1080/23311916.2016.1167990.
[4] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature. 238 (1972) 37–38. https://doi.org/10.1038/238037a0.
[5] S.I.S. Mashuri, M.L. Ibrahim, M.F. Kasim, M.S. Mastuli, M.S. Mastuli, et al., Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society, Catalysts. 10 (2020) 1260. https://doi.org/10.3390/catal10111260.
[6] M. Patel, S. Kim, T.T. Nguyen, J. Kim, C.P. Wong, Transparent sustainable energy platform: Closed-loop energy chain of solar-electric-hydrogen by transparent photovoltaics, photo-electro-chemical cells and fuel system, Nano Energy. 90 (2021) 106496. https://doi.org/10.1016/j.nanoen.2021.106496.
[7] D.L.T. Nguyen, M.A. Tekalgne, T.H.C. Nguyen, M.T.N. Dinh, S.S. Sana, et al., Recent development of high-performance photocatalysts for N2 fixation: A review, J. Environ. Chem. Eng. 9 (2021) 104997. https://doi.org/10.1016/j.jece.2020.104997.
[8] A. Kumar, V. Hasija, A. Sudhaik, P. Raizada, Q.V. Le, et al., Artificial leaf for light-driven CO2 reduction: Basic concepts, advanced structures and selective solar-to-chemical products, Chem. Eng. J. 430 (2022). https://doi.org/10.1016/j.cej.2021.133031.
[9] A.S.K. Kumar, J.-G. You, W.-B. Tseng, G.D. Dwivedi, N. Rajesh, et al., Magnetically Separable Nanospherical g-C3N4@Fe3O4 as a Recyclable Material for Chromium Adsorption and Visible-Light-Driven Catalytic Reduction of Aromatic Nitro Compounds, ACS Sustain. Chem. Eng. 7 (2019) 6662–6671. https://doi.org/10.1021/acssuschemeng.8b05727.
[10] X. Wang, S. Hong, H. Lian, X. Zhan, M. Cheng, et al., Photocatalytic degradation of surface-coated tourmaline-titanium dioxide for self-cleaning of formaldehyde emitted from furniture, J. Hazard. Mater. 420 (2021) 126565. https://doi.org/10.1016/j.jhazmat.2021.126565.
[11] F. Fresno, R. Portela, S. Suárez, J.M. Coronado, Photocatalytic materials: recent achievements and near future trends, J. Mater. Chem. 2 (2014) 2863–2884. https://doi.org/10.1039/C3TA13793G.
[12] F. Iqbal, B. Abdullah, H. Oladipo, M. Yusuf, F. Alenazey, et al., Recent developments in photocatalytic irradiation from CO2 to methanol, Nanostructured Photocatalysts, Elsevier. (2021) 519–540. https://doi.org/10.1016/B978-0-12-823007-7.00015-8.
[13] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253–278. https://doi.org/10.1039/B800489G.
[14] A. Akhoondi, U. Feleni, B. Bethi, A.O. Idris, A. Hojjati-Najafabadi, Advances in metal-based vanadate compound photocatalysts: synthesis, properties and applications, Synth. Sinter. 1 (2021) 151–168. https://doi.org/10.53063/synsint.2021.1344.
[15] J. Strunk, Heterogeneous Photocatalysis: From Fundamentals to Applications in Energy Conversion and Depollution, Wiley-VCH. (2020).
[16] C.W. Huang, B.S. Nguyen, J.C.S. Wu, V.H. Nguyen, A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water, Int. J. Hydrog. Energy. 45 (2020). https://doi.org/10.1016/j.ijhydene.2019.08.121.
[17] K. Majrik, Z. Pászti, L. Korecz, J. Mihály, Z. May, et al., Effect of the Microstructure of the Semiconductor Support on the Photocatalytic Performance of the Pt-PtOx/TiO2 Catalyst System, Materials. 14 (2021) 943. https://doi.org/10.3390/ma14040943.
[18] S.A. Kurnosenko, V.V. Voytovich, O.I. Silyukov, I.A. Rodionov, S.O. Kirichenko, et al., Photocatalytic Activity of n-Alkylamine and n-Alkoxy Derivatives of Layered Perovskite-like Titanates H2Ln2Ti3O10 (Ln = La, Nd) in the Reaction of Hydrogen Production from an Aqueous Solution of Methanol, Catalysts. 11 (2021) 1279. https://doi.org/10.3390/catal11111279.
[19] I.R .Hamdani, A.N. Bhaskarwar, Recent progress in material selection and device designs for photoelectrochemical water-splitting, Renew. Sust. Energ. Rev. 138 (2021) 110503. https://doi.org/10.1016/j.rser.2020.110503.
[20] L. Sun, Q. Luo, Z. Dai, F. Ma, Material libraries for electrocatalytic overall water splitting, Coord. Chem. Rev. 444 (2021) 214049. https://doi.org/10.1016/j.ccr.2021.214049.
[21] R.S. Sutar, R.P. Barkul, S.D. Delekar, M.K. Patil, Sunlight assisted photocatalytic degradation of organic pollutants using g-C3N4-TiO2 nanocomposites, Arab. J. Chem. 13 (2020) 4966–4977. https://doi.org/10.1016/j.arabjc.2020.01.019.
[22] P. Raizada, T.H.C. Nguyen, S. Patial, P. Singh, A. Bajpai, et al., Toward practical solar-driven photocatalytic water splitting on two-dimensional MoS2 based solid-state Z-scheme and S-scheme heterostructure, Fuel. 303 (2021) 121302. https://doi.org/10.1016/j.fuel.2021.121302.
[23] R. Kumar, P. Raizada, A.A. Parwaz Khan, V.H. Nguyen, Q.V. Le, et al., Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications, J. Mater. Sci. Technol. 108 (2022) 208–225. https://doi.org/10.1016/j.jmst.2021.08.053.
[24] J. Wang, F.E. Osterloh, Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight, J. Mater. Chem. A. 2 (2014) 9405–9411. https://doi.org/10.1039/C4TA01654H.
[25] S. Tiwari, S. Kumar, A.K. Ganguli, Role of MoS2/rGO co-catalyst to enhance the activity and stability of Cu2O as photocatalyst towards photoelectrochemical water splitting, J. Photochem. Photobiol. A. 424 (2022) 113622. https://doi.org/10.1016/j.jphotochem.2021.113622.
[26] J. Li, Z. Zhao, Z. Li, H. Yang, S. Yue, et al., Construction of immobilized films photocatalysts with CdS clusters decorated by metal Cd and BiOCl for photocatalytic degradation of tetracycline antibiotics, Chin. Chem. Lett. 33 (2021) 3705–3708. https://doi.org/10.1016/j.cclet.2021.10.080.
[27] T. Liu, Y. Wang, P. Shan, Y. Chen, X. Zhao, et al., Hydrogen evolution from MoSe2/WO3(0 0 1) heterojunction by photocatalytic water splitting: A density functional theory study, Appl. Surf. Sci. 564 (2021) 150117. https://doi.org/10.1016/j.apsusc.2021.150117.
[28] Y.C. Chang, S.Y. Syu, Z.Y. Wu, Fabrication of ZnO-In2S3 composite nanofiber as highly efficient hydrogen evolution photocatalyst, Mater. Lett. 302 (2021) 130435. https://doi.org/10.1016/j.matlet.2021.130435.
[29] K. Ji, K. Matras-Postolek, R. Shi, L. Chen, Q. Che, et al., MoS2/CoS2 heterostructures embedded in N-doped carbon nanosheets towards enhanced hydrogen evolution reaction, J. Alloys Compd. 891 (2022). https://doi.org/10.1016/j.jallcom.2021.161962.
[30] T.V. Nguyen, H.H. Do, M. Tekalgne, Q.V. Le, T.P. Nguyen, et al., WS2–WC–WO3 nano-hollow spheres as an efficient and durable catalyst for hydrogen evolution reaction, Nano Converg. 8 (2021) 28. https://doi.org/10.1186/s40580-021-00278-3.
[31] W. Shi, M. Li, X. Huang, H. Ren, C. Ran, F. Guo, Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light, Chem. Eng. J. 382 (2020) 122960. https://doi.org/10.1016/j.cej.2019.122960.
[32] K.M. Emran, S.M. Ali, TNT/LaFeO3 composite as novel condition catalyst for ameliorating hydrogen evolution reaction, Electrochem. Commun. 133 (2021). https://doi.org/10.1016/j.elecom.2021.107149.
[33] M. Ismael, The photocatalytic performance of the ZnO/g-C3N4 composite photocatalyst toward degradation of organic pollutants and its inactivity toward hydrogen evolution: The influence of light irradiation and charge transfer, Chem. Phys. Lett. 739 (2020) 136992. https://doi.org/10.1016/j.cplett.2019.136992.
[34] Y. Chen, Q. Zhao, Y. Yao, T. Li, The preparation of ionic liquid based iron phosphate/CNTs composite via microwave radiation for hydrogen evolution reaction and oxygen evolution reaction, Arab. J. Chem. 14 (2021). https://doi.org/10.1016/j.arabjc.2021.103440.
[35] L. Li, X. Wang, J. Li, Y. Guo, X. Li, Y. Lu, One-pot synthesis of ultrafine Pt-decorated MoS2/N-doped carbon composite with sponge-like morphology for efficient hydrogen evolution reaction, J. Alloys Comp. 872 (2021) 159562. https://doi.org/10.1016/j.jallcom.2021.159562.
[36] C. Gao, H. Hua, M. Du, J. Liu, X. Wu, et al., 1T/2H MoS2 nanoflowers decorated amorphous Mo-CoSx skeleton: A ZIF-based composite electrocatalyst for the hydrogen evolution reaction, Appl. Surf. Sci. 515 (2020). https://doi.org/10.1016/j.apsusc.2020.145842.
[37] J. Zhao, W. Li, S. Wu, F. Xu, J. Du, et al., Strong interfacial interaction significantly improving hydrogen evolution reaction performances of MoS2/Ti4O7 composite catalysts, Electrochim. Acta. 337 (2020). https://doi.org/10.1016/j.electacta.2020.135850.
[38] S. Sun, M. Watanabe, P. Wang, T. Ishihara, Synergistic Enhancement of H2 and CH4 Evolution by CO2 Photoreduction in Water with Reduced Graphene Oxide–Bismuth Monoxide Quantum Dot Catalyst, ACS Appl. Energy Mater. 2 (2019) 2104–2112. https://doi.org/10.1021/acsaem.8b02153.
[39] M. Yin, J. Sun, Y. Li, Y. Ye, K. Liang, et al., Efficient photocatalytic hydrogen evolution over MoS2/activated carbon composite sensitized by Erythrosin B under LED light irradiation, Catal. Commun. 142 (2020). https://doi.org/10.1016/j.catcom.2020.106029.
[40] D.V. Esposito, S.T. Hunt, Y.C. Kimmel, J.G. Chen, A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides, J. Am. Chem. Soc. 134 (2012). https://doi.org/10.1021/ja208656v.
[41] Y. Li, Y.-K. Peng, L. Hu, J. Zheng, D. Prabhakaran, et al., Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures, Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-019-12385-1.
[42] Z. Pan, N. Pan, L. Chen, J. He, M. Zhang, Flower-like MOF-derived Co–N-doped carbon composite with remarkable activity and durability for electrochemical hydrogen evolution reaction, Int. J. Hydrog. Energy. 44 (2019) 30075–30083. https://doi.org/10.1016/j.ijhydene.2019.09.117.
[43] Y. Qin, H. Li, J. Lu, F. Meng, C. Ma, et al., Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution, Chem. Eng. J. 384 (2020) 123275. https://doi.org/10.1016/j.cej.2019.123275.
[44] T.P. Nguyen, S.Y. Kim, T.H. Lee, H.W. Jang, Q.V. Le, I.T. Kim, Facile synthesis of W2C@WS2 alloy nanoflowers and their hydrogen generation performance, Appl. Surf. Sci. 504 (2020) 144389. https://doi.org/10.1016/j.apsusc.2019.144389.
[45] Y. Yusran, H. Li, X. Guan, Q. Fang, S. Qiu, Covalent Organic Frameworks for Catalysis, EnergyChem. 2 (2020) 100035. https://doi.org/10.1016/j.enchem.2020.100035.
[46] R. Kavitha, P.M. Nithya, S. Girish Kumar, Noble metal deposited graphitic carbon nitride based heterojunction photocatalysts, Appl. Surf. Sci. 508 (2020). https://doi.org/10.1016/j.apsusc.2019.145142.
[47] M. Passi, B. Pal, A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications, Powder Technol. 388 (2021). https://doi.org/10.1016/j.powtec.2021.04.056.
[48] C. Sun, J. Yang, M. Xu, Y. Cui, W. Ren, et al., Recent intensification strategies of SnO2-based photocatalysts: A review, Chem. Eng. J. 427 (2022). https://doi.org/10.1016/j.cej.2021.131564.
[49] R. Yang, Y. Zhang, Y. Fan, R. Wang, R. Zhu, et al., InVO4-based photocatalysts for energy and environmental applications, Chem. Eng. J. 428 (2022). https://doi.org/10.1016/j.cej.2021.131145.
[50] Y. Liu, Z. Sun, Y.H. Hu, Bimetallic cocatalysts for photocatalytic hydrogen production from water, Chem. Eng. J. 409 (2021) 128250. https://doi.org/10.1016/j.cej.2020.128250.
[51] Y.-R. Lin, G.V.C. Dizon, K. Yamada, C.-Y. Liu, A. Venault, et al., Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling, J. Colloid Interface Sci. 567 (2020) 202–212. https://doi.org/10.1016/j.jcis.2020.02.017.
[52] Q. Wei, Y. Yang, H. Liu, J. Hou, M. Liu, et al., Experimental study on direct solar photocatalytic water splitting for hydrogen production using surface uniform concentrators, Int. J. Hydrog. Energy. 43 (2018) 13745–13753. https://doi.org/10.1016/j.ijhydene.2018.01.135.
[53] C. Jiang, L. Yu, S. Yang, K. Li, A Review of the Compound Parabolic Concentrator (CPC) with a Tubular Absorber, Energies. 13 (2020) 695. https://doi.org/10.3390/en13030695.
[54] H. Derbal-Mokrane, F. Amrouche, M.N. Omari, I. Yahmi, Hydrogen production through parabolic trough power plant based on the Organic Rankine Cycle implemented in the Algerian Sahara, Int. J. Hydrog. Energy. 46 (2021) 32768–32782. https://doi.org/10.1016/j.ijhydene.2021.07.135.
[55] R. Molinari, C. Lavorato, P. Argurio, Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions, Catalysts. 10 (2020) 1334. https://doi.org/10.3390/catal10111334.
[56] M.Y. Qi, M. Conte, M. Anpo, Z.R. Tang, Y.J. Xu, Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts, Chem. Rev. 121 (2021) 13051–13085. https://doi.org/10.1021/acs.chemrev.1c00197.
[57] T. Takata, C. Pan, K. Domen, Recent progress in oxynitride photocatalysts for visible-light-driven water splitting, Sci. Technol. Adv. Mater. 16 (2015) 033506. https://doi.org/10.1088/1468-6996/16/3/033506.
[58] D.I. Kondarides, V.M. Daskalaki, A. Patsoura, X.E. Verykios, Hydrogen Production by Photo-Induced Reforming of Biomass Components and Derivatives at Ambient Conditions, Catal. Lett. 122 (2008) 26–32. https://doi.org/10.1007/s10562-007-9330-3.
[59] C. Xia, T.H.C. Nguyen, X.C. Nguyen, S.Y. Kim, D.L.T. Nguyen, et al., Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: Progress and perspectives, Fuel. 307 (2022) 121745. https://doi.org/10.1016/j.fuel.2021.121745.
[60] J. Zhang, X. Wang, Solar Water Splitting at λ=600 nm: A Step Closer to Sustainable Hydrogen Production, Angew. Chem. Int. Ed. 54 (2015) 7230–7232. https://doi.org/10.1002/anie.201502659.
[61] Q. Wang, K. Domen, Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies, Chem. Rev. 120 (2020) 919–985. https://doi.org/10.1021/acs.chemrev.9b00201.
[62] L. Hammarström, Accumulative Charge Separation for Solar Fuels Production: Coupling Light-Induced Single Electron Transfer to Multielectron Catalysis, Acc. Chem. Res. 48 (2015) 840–850. https://doi.org/10.1021/ar500386x.
[63] Z. Zhang, L. Zhang, M. Nejib Hedhili, H. Zhang, P. Wang, Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO2 Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting, Nano Lett. 13 (2013) 14–20. https://doi.org/10.1021/nl3029202.
[64] P.A. DeSario, J.J. Pietron, D.E. DeVantier, T.H. Brintlinger, R.M. Stroud, D.R. Rolison, Plasmonic enhancement of visible-light water splitting with Au–TiO2 composite aerogels, Nanoscale. 5 (2013) 8073–8083. https://doi.org/10.1039/C3NR01429K.
[65] H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: A review, Renew. Sust. Energ. Rev. 43 (2015). https://doi.org/10.1016/j.rser.2014.10.101.
[66] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sust. Energ. Rev. 11 (2007) 401–425. https://doi.org/10.1016/j.rser.2005.01.009.
[67] N.S. Lewis, G. Crabtree, Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, Argonne National Laboratory. (2005).
[68] C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting–materials and challenges, Chem. Soc. Rev. 46 (2017) 4645–4660. https://doi.org/10.1039/C6CS00306K.
[69] X. Wei, X. He, P. Wu, F. Gong, D. Wang, et al., Recent advances in the design of semiconductor hollow microspheres for enhanced photocatalyticv water splitting, Int. J. Hydrog. Energy. 46 (2021) 27974–27996. https://doi.org/10.1016/j.ijhydene.2021.06.076.
[70] C. Xia, K.O. Kirlikovali, T.H.C. Nguyen, X.C. Nguyen, Q.B. Tran, et al., The emerging covalent organic frameworks (COFs) for solar-driven fuels production, Coord. Chem. Rev. 446 (2021) 214117. https://doi.org/10.1016/j.ccr.2021.214117.
[71] S. Sun, W. Wang, Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application, RSC Adv. 4 (2014) 47136–47152. https://doi.org/10.1039/C4RA06419D.
[72] X. Liu, P. Wang, X. Liang, Q. Zhang, Z. Wang, et al., Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting, Mater. Today Energy. 18 (2020) 100524. https://doi.org/10.1016/j.mtener.2020.100524.
[73] S. Bai, W. Yin, L. Wang, Z. Li, Y. Xiong, Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction, RSC Adv. 6 (2016). https://doi.org/10.1039/C6RA10539D.
[74] X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels, Chem. Rev. 119 (2019) 3962–4179. https://doi.org/10.1021/acs.chemrev.8b00400.
[75] W. Jiang, S. Bai, L. Wang, X. Wang, L. Yang, et al., Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO2 Nanosheets for Visible-Near-Infrared Photocatalytic Hydrogen Evolution, Small. 12 (2016). https://doi.org/10.1002/smll.201503552.
[76] A. Tanaka, S. Sakaguchi, K. Hashimoto, H. Kominami, Preparation of Au/TiO2 with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation under Irradiation of Visible Light, ACS Catal. 3 (2013) 79–85. https://doi.org/10.1021/cs3006499.
[77] A. Tanaka, K. Nakanishi, R. Hamada, K. Hashimoto, H. Kominami, Simultaneous and Stoichiometric Water Oxidation and Cr(VI) Reduction in Aqueous Suspensions of Functionalized Plasmonic Photocatalyst Au/TiO2–Pt under Irradiation of Green Light, ACS Catal. 3 (2013) 1886–1891. https://doi.org/10.1021/cs400433r.
[78] Z. Xu, M. Quintanilla, F. Vetrone, A.O. Govorov, M. Chaker, D. Ma, Harvesting Lost Photons: Plasmon and Upconversion Enhanced Broadband Photocatalytic Activity in Core@Shell Microspheres Based on Lanthanide-Doped NaYF4, TiO2, and Au, Adv. Funct. Mater. 25 (2015) 2950–2960. https://doi.org/10.1002/adfm.201500810.
[79] A. Sudhaik, A.A. Parwaz Khan, P. Raizada, V.H. Nguyen, Q.V. Le, et al., Strategies based review on near-infrared light-driven bismuth nanocomposites for environmental pollutants degradation, Chemosphere. 291 (2021) 132781. https://doi.org/10.1016/j.chemosphere.2021.132781.
[80] A. Gobrecht, R. Bendoula, J.M. Roger, V. Bellon-Maurel, Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer–Lambert law absorbance of highly scattering materials, Anal. Chim. Acta. 853 (2015) 486–494. https://doi.org/10.1016/j.aca.2014.10.014.
[81] F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev. 42 (2013) 2294–2320. https://doi.org/10.1039/C2CS35266D.
[82] F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chem. Mater. 20 (2008) 35–54. https://doi.org/10.1021/cm7024203.
[83] P.S. Bassi, Gurudayal, L.H. Wong, J. Barber, Iron based photoanodes for solar fuel production, Phys. Chem. Chem. Phys. 16 (2014) 11834-11842. https://doi.org/10.1039/C3CP55174A.
[84] H.C. Chen, C.W. Huang, J.C.S. Wu, S.T. Lin, Theoretical Investigation of the Metal-Doped SrTiO3 Photocatalysts for Water Splitting, J. Phys. Chem. C. 116 (2012) 7897–7903. https://doi.org/10.1021/jp300910e.
[85] S. Noothongkaew, J.K. Han, Y.B. Lee, O. Thumthan, K.S. An, Au NPs decorated TiO2 nanotubes array candidate for UV photodetectors, Prog. Nat. Sci. 27 (2017) 641–646. https://doi.org/10.1016/j.pnsc.2017.10.001.
[86] J.A. Ortega Méndez, Cristina R. López, E. Pulido Melián, O. González Díaz, J.M. Doña Rodríguez, et al., Production of hydrogen by water photo-splitting over commercial and synthesised Au/TiO2 catalysts, Appl. Catal. B. 147 (2014) 439–452. https://doi.org/10.1016/j.apcatb.2013.09.029.
[87] X. Zhou, N. Liu, T. Yokosawa, A. Osvet, M.E. Miehlich, et al., Intrinsically Activated SrTiO3: Photocatalytic H2 Evolution from Neutral Aqueous Methanol Solution in the Absence of Any Noble Metal Cocatalyst, ACS Appl. Mater. Interfaces. 10 (2018) 29532–29542. https://doi.org/10.1021/acsami.8b08564.
[88] Y. Fan, Y. Liu, H. Cui, W. Wang, Q. Shang, et al., Photocatalytic Overall Water Splitting by SrTiO3 with Surface Oxygen Vacancies, Nanomaterials. 10 (2020). https://doi.org/10.3390/nano10122572.
[89] P. Shen, J.C. LofaroJr., W.R. Woerner, M.G. White, D. Su, A. Orlov, Photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method, Chem. Eng. 223 (2013) 200–208. https://doi.org/10.1016/j.cej.2013.03.030.
[90] Q. Wang, T. Hisatomi, S.S. Khine Ma, Y. Li, K. Domen, Core/Shell Structured La- and Rh-Codoped SrTiO3 as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting under Visible Light Irradiation, Chem. Mater. 26 (2014) 4144–4150. https://doi.org/10.1021/cm5011983.
[91] Y. Qin, F. Fang, Z. Xie, H. Lin, K. Zhang, et al., La,Al-Codoped SrTiO3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering, ACS Catal. 11 (2021) 11429–11439. https://doi.org/10.1021/acscatal.1c02874.
[92] T.K. Townsend, N.D. Browning, F.E. Osterloh, Nanoscale strontium titanate photocatalysts for overall water splitting, ACS Nano. 6 (2012) 7420–7426. https://doi.org/10.1021/nn302647u.
[93] T.K. Townsend, N.D. Browning, F.E. Osterloh, Overall photocatalytic water splitting with NiOx–SrTiO3– a revised mechanism, Energy Environ. Sci. 5 (2012) 9543–9550. https://doi.org/10.1039/C2EE22665K.
[94] Y. Fo, M. Wang, Y. Ma, H. Dong, X. Zhou, Origin of highly efficient photocatalyst NiO/SrTiO3 for overall water splitting: Insights from density functional theory calculations, J. Solid State Chem. 292 (2020). https://doi.org/10.1016/j.jssc.2020.121683.
[95] K.M. Macounová, R. Nebel, M. Klusáčková, M. Klementová, P. Krtil, Selectivity Control of the Photo-Catalytic Water Oxidation on SrTiO3 Nanocubes via Surface Dimensionality, ACS Appl. Mater. Interfaces. 11 (2019). https://doi.org/10.1021/acsami.9b00342.
[96] V.-H. Nguyen, H.H. Do, T.V. Nguyen, P. Singh, P. Raizada, et al., Perovskite oxide-based photocatalysts for solar-driven hydrogen production: Progress and perspectives, Sol. Energy. 211 (2020) 584–599. https://doi.org/10.1016/j.solener.2020.09.078.
[97] Q. Kuang, S. Yang, Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution, ACS Appl. Mater. Interfaces. 5 (2013) 3683–3690. https://doi.org/10.1021/am400254n.
[98] J. Yu, L. Qi, M. Jaroniec, Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets, J. Phys. Chem. C. 114 (2010) 13118–13125. https://doi.org/10.1021/jp104488b.
[99] T. Wei, Y. Zhu, Y. Wu, X. An, L.M. Liu, Effect of Single-Atom Cocatalysts on the Activity of Faceted TiO2 Photocatalysts, Langmuir. 35 (2019) 391–397. https://doi.org/10.1021/acs.langmuir.8b03488.
[100] Y. Chen, S. Ji, W. Sun, Y. Lei, Q. Wang, et al., Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production, Angew. Chem. Int. Ed. 59 (2020) 1295–1301. https://doi.org/10.1002/anie.201912439.
[101] S. Ida, N. Kim, E. Ertekin, S. Takenaka, T. Ishihara, Photocatalytic Reaction Centers in Two-Dimensional Titanium Oxide Crystals, J. Am. Chem. Soc. 137 (2015) 239–244. https://doi.org/10.1021/ja509970z.
[102] S. Berdyugin, E. Kozlova, A. Kurenkova, E. Gerasimov, A. Bukhtiyarov, et al., Hydrogarnet-derived Rh/TiO2 catalysts with a low rhodium content for a photocatalytic hydrogen production, Mater. Lett. 307 (2022) 130997. https://doi.org/10.1016/j.matlet.2021.130997.
[103] S. Fang, Y. Liu, Z. Sun, J. Lang, C. Bao, Y.-H. Hu, Photocatalytic hydrogen production over Rh-loaded TiO2: What is the origin of hydrogen and how to achieve hydrogen production from water?, Appl. Catal. B. 278 (2020) 119316. https://doi.org/10.1016/j.apcatb.2020.119316.
[104] A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis, Nat. Rev. Chem. 2 (2018) 65–81. https://doi.org/10.1038/s41570-018-0010-1.
[105] H. Zhang, S. Zuo, M. Qiu, S. Wang, Y. Zhang, et al., Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution, Sci. Adv. 6 (2020). https://doi.org/10.1126/sciadv.abb9823.
[106] Y. Okamoto, S. Ida, J. Hyodo, H. Hagiwara, T. Ishihara, Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading, J. Am. Chem. Soc. 133 (2011) 18034–18037. https://doi.org/10.1021/ja207103j.
[107] S. Nishioka, K. Maeda, Hydrothermal synthesis of rhodium-doped barium titanate nanocrystals for enhanced photocatalytic hydrogen evolution under visible light, RSC Adv. 5 (2015) 100123–100128. https://doi.org/10.1039/C5RA20044J.
[108] T.H. Chiang, G. Viswanath, Y.S. Chen, Effects of RhCrOx Cocatalyst Loaded on Different Metal Doped LaFeO3 Perovskites with Photocatalytic Hydrogen Performance under Visible Light Irradiation, Catalysts. 11 (2021) 612. https://doi.org/10.3390/catal11050612.
[109] A. Alzahrani, D. Barbash, A. Samokhvalov, “One-Pot” Synthesis and Photocatalytic Hydrogen Generation with Nanocrystalline Ag(0)/CaTiO3 and in Situ Mechanistic Studies, J. Phys. Chem. C. 120 (2016) 19970–19979. https://doi.org/10.1021/acs.jpcc.6b05407.
[110] S.J.P. Varapragasam, S. Mia, C. Wieting, C. Balasanthiran, M.Y. Hossan, et al., Ag–TiO2 Hybrid Nanocrystal Photocatalyst: Hydrogen Evolution under UV Irradiation but Not under Visible-Light Irradiation, ACS Appl. Energy Mater. 2 (2019) 8274–8282. https://doi.org/10.1021/acsaem.9b01730.
[111] M. Shang, H. Hou, F. Gao, L. Wang, W. Yang, Mesoporous Ag@TiO2 nanofibers and their photocatalytic activity for hydrogen evolution, RSC Adv. 7 (2017) 30051–30059. https://doi.org/10.1039/C7RA03177G.
[112] D. Gao, W. Liu, Y. Xu, P. Wang, J. Fan, H. Yu, Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: One-step photoinduced deposition and its improved H2-evolution activity, Appl. Catal. B. 260 (2020) 118190. https://doi.org/10.1016/j.apcatb.2019.118190.
[113] B. Antil, L. Kumar, R. Ranjan, S. Shenoy, K. Tarafder, et al., One-Dimensional Multichannel g-C3N4.7 Nanostructure Realizing an Efficient Photocatalytic Hydrogen Evolution Reaction and Its Theoretical Investigations, ACS Appl. Energy Mater. 4 (2021) 3118–3129. https://doi.org/10.1021/acsaem.0c02858.
[114] S.S. Lam, V.-H. Nguyen, M.T.N. Dinh, D.Q. Khieu, D.D. La, et al., Mainstream avenues for boosting graphitic carbon nitride efficiency: towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation, J. Mater. Chem. A. 8 (2020) 10571–10603. https://doi.org/10.1039/D0TA02582H.
[115] R. Liu, Z. Chen, Y. Yao, Y. Li, W.A. Cheema, et al., Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: a mini review, RSC Adv. 10 (2020) 29408–29418. https://doi.org/10.1039/D0RA05779G.
[116] J. Qin, H. Zeng, Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation, Appl. Catal. B. 209 (2017) 161–173. https://doi.org/10.1016/j.apcatb.2017.03.005.
[117] Y. Zhu, T. Wang, T. Xu, Y. Li, C. Wang, Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution, Appl. Surf. Sci. 464 (2019) 36–42. https://doi.org/10.1016/j.apsusc.2018.09.061.
[118] K. Mori, R. Osaka, K. Naka, D. Tatsumi, H. Yamashita, Ultra-Low Loading of Ru Clusters over Graphitic Carbon Nitride: A Drastic Enhancement in Photocatalytic Hydrogen Evolution Activity, ChemCatChem. 11 (2019) 1963. https://doi.org/10.1002/cctc.201900073.
[119] T. Tong, B. Zhu, C. Jiang, B. Cheng, J. Yu, Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4, Appl. Surf. Sci. 433 (2018) 1175–1183. https://doi.org/10.1016/j.apsusc.2017.10.120.
[120] F. Raziq, M. Humayun, A. Ali, T. Wang, A. Khan, et al., Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities, Appl. Catal. B. 237 (2018) 1082–1090. https://doi.org/10.1016/j.apcatb.2018.06.009.
[121] Q. Zhu, Z. Xu, B. Qiu, M. Xing, J. Zhang, Emerging Cocatalysts on g-C3N4 for Photocatalytic Hydrogen Evolution, Small. 17 (2021) 2101070. https://doi.org/10.1002/smll.202101070.
[122] X. She, J. Wu, J. Zhong, H. Xu, Y. Yang, et al., Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency, Nano Energy. 27 (2016) 138–146. https://doi.org/10.1016/j.nanoen.2016.06.042.
[123] X. Hu, R.-t Guo, L.-f. Hong, X.-f. Ji, W.-g. Pan, Recent Progress in Quantum Dots Modified g-C3N4-based Composite Photocatalysts, ChemistrySelect. 6 (2021) 10854. https://doi.org/10.1002/slct.202102952.
[124] B. Rhimi, C. Wang, D.W. Bahnemann, Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: a mini review, J. Phys. Energy. 2 (2020) 042003. https://doi.org/10.1088/2515-7655/abb782.
[125] X. Liang, J. Zhao, T. Wang, Z. Zhang, M. Qu, C. Wang, Constructing a Z-Scheme Heterojunction Photocatalyst of GaPO 4/α-MoC/Ga2O3 without Mingling Type-II Heterojunction for CO2 Reduction to CO, ACS Appl. Mater. Interfaces. 13 (2021) 33034–33044. https://doi.org/10.1021/acsami.1c07757.
[126] F. Opoku, K.K. Govender, C.G. Catharina Elizabeth van Sittert, P.P. Govender, Recent Progress in the Development of Semiconductor-Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants, Adv. Sustain. Syst.1 (2017) 1700006. https://doi.org/10.1002/adsu.201700006.
[127] L. Yuliati, J.-H. Yang, X. Wang, K. Maeda, T. Takata, et al., Highly active tantalum(v) nitridenanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation, J. Mater. Chem. 20 (2010) 4295–4298. https://doi.org/10.1039/C0JM00341G.
[128] S. Chen, Y. Qi, Q. Ding, Z. Li, J. Cui, et al., Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation, J. Catal. 339 (2016) 77–83. https://doi.org/10.1016/j.jcat.2016.03.024.
[129] Y. Ma, K. Zhou, H. Dong, X. Zhou, Effects of Adsorbing Noble Metal Single Atoms on the Electronic Structure and Photocatalytic Activity of Ta3N5, J. Phys. Chem. C. 125 (2021) 17600–17611. https://doi.org/10.1021/acs.jpcc.1c04054.
[130] J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting, Chem. Soc. Rev. 43 (2014) 7787–7812. https://doi.org/10.1039/C3CS60425J.
[131] D. Wang, Y. Peng, Q. Wang, N. Pan, Z. Guo, X. Yuan, High-efficient photo-electron transport channel in SiC constructed by depositing cocatalysts selectively on specific surface sites for visible-light H2 production, Appl. Phys. Lett. 108 (2016) 161601. https://doi.org/10.1063/1.4947196.
[132] D. Wang, W. Wang, Q. Wang, Z. Guo, W. Yuan, Spatial separation of Pt and IrO2 cocatalysts on SiC surface for enhanced photocatalysis, Mater. Lett. 201 (2017) 114–117. https://doi.org/10.1016/j.matlet.2017.04.140.
[133] M. Wang, J. Chen, X. Liao, Z. Liu, J. Zhang, et al., Highly efficient photocatalytic hydrogen production of platinum nanoparticle-decorated SiC nanowires under simulated sunlight irradiation, Int. J. Hydrog. Energy. 39 (2014) 14581–14587. https://doi.org/10.1016/j.ijhydene.2014.07.068.
[134] S. Shen, X. Chen, F. Ren, C.X. Kronawitter, S.S. Mao, L. Guo, Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides, Nanoscale Res. Lett. 6 (2011) 290. https://doi.org/10.1186/1556-276X-6-290.
[135] Y. Chen, Y. Liu, Z. Ma, g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution, Processes. 9 (2021) 1055. https://doi.org/10.3390/pr9061055.
[136] Z. Mo, H. Xu, X. She, Y. Song, P. Yan, et al., Constructing Pd/2D-C3N4 composites for efficient photocatalytic H2 evolution through nonplasmon-induced bound electrons, Appl. Surf. Sci. 467–468 (2019) 151–157. https://doi.org/10.1016/j.apsusc.2018.10.115.
[137] X. Cai, L. Mao, M. Fujitsuka, T. Majima, S. Kasani, et al., Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting, Nano Res. 15 (2022). https://doi.org/10.1007/s12274-021-3498-5.
[138] G. Zhu, H. Yin, C. Yang, H. Cui, Z. Wang, et al., Black Titania for Superior Photocatalytic Hydrogen Production and Photoelectrochemical Water Splitting, ChemCatChem. 7 (2015) 2614–2619. https://doi.org/10.1002/cctc.201500488.
[139] M.G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, et al., Surface Modification of TiO2 with Au Nanoclusters for Efficient Water Treatment and Hydrogen Generation under Visible Light, J. Phys. Chem. C. 120 (2016) 25010–25022. https://doi.org/10.1021/acs.jpcc.6b06854.
[140] X. Yang, X. Wu, J. Li, Y. Liu, TiO2–Au composite nanofibers for photocatalytic hydrogen evolution, RSC Adv. 9 (2019) 29097–29104. https://doi.org/10.1039/C9RA05113A.
[141] P. Jiménez-Calvo, V. Caps, M.N. Ghazzal, C. Colbeau-Justin, V. Keller, Au/TiO2(P25)-gC3N4 composites with low gC3N4 content enhance TiO2 sensitization for remarkable H2 production from water under visible-light irradiation, Nano Energy. 75 (2020) 104888. https://doi.org/10.1016/j.nanoen.2020.104888.
[142] C. Marchal, T. Cottineau, M.G. Méndez-Medrano, C. Colbeau-Justin, V. Caps, V. Keller, Au/TiO2–gC3N4 Nanocomposites for Enhanced Photocatalytic H2 Production from Water under Visible Light Irradiation with Very Low Quantities of Sacrificial Agents, Adv. Energy Mater. 8 (2016) 1702142. https://doi.org/10.1002/aenm.201702142.
[143] M. Song, Y. Wu, G. Zheng, C. Du, Y. Su, Junction of porous g-C3N4 with BiVO4 using Au as electron shuttle for cocatalyst-free robust photocatalytic hydrogen evolution, Appl. Surf. Sci. 498 (2019) 143808. https://doi.org/10.1016/j.apsusc.2019.143808.
[144] J.E. Ramos-Sanchez, R. Camposeco, S.W. Lee, V. Rodríguez-González, Sustainable synthesis of AgNPs/strontium-titanate-perovskite-like catalysts for the photocatalytic production of hydrogen, Catal. Today. 341 (2020) 112–119. https://doi.org/10.1016/j.cattod.2019.08.020.
[145] W. Soontornchaiyakul, T. Fujimura, N. Yano, Y. Kataoka, R. Sasai, Photocatalytic Hydrogen Evolution over Exfoliated Rh-Doped Titanate Nanosheets, ACS Omega. 5 (2020) 9929–9936. https://doi.org/10.1021/acsomega.0c00204.
[146] Y. Chen, S. Zhao, X. Wang, Q. Peng, R. Lin, et al., Synergetic Integration of Cu1.94S–ZnxCd1–xS Heteronanorods for Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production, J. Am. Chem. Soc. 2016 (138) 4286–4289. https://doi.org/10.1021/jacs.5b12666.
[147] Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, et al., H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance, Adv. Funct. Mater. 23 (2013) 5444–5450. https://doi.org/10.1002/adfm.201300486.
[148] N. Güy, Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production, Appl. Surf. Sci. 522 (2020) 146442. https://doi.org/10.1016/j.apsusc.2020.146442.
[149] J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, et al., Porous TiO2 Nanotubes with Spatially Separated Platinum and CoOx Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production, Angew. Chem. Int. Ed. 56 (2017) 816. https://doi.org/10.1002/anie.201611137.
[150] H. Kadowaki, N. Saito, H. Nishiyama, Y. Inoue, RuO2-loaded Sr2+-doped CeO2 with d0 Electronic Configuration as a New Photocatalyst for Overall Water Splitting, Chem. Lett. 36 (2007) 440. https://doi.org/10.1246/cl.2007.440.
[151] Y. Yuan, J. Zheng, X. Zhang, Z. Li, T. Yu, et al., BaCeO3 as a novel photocatalyst with 4f electronic configuration for water splitting, Solid State Ion. 178 (2008) 1711–1713. https://doi.org/10.1016/j.ssi.2007.11.012.
[152] J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, Y. Inoue, Photocatalytic Activity for Water Decomposition of RuO2-Dispersed Zn2GeO4 with d10 Configuration, J. Phys. Chem. B. 108 (2004) 4369–4375. https://doi.org/10.1021/jp0373189.
[153] J. Yu, Y. Yu, P. Zhou, W. Xiao, B. Cheng, Morphology-dependent photocatalytic H2-production activity of CdS, Applied Catal. B. 156–157 (2014) 184–191. https://doi.org/10.1016/j.apcatb.2014.03.013.
[154] Z.U. Rahman, N. Wei, M. Feng, D. Wang, TiO2 hollow spheres with separated Au and RuO2 co-catalysts for efficient photocatalytic water splitting, Int. J. Hydrog. Energy. 44 (2019) 13221–13231. https://doi.org/10.1016/j.ijhydene.2019.03.176.
[155] R.K. Chava, J. Yeon Do, M. Kang, Fabrication of CdS-Ag3PO4 heteronanostructures for improved visible photocatalytic hydrogen evolution, J. Alloys Compd. 727 (2017) 86–93. https://doi.org/10.1016/j.jallcom.2017.08.108.
[156] H. Li, X. Cui, A hydrothermal route for constructing reduced graphene oxide/TiO2 nanocomposites: Enhanced photocatalytic activity for hydrogen evolution, Int. J. Hydrog. Energy. 39 (2014) 19877–19886. https://doi.org/10.1016/j.ijhydene.2014.10.010.
[157] Y. Wang, J. Yu, W. Xiao, Q. Li, Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production, J. Mater. Chem. A. 2 (2014) 3847–3855. https://doi.org/10.1039/C3TA14908K.
[158] P. Dong, Y. Wang, A. Zhang, T. Cheng, X. Xi, J. Zhang, Platinum Single Atoms Anchored on a Covalent Organic Framework: Boosting Active Sites for Photocatalytic Hydrogen Evolution, ACS Catal. 11 (2021) 13266. https://doi.org/10.1021/acscatal.1c03441.
[159] E. Can, B. Uralcan, R. Yildirim, Enhancing Charge Transfer in Photocatalytic Hydrogen Production over Dye-Sensitized Pt/TiO2 by Ionic Liquid Coating, ACS Appl. Energy Mater. 4 (2021) 10931–10939. https://doi.org/10.1021/acsaem.1c01553.
[160] C. Ru, T. Zhou, J. Zhang, X. Wu, P. Sun, et al., Introducing Secondary Acceptors into Conjugated Polymers to Improve Photocatalytic Hydrogen Evolution, Macromolecules. 54 (2021) 8839–8848. https://doi.org/10.1021/acs.macromol.1c00705.
[161] R. Pan, M. Hu, J. Liu, D. Li, X. Wan, et al., Two-Dimensional All-in-One Sulfide Monolayers Driving Photocatalytic Overall Water Splitting, Nano Lett. 21 (2021) 6228–6236. https://doi.org/10.1021/acs.nanolett.1c02008.
[162] M. Manikandan, T. Tanabe, P. Li, S. Ueda, G.V. Ramesh, et al., Photocatalytic Water Splitting under Visible Light by Mixed-Valence Sn3O4, ACS Appl. Mater. Interfaces. 6 (2014) 3790–3793. https://doi.org/10.1021/am500157u.
[163] J.W. Hong, Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production, Catalysts. 11 (2021) 848. https://doi.org/10.3390/catal11070848.
[164] S.-W. Cao, J. Fang, M.M. Shahjamali, F.Y.C. Boey, J. Barber, et al., Plasmon-Enhanced Hydrogen Evolution on Au-InVO4 Hybrid Microspheres, RSC Adv. 2 (2012) 5513–5515. https://doi.org/10.1039/C2RA20405C.
[165] C.F. Liu, T.P. Perng, Fabrication and band structure of Ag3PO4–TiO2 heterojunction with enhanced photocatalytic hydrogen evolution, Int. J. Hydrog. Energy. 45 (2020) 149–159. https://doi.org/10.1016/j.ijhydene.2019.10.182.
[166] W. Fang, S. Yao, L. Wang, C. Li, Enhanced photocatalytic overall water splitting via hollow structure Pt/g-C3N4/BiOBr photocatalyst with S-scheme heterojunction, J. Alloys Compd. 891 (2022) 162081. https://doi.org/10.1016/j.jallcom.2021.162081.
[167] M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata, K. Domen, Photocatalytic Hydrogen Evolution from Water Using Copper Gallium Sulfide under Visible-Light Irradiation, J. Phys. Chem. C. 114 (2010) 11215. https://doi.org/10.1021/jp103158f.
[168] K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, K. Domen, Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting, Angew. Chem. Int. 45 (2006) 7806–7809. https://doi.org/10.1002/anie.200602473.
[169] M. Wang, P. Ju, W. Li, Y. Zhao, X. Han, Ag2S nanoparticle-decorated MoS2 for enhanced electrocatalytic and photoelectrocatalytic activity in water splitting, Dalton Trans. 46 (2017) 483–490. https://doi.org/10.1039/C6DT04079A.
[170] L. Bai, X. Cai, J. Lu, L. Li, S. Zhong, et al., Surface and Interface Engineering in Ag2S@MoS2 Core–Shell Nanowire Heterojunctions for Enhanced Visible Photocatalytic Hydrogen Production, ChemCatChem. 10 (2018) 2107–2114. https://doi.org/10.1002/cctc.201701998.
[171] Q. Chen, C. Suo, S. Zhang, Y. Wang, Effect of PdS on Photocatalytic Hydrogen Evolution of Nanostructured CdS under Visible Light Irradiation, Int. J. Photoenergy. 2013 (2013) 149586. https://doi.org/10.1155/2013/149586.
[172] Y.S. Lai, C.H. Yang, J.M. Jehng, The formation of (NH4)2V6O16 phase in the synthesized InVO4 for the hydrogen evolving applications, Catal. Commun. 103 (2018) 19–23. https://doi.org/10.1016/j.catcom.2017.09.008.
[173] Z. Xu, M.G. Kibria, B. AlOtaibi, P.N. Duchesne, L.V. Besteiro, et al., Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect?, Appl. Catal. B. 221 (2018) 77–85. https://doi.org/10.1016/j.apcatb.2017.08.085.
[174] H. An, M. Li, R. Liu, Z. Gao, Z. Yin, Design of AgxAu1−x alloy/ZnIn2S4 system with tunable spectral response and Schottky barrier height for visible-light-driven hydrogen evolution, Chem. Eng. J. 382 (2020). https://doi.org/10.1016/j.cej.2019.122953.
[175] L. Cheng, Y. Li, A. Chen, Y. Zhu, C. Li, Subnano-Sized Pt–Au Alloyed Clusters as Enhanced Cocatalyst for Photocatalytic Hydrogen Evolution, Chem. Asian J. 14 (2019) 2112–2115. https://doi.org/10.1002/asia.201900453.
[176] E. Redina, A. Greish, R. Novikov, A. Strelkova, O. Kirichenko, et al., Au/Pt/TiO2 catalysts prepared by redox method for the chemoselective 1,2-propanediol oxidation to lactic acid and an NMR spectroscopy approach for analyzing the product mixture, Appl. Catal. A. 491 (2015). https://doi.org/10.1016/j.apcata.2014.11.039.
[177] C. Xu, W. Yang, Q. Guo, D. Dai, M. Chen, X. Yang, Molecular Hydrogen Formation from Photocatalysis of Methanol on Anatase-TiO2(101), J. Am. Chem. Soc. 136 (2014) 602–605. https://doi.org/10.1021/ja411020t.
[178] J. Wang, J. Zhao, F.E. Osterloh, Photochemical charge transfer observed in nanoscale hydrogen evolving photocatalysts using surface photovoltage spectroscopy, Energy Environ. Sci. 8 (2015) 2970–2976. https://doi.org/10.1039/C5EE01701G.
[179] Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, et al., Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%, Nat. Mater. 15 (2016) 611–615. https://doi.org/10.1038/nmat4589.
[180] N. Xiao, S. Li, S. Liu, B. Xu, Y. Li, et al., Novel PtPd alloy nanoparticle-decorated g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation, Chin. J. Catal. 40 (2019) 352–361. https://doi.org/10.1016/S1872-2067(18)63180-8.
[181] U. C.-Flores, M.J.M.-Batista, M.F.-García, A. Kubacka, Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination, Appl. Catal. B. 238 (2018) 533–545. https://doi.org/10.1016/j.apcatb.2018.07.047.
[182] S. Bai, L. Yang, C. Wang, Y. Lin, J. Lu, et al., Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core–Shell Cocatalysts, Angew. Chem. Int. Ed. 54 (2015) 14810–14814. https://doi.org/10.1002/anie.201508024.
[183] T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting, ACS Catal. 8 (2018) 2253–2276. https://doi.org/10.1021/acscatal.7b03437.
[184] Y. Sun, S. Gao, F. Lei, Y. Xie, Atomically-thin two-dimensional sheets for understanding active sites in catalysis, Chem. Soc. Rev. 44 (2015) 623–636. https://doi.org/10.1039/C4CS00236A.
[185] P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities, Adv. Funct. Mater. 22 (2012). https://doi.org/10.1002/adfm.201200922.
[186] S. Kouser, A. Thannikoth, U. Gupta, U.V. Waghmare, C.N.R. Rao, 2D-GaS as a Photocatalyst for Water Splitting to Produce H2, Small. 11 (2015) 4723. https://doi.org/10.1002/smll.201501077.
[187] S. Liang, Y. Xia, S. Zhu, S. Zheng, Y. He, et al., Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation, Appl. Surf. Sci. 358 (2015) 304–312. https://doi.org/10.1016/j.apsusc.2015.08.035.
[188] K. Bhunia, M. Chandra, S. Khilari, D. Pradhan, Bimetallic PtAu Alloy Nanoparticles-Integrated g-C3N4 Hybrid as an Efficient Photocatalyst for Water-to-Hydrogen Conversion, ACS Appl. Mater. Interfaces. 11 (2019) 478. https://doi.org/10.1021/acsami.8b12183.
[189] B. Pongthawornsakun, O. Mekasuwandumrong, S, Prakash, E. Ehret, F.J.C.S. Aires, J. Panpranot, Effect of reduction temperature on the characteristics and catalytic properties of TiO2 supported AuPd alloy particles prepared by one-step flame spray pyrolysis in the selective hydrogenation of 1-heptyne, Appl. Catal. A. 506 (2015) 278–287. https://doi.org/10.1016/j.apcata.2015.09.012.
[190] Q. Jia, A. Iwase, A. Kudo, BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting, Chem. Sci. 5 (2014) 1513–1519. https://doi.org/10.1039/C3SC52810C.
[191] B. Li, Q. Li, B. Gupta, C. He, J. Yang, Boosting visible-light-driven catalytic hydrogen evolution via surface Ti3+ and bulk oxygen vacancies in urchin-like hollow black TiO2 decorated with RuO2 and Pt dual cocatalysts, Catal. Sci. Technol. 10 (2020) 7914. https://doi.org/10.1039/D0CY01706J.
[192] Y. Ma, R. Chong, F. Zhang, Q. Xu, S. Shen, et al., Synergetic effect of dual cocatalysts in photocatalytic H2 production on Pd–IrOx/TiO2: a new insight into dual cocatalyst location, Phys. Chem. Chem. Phys. 16 (2014) 17734. https://doi.org/10.1039/C4CP02567A.
[193] B. Cao, G. Li, H. Li, Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation, Appl. Catal. B. 194 (2016) 42–49. https://doi.org/10.1016/j.apcatb.2016.04.033.
[194] M. Zhu, Y. Wang, Y.H. Deng, X. Peng, Strategic modulation of energy transfer in Au-TiO2-Pt nanodumbbells: plasmon-enhanced hydrogen evolution reaction, Nanoscale. 12 (2020) 7035–7044. https://doi.org/10.1039/D0NR00441C.
[195] C. Han, W. Mao, K. Bao, H. Xie, Z. Jia, L. Ye, Preparation of Ag/Ga2O3 nanofibers via electrospinning and enhanced photocatalytic hydrogen evolution, Int. J. Hydrog. Energy. 42 (2017) 19913–19919. https://doi.org/10.1016/j.ijhydene.2017.06.076.
[196] S.I. Sadovnikov, E.A. Kozlova, E.Yu. Gerasimov, A.A. Rempel, Photocatalytic hydrogen evolution from aqueous solutions on nanostructured Ag2S and Ag2S/Ag, Catal. Commun. 100 (2017) 178–182. https://doi.org/10.1016/j.catcom.2017.07.004.
[197] Q. Jiang, L. Li, J. Bi, S. Liang, M. Liu, Design and Synthesis of TiO2 Hollow Spheres with Spatially Separated Dual Cocatalysts for Efficient Photocatalytic Hydrogen Production, Nanomaterials. 7 (2017) 24. https://doi.org/10.3390/nano7020024.
[198] R. Asai, H. Nemoto, Q. Jia, K. Saito, A. Iwase, A. Kudo, A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting, Chem. Commun. 50 (2014) 2543–2546. https://doi.org/10.1039/C3CC49279F.
[199] J. Yang, H. Yan, X. Wang, F. Wen, Z. Wang, et al., Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production, J. Catal. 290 (2012) 151–157. https://doi.org/10.1016/j.jcat.2012.03.008.
[200] H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, et al., Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst, J. Catal. 266 (2009) 165–168. https://doi.org/10.1016/j.jcat.2009.06.024.
[201] J. Ding, X. Li, L. Chen, X. Zhang, S. Sun, et al., Au–Pt alloy nanoparticles site-selectively deposited on CaIn2S4 nanosteps as efficient photocatalysts for hydrogen production, J. Mater. Chem. A. 4 (2016) 12630–12637. https://doi.org/10.1039/C6TA04468A.
[202] X. Li, H. Liu, S. Liu, J. Zhang, W. Chen, et al., Effect of Pt–Pd hybrid nano-particle on CdS's activity for water splitting under visible light, Int. Hydrog. Energy. 41 (2016) 23015–23021. https://doi.org/10.1016/j.ijhydene.2016.11.059.
[203] C. Han, L. Wu, L. Ge, Y. Li, Z. Zhao, AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation, Carbon. 92 (2015) 31–40. https://doi.org/10.1016/j.carbon.2015.02.070.
[204] J. Yang, H. Yan, X. Zong, F. Wen, M. Liu, C. Li, Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production, Phil. Trans. R. Soc. A. 371 (2013) 20110430. https://doi.org/10.1098/rsta.2011.0430.
[205] S. Shen, L. Guo, X. Chen, F. Ren, S.S. Mao, Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS, Int. J. Hydrog. Energy. 35 (2010) 7110–7115. https://doi.org/10.1016/j.ijhydene.2010.02.013.
[206] G. Sun, S. Mao, D. Ma, Y. Zou, Y. Lv, et al., One-step vulcanization of Cd(OH)Cl nanorods to synthesize CdS/ZnS/PdS nanotubes for highly efficient photocatalytic hydrogen evolution, J. Mater. Chem. A. 7 (2019). https://doi.org/10.1039/C9TA03862K.
[207] I. Tsuji, H. Kato, A. Kudo, Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands, Chem. Mater. 18 (2006) 1969–1975. https://doi.org/10.1021/cm0527017.
[208] J.S. Jang, D.W. Hwang, J.S. Lee, CdS–AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light (λ ≥ 420 nm), Catal. Today. 120 (2007) 174–181. https://doi.org/10.1016/j.cattod.2006.07.052.
[209] X. Huang, Y. Huang, F. Yan, X. Xue, K. Zhang, et al., Constructing defect-related subband in silver indium sulfide QDs via pH-dependent oriented aggregation for boosting photocatalytic hydrogen evolution, J. Colloid Interface Sci. 593 (2021) 222–230. https://doi.org/10.1016/j.jcis.2021.02.091.
[210] Y. Shiga, N. Umezawa, N. Srinivasan, S. Koyasu, E. Sakai, M. Miyauchi, A metal sulfide photocatalyst composed of ubiquitous elements for solar hydrogen production, Chem. Commun. 52 (2016) 7470–7473. https://doi.org/10.1039/C6CC03199D.
[211] S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, et al., Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chem. Soc. Rev. 48 (2019) 4178–4280. https://doi.org/10.1039/C8CS00664D.
[212] S. Zhu, Y. Zhang, X. Qian, X. Wang, W. Su, Zn defect-mediated Z-scheme electron-hole separation in AgIn5S8/ZnS heterojunction for enhanced visible-light photocatalytic hydrogen evolution, Appl. Surf. Sci. 504 (2020) 144396. https://doi.org/10.1016/j.apsusc.2019.144396.
[213] Y. Liu, X. Zheng, Y. Yang, J. Li, W. Liu, et al., Photocatalytic Hydrogen Evolution Using Ternary-Metal-Sulfide/TiO2 Heterojunction Photocatalysts, ChemCatChem. 14 (2022) e202101439. https://doi.org/10.1002/cctc.202101439.
[214] H. Wu, X. Li, Y. Cheng, Y. Xiao, Q. Wu, et al., The synergistic role of double vacancies within AgGaS2 nanocrystals in carrier separation and transfer for efficient photocatalytic hydrogen evolution, Catal. Sci. Technol. 9 (2019) 5838. https://doi.org/10.1039/C9CY01488H.
[215] J.S. Jang, S.J. Hong, J.Y. Kim, J.S. Lee, Heterojunction photocatalyst TiO2/AgGaS2 for hydrogen production from water under visible light, Chem. Phys. Lett. 475 (2009) 78–81. https://doi.org/10.1016/j.cplett.2009.05.012.
[216] J.S. Jang, D.W. Hwang, J.S. Lee, CdS–AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light (λ ≥ 420 nm), Catal. Today. 120 (2007) 174–181. https://doi.org/10.1016/j.cattod.2006.07.052.
[217] F. Cao, H. Liu, Q. Wei, L. Zhao, L. Guo, Experimental study of direct solar photocatalytic water splitting for hydrogen production under natural circulation conditions, Int. J. Hydrog. Energy. 43 (2018) 13727–13737. https://doi.org/10.1016/j.ijhydene.2017.12.107.
[218] Z. Maletskyi, Advances in Membrane Materials and Processes for Water and Wastewater Treatment, ACS Symp. Ser. 1348 (2020) 3–35. https://doi.org/10.1021/bk-2020-1348.ch001.

Cited By

Crossref Google Scholar
Hydrogen evolution via noble metals based photocatalysts: A review
Submitted
2021-11-05
Published
2021-12-29
How to Cite
Akhoondi, A., Sharma, A., Pathak, D., Yusuf, M., Demissie, T. B., Guo, R.- tang, & Ali, A. (2021). Hydrogen evolution via noble metals based photocatalysts: A review. Synthesis and Sintering, 1(4), 223-241. https://doi.org/10.53063/synsint.2021.1468

Most read articles by the same author(s)