Direct catalytic production of dimethyl ether from CO and CO2: A review

  • Asieh Akhoondi 1
  • Ahmed I. Osman 2
  • Ali Alizadeh Eslami 3
  • 1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 2 School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, UK
  • 3 Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348, Louvain-la-Neuve, Belgium

Abstract

Dimethyl ether (DME) is a synthetically produced alternative fuel to diesel-based fuel and could be used in ignition diesel engines due to increasing energy demand. DME is considered extremely clean transportation and green fuel because it has a high cetane number (around 60), low boiling point (-25 °C), and high oxygen amount (35 wt%) which allow fast evaporation and higher combustion quality (smoke-free operation and 90% fewer NOx emissions) than other alternative CO2-based fuels. DME can be synthesized from various routes such as coal, petroleum, and bio-based material (i.e., biomass and bio-oil). Dimethyl ether can be produced from CO2 to prevent greenhouse gas emissions. This review aims to summarize recent progress in the field of innovative catalysts for the direct synthesis of dimethyl ether from syngas (CO+H2) and operating conditions. The problems of this process have been raised based on the yield and selectivity of dimethyl ether. However, regardless of how syngas is produced, the estimated total capital and operating costs in the industrial process depend on the type of reactor and the separation method.

Downloads

Download data is not yet available.
Keywords: Dimethyl ether, Direct synthesis, Catalyst, Syngas, CO2, Methanol

References

[1] P. Djinović, F. Schüth, Energy Carriers Made from Hydrogen, Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Elsevier. (2015) 183–199. https://doi.org/10.1016/B978-0-444-62616-5.00012-7.
[2] S.H. Park, C.S. Lee, Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel, Energy Convers. Manag. 86 (2014) 848–863. https://doi.org/10.1016/j.enconman.2014.06.051.
[3] Z. Huang, X. Qiao, W. Zhang, J. Wu, J. Zhang, Dimethyl ether as alternative fuel for CI engine and vehicle, Front. Energy Power Eng. China. 3 (2009) 99–108. https://doi.org/10.1007/s11708-009-0013-1.
[4] K. Choi, B. Moon, K. Kim, K. Lee, A novel EGR system to improve engine performance of a diesel engine, VTMS10, Woodhead Publishing. (2011) 223–232. https://doi.org/10.1533/9780857095053.3.223.
[5] S.C. Sorenson, Dimethyl Ether in Diesel Engines:Progress and Perspectives, J. Eng. Gas Turbines Power. 123 (2001) 652–658. https://doi.org/10.1115/1.1370373.
[6] H. Hettiarachchi, C. Kshourad, Promoting Waste-to-Energy: Nexus Thinking, Policy Instruments, and Implications for the Environment, Waste Treatment Processes for Energy Generation, Elsevier. (2019) 163–184. https://doi.org/10.1016/B978-0-444-64083-3.00009-9.
[7] V.G. Yadav, G.D. Yadav, S.C. Patankar, The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment, Clean Techn. Environ. Policy. 22 (2020) 1757–1774. https://doi.org/10.1007/s10098-020-01945-5.
[8] V.S. Sikarwar, M. Zhao, P.S. Fennell, N. Shah E.J. Anthony, Progress in biofuel production from gasification, Prog. Energy Combust. Sci. 61 (2017) 189–248. https://doi.org/10.1016/j.pecs.2017.04.001.
[9] G. Thomas, B. Feng, A. Veeraragavan, M. Cleary, N. Drinnan, Emissions from DME combustion in diesel engines and their implications on meeting future emission norms: A review, Fuel Process. Technol. 119 (2014) 286–304. https://doi.org/10.1016/j.fuproc.2013.10.018.
[10] P. Arya, S. Tupkari, K. Satish, G. Thakre, B. Shukla, DME blended LPG as a cooking fuel option for Indian household: A review, Renew. Sust. Energ. Rev. 53 (2016) 1591–1601. https://doi.org/10.1016/j.rser.2015.09.007.
[11] A.A. Yontar, M. Zhou, S. Ahmad, Influence of intake air temperature control on characteristics of a Homogeneous Charge Compression Ignition engine for hydrogenenriched enriched, Int. J. Hydrog. Energy. 45 (2020) 22019–22031. https://doi.org/10.1016/j.ijhydene.2020.05.258.
[12] T.H. Fleisch, A. Basu, R.A. Sills, Introduction and advancement of a new clean global fuel: The status of DME developments in China and beyond, J. Nat. Gas Sci. Eng. 9 (2012) 94–107. https://doi.org/10.1016/j.jngse.2012.05.012.
[13] E.D. Larson, H. Yang, Dimethyl ether (DME) from coal as a household cooking fuel in China, Energy Sustain. Dev. 8 (2004) 115–126. https://doi.org/10.1016/S0973-0826(08)60473-1.
[14] B.V. Ayodele, M.R. Khan, S.S. Nooruddin, C.K. Cheng, Modelling and optimization of syngas production by methane dry reforming over samarium oxide supported cobalt catalyst: response surface methodology and artificial neural networks approach, Clean Technol. Environ. Policy. 19 (2017) 1181–1193. https://doi.org/10.1007/s10098-016-1318-5.
[15] X. Li, B.Q. He, H. Zhao, Effect of direct injection dimethyl ether on the micro-flame ignited (MFI) hybrid combustion characteristics of an optical gasoline engine at ultra-lean conditions, Fuel Process. Technol. 203 (2020) 106383. https://doi.org/10.1016/j.fuproc.2020.106383.
[16] S.R. Shewchuk, A. Mukherjee, A.K. Dalai, Selective carbon-based adsorbents for carbon dioxide capture from mixed gas streams and catalytic hydrogenation of CO2 into renewable energy source: A review, Chem. Eng. Sci. 243 (2021) 116735. https://doi.org/10.1016/j.ces.2021.116735.
[17] M. Rezaei, S.M. Alavi, S. Sahebdelfar, Z.-F. Yan, Syngas Production by Methane Reforming with Carbon Dioxide on Noble Metal Catalysts, J. Nat. Gas Chem. 15 (2006) 327–334. https://doi.org/10.1016/S1003-9953(07)60014-0.
[18] B. Zhang, L. Wang, R. Li, Bioconversion and Chemical Conversion of Biogas for Fuel Production, Technologies and Approaches for Scale-Up and Commercialization, Woodhead Publishing. (2019) 187–205. https://doi.org/10.1016/B978-0-12-817941-3.00010-3.
[19] G. Leonzio, State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation, J. CO2 Util. 27 (2018) 326–354. https://doi.org/10.1016/j.jcou.2018.08.005.
[20] A.R. Moghadassi, M.A. Nikkholgh, F. Parvizian, S.M. Hosseini, Estimation of thermophysical properties of dimethyl ether as a commercial refrigerant based on artificial neural networks, Expert Syst. Appl. 37 (2010) 7755–7761. https://doi.org/10.1016/j.eswa.2010.04.065.
[21] M. Al-Breiki, Y. Bicer, Comparative cost assessment of sustainable energy carriers produced from natural gas accounting for boil-off gas and social cost of carbon, Energy Rep. 6 (2020) 1897–1909. https://doi.org/10.1016/j.egyr.2020.07.013.
[22] B.-Q. He, S.-P. Xu, X.-Q. Fu, H. Zhao, Combustion and emission characteristics of an ultra-lean burn gasoline engine with dimethyl ether auto-ignition, Energy. 209 (2020) 118437. https://doi.org/10.1016/j.energy.2020.118437.
[23] W. Ying, L. Genbao, Z. Wei, Z. Longbao, Study on the application of DME/diesel blends in a diesel engine, Fuel Process. Technol. 89 (2008) 1272–1280. https://doi.org/10.1016/j.fuproc.2008.05.023.
[24] C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel. 87 (2008) 1014–1030. https://doi.org/10.1016/j.fuel.2007.06.007.
[25] T.A. Semelsberger, R.L. Borup, H.L. Greene, Dimethyl ether (DME) as an alternative fuel, J. Power Sources. 156 (2006) 497–511.
[26] M. Matzen, Y. Demirel, Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: Alternative fuels production and life-cycle assessment, J. Clean. Prod. 139 (2016) 1068–1077. https://doi.org/10.1016/j.jclepro.2016.08.163.
[27] S. H. Park, C.S. Lee, Combustion performance and emission reduction characteristics of automotive DME engine system, Prog. Energy Combust. Sci. 39 (2013) 147–168. https://doi.org/10.1016/j.pecs.2012.10.002.
[28] A. Masudi, N.W.C. Jusoh, O. Muraza, Recent progress on low rank coal conversion to dimethyl ether as clean fuel: A critical review, J. Clean. Prod. 277 (2020) 124024. https://doi.org/10.1016/j.jclepro.2020.124024.
[29] E. Catizzone, G. Bonura, M. Migliori, F. Frusteri, G. Giordano, CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives, Molecules. 23 (2017) 31. https://doi.org/10.3390/molecules23010031.
[30] G. de Franca Lopes, L. Bonfim-Rocha, L.M. de Matos Jorge, P.R. Paraíso, Dimethyl Ether Production from Sugarcane Vinasse: Modeling and Simulation for a Techno-economic Assessment, Bioenerg. Res. 13 (2020) 397–410. https://doi.org/10.1007/s12155-020-10089-9.
[31] M. Tomatis, A.M. Parvez, M.T. Afzal, S. Mareta, T. Wu, et al., Utilization of CO2 in renewable DME fuel production: A life cycle analysis (LCA)-based case study in China, Fuel. 254 (2019) 115627. https://doi.org/10.1016/j.fuel.2019.115627.
[32] D.A. Bell, B.F. Towler, M. Fan, Methanol and derivatives, coal gasification and its applications, William Andrew Publishing. (2011) 353–371. https://doi.org/10.1016/B978-0-8155-2049-8.10012-9.
[33] S. Seyam, I. Dincer, M. Agelin-Chaab, Novel hybrid aircraft propulsion systems using hydrogen, methane, methanol, ethanol and dimethyl ether as alternative fuels, Energy Convers. Manag. 238 (2021) 114172. https://doi.org/10.1016/j.enconman.2021.114172.
[34] I.A. Bakare, O. Muraza, M.A. Sanhoob, K. Miyake, Y. Hirota, et al., Dimethyl ether-to-olefins over aluminum rich ZSM-5: The role of Ca and La as modifiers, Fuel. 211 (2018) 18–26. https://doi.org/10.1016/j.fuel.2017.08.117.
[35] E.G. Galanova, M.V. Magomedova, M.I. Afokin, A.V. Starozhitskaya, A.L. Maximov, Synthesis of olefins from dimethyl ether in a synthesis gas atmosphere, Catal. Commun. 153 (2021) 106297. https://doi.org/10.1016/j.catcom.2021.106297.
[36] Z. Zhou, H. Liu, Y. Ni, F. Wen, Z. Chen, et al., Direct conversion of dimethyl ether and CO to acetone via coupling carbonylation and ketonization, J. Catal. 396 (2021) 360–373. https://doi.org/10.1016/j.jcat.2021.03.006.
[37] M.C. Bauer, A. Kruse, The use of dimethyl ether as an organic extraction solvent for biomass applications in future biorefineries: A user-oriented review, Fuel. 254 (2019) 115703. https://doi.org/10.1016/j.fuel.2019.115703.
[38] S. Kong, G. Feng, Y. Liu, K. Li, Potential of dimethyl ether as an additive in CO2 for shale oil recovery, Fuel. 296 (2021) 120643. https://doi.org/10.1016/j.fuel.2021.120643.
[39] H. Kanda, P. Li, T. Yoshimura, S. Okada, Wet extraction of hydrocarbons from Botryococcus braunii by dimethyl ether as compared with dry extraction by hexane, Fuel. 105 (2013) 535–539. https://doi.org/10.1016/j.fuel.2012.08.032.
[40] S. Panigrahy, S.C. Mishra, Effect of Dimethyl Ether as an Additive to Liquefied Petroleum Gas Flame in SiC–Al2O3-Based Porous Inert Burner, Energy Fuels. 31 (2017) 12721–12740. https://doi.org/10.1021/acs.energyfuels.7b01268.
[41] Z. Azizi, M. Rezaeimanesh, T. Tohidian, M.R. Rahimpour, Dimethyl Ether: A Review of Technologies and Production Challenges, Chem. Eng. Process. Process Intensif. 82 (2014) 150–172. https://doi.org/10.1016/j.cep.2014.06.007.
[42] R. Vakili, R. Eslamloueyan, Optimal design of an industrial scale dual-type reactor for direct dimethyl ether (DME) production from syngas, Chem. Eng. Process. Process Intensif. 62 (2012) 78–88. https://doi.org/10.1016/j.cep.2012.09.005.
[43] A. El-Aziz A. Said, M.M.M. Abd El-Wahab, M. Abd El-Aal, Effect of ZrO2 on the catalytic performance of nano γ-Al2O3 in dehydration of methanol to dimethyl ether at relatively low temperature, Res. Chem. Intermed. 42 (2016) 1537–1556. https://doi.org/10.1007/s11164-015-2101-7.
[44] S. Kartohardjono, B.S. Adji, Y. Muharam, CO2 utilization process simulation for enhancing production of dimethyl ether (DME), Int. J. Chem. Eng. 2020 (2020) 9716417. https://doi.org/10.1155/2020/9716417.
[45] N. Khandan, M. Kazemeini, M. Aghaziarati, Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether, Appl. Catal. A. 349 (2008) 6–12. https://doi.org/10.1016/j.apcata.2008.07.029.
[46] N. Khandan, M. Kazemeini, M. Aghaziarati, Dehydration of Methanol to Dimethyl Ether Employing Modified H-ZSM-5 Catalysts, Iran. J. Chem. Eng. 6 (2009) 3–11.
[47] N. Khandan, M. Kazemeini, M. Aghaziarati, Synthesis of Dimethyl Ether over Modified H-Mordenite Zeolites, Catal Lett. 129 (2009) 111–118. https://doi.org/10.1007/s10562-008-9779-8.
[48] A. Bakhtyari, M.R. Rahimpour, Methanol to Dimethyl Ether, Methanol, Elsevier. (2018) 281–311. https://doi.org/10.1016/B978-0-444-63903-5.00010-8.
[49] A. Wodołażski, A. Smoliński, Modelling and process integration study of dimethyl ether synthesis from syngas derived from biomass gasification: Flowsheet simulation, Alex. Eng. J. 59 (2020) 4441–4448. https://doi.org/10.1016/j.aej.2020.07.050.
[50] I. Salahshoori, A. Seyfaee, A. Babapoor, Recent advances in synthesis and applications of mixed matrix membranes, Synth. Sinter. 1 (2021) 1–27. https://doi.org/10.53063/synsint.2021.116.
[51] K.B. Kabir, K. Hein, S. Bhattacharya, Process modelling of dimethyl ether production from Victorian brown coal—Integrating coal drying, gasification and synthesis processes, Comput. Chem. Eng. 48 (2013) 96–104. https://doi.org/10.1016/j.compchemeng.2012.08.008.
[52] S. Bhattacharya, B.K. Kazi K. Hein, Dimethyl ether synthesis from Victorian brown coal through gasification-Current status, and research and development needs, Prog. Energy Combust. Sci. 39 (2013) 577–605. https://doi.org/10.1016/j.pecs.2013.06.003.
[53] L. Zhou, S. Hu, D. Chen, Y. Li, B. Zhu, Y. Jin, Study on systems based on coal and natural gas for producing dimethyl ether, Ind. Eng. Chem. Res. 48 (2009) 4101–4108. https://doi.org/10.1021/ie8006177.
[54] A. Inayat, C. Ghenai, M. Naqvi, M. Ammar, M. Ayoub, M.N.B. Hussin, Parametric Study for Production of Dimethyl Ether (DME) As a Fuel from Palm Wastes, Energy Procedia. 105 (2017) 1242–1249. https://doi.org/10.1016/j.egypro.2017.03.431.
[55] F.M. Baena-Moreno, M. Gonzalez-Castaño, H. Arellano-García, T.R. Reina, Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study, Energy. 225 (2021) 120230. https://doi.org/10.1016/j.energy.2021.120230.
[56] U. Mondal G.D. Yadav, Perspective of dimethyl ether as fuel: Part I. Catalysis, J. CO2 Util. 32 (2019) 299–320. https://doi.org/10.1016/j.jcou.2019.02.003.
[57] F. Dadgar, R. Myrstad, P. Pfeifer, A. Holmen, H.J. Venvik, Catalyst Deactivation During One-Step Dimethyl Ether Synthesis from Synthesis Gas, Catal. Lett. 147 (2017) 865–879. https://doi.org/10.1007/s10562-017-1971-2.
[58] N. Mota, E.M. Ordoñez, B. Pawelec, J.L.G. Fierro, R.M. Navarro, Direct Synthesis of Dimethyl Ether from CO2: Recent Advances in Bifunctional/Hybrid Catalytic Systems, Catalysts. 11 (2021) 411. https://doi.org/10.3390/catal11040411.
[59] J. Schnee, E. Gaigneaux, Elucidating and exploiting the chemistry of keggin heteropolyacids in the methanol-to-DME conversion: Enabling the bulk reaction thanks to operando raman, Catal. Sci. Technol. 7 (2017) 817–830. https://doi.org/10.1039/C6CY02264B.
[60] T.T.N. Vu, A. Desgagn´es, M.C. Iliuta, Efficient approaches to overcome challenges in material development for conventional and intensified CO2 catalytic hydrogenation to CO, methanol, and DME, Appl. Catal. A. 617 (2021) 118119. https://doi.org/10.1016/j.apcata.2021.118119.
[61] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, et al., The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts, Science. 336 (2012) 893–897. https://doi.org/10.1126/science.1219831.
[62] J.-D. Grunwaldt, A.M. Molenbroek, N.-Y. Topsøe, H. Topsøe, B.S. Clausen, In situ investigations of structural changes in Cu/ZnO catalysts, J. Catal. 194 (2000) 452–460. https://doi.org/10.1006/jcat.2000.2930.
[63] A. Budiman, M. Ridwan, S.M. Kim, J.-W. Choi, C.W. Yoon, et al., Design and preparation of high-surface-area Cu/ZnO/Al2O3 catalysts using a modified co-precipitation method for the water-gas shift reaction, Appl. Catal. A. 462–463 (2013) 220–226. https://doi.org/10.1016/j.apcata.2013.05.010.
[64] K. Takeshi, Y. Wagaysuma, Direct synthesis of dimethyl ether from carbon dioxide and from mixture of carbon dioxide and carbon monoxide over copper alumina catalysts prepared by using the sol-gel method, Int. J. Matter. 3 (2016) 88–92.
[65] X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction, Catal. Commun. 12 (2011) 1095–1098. https://doi.org/10.1016/j.catcom.2011.03.033.
[66] G. Bonura, M. Cordaro, C. Cannilla, A. Mezzapica, L. Spadaro, et al., Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenation, Catal. Today. 228 (2014) 51–57. https://doi.org/10.1016/j.cattod.2013.11.017.
[67] A. Bansode, A. Urakawa, Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products, J. Catal. 309 (2014) 66–70. https://doi.org/10.1016/j.jcat.2013.09.005.
[68] F. Frusteri, M. Migliori, C. Cannilla, L. Frusteri, E. Catizzone, et al., Direct CO2-to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield, J. CO2 Util. 18 (2017) 353–361. https://doi.org/10.1016/j.jcou.2017.01.030.
[69] W. Li, W. Zhang, L. Shi, Y. Wang, Y. Tan, et al., Highly active SiO2-supported Cu-ZnO catalysts prepared by combustion methods for low-temperature methanol synthesis: Comparative activity test with or without SiO2 support, J. Japan Pet. Inst. 58 (2015) 321–328. https://doi.org/10.1627/jpi.58.321.
[70] Z.-s. Hong, Y. Cao, J.-f. Deng, K.-n. Fan, CO2 Hydrogenation to Methanol Over Cu/ZnO/Al2O3 Catalysts Prepared by a Novel Gel-Network-Coprecipitation Method, Catal. Lett. 82 (2002) 37–44. https://doi.org/10.1023/A:1020531822590.
[71] J. Zhu, D. Ciolca, L. Liu, A. Parastaev, N. Kosinov, E.J.M. Hensen, Flame Synthesis of Cu/ZnO–CeO2 Catalysts: Synergistic Metal–Support Interactions Promote CH3OH Selectivity in CO2 Hydrogenation, ACS Catal. 11 (2021) 4880–4892. https://doi.org/10.1021/acscatal.1c00131.
[72] N. Pasupulety, H. Driss, Y.A. Alhamed, A.A. Alzahrani, M.A. Daous, L. Petrov, Studies on Au/Cu–Zn–Al catalyst for methanol synthesis from CO2, Appl. Catal. A. 504 (2015) 308–318. https://doi.org/10.1016/j.apcata.2015.01.036.
[73] J. Zeng, K. Fujimoto, N. Tsubaki, A new low-temperature synthesis route of methanol: catalytic effect of the alcoholic solvent, Energy Fuels. 16 (2002) 83–86. https://doi.org/10.1021/ef0100395.
[74] M. Tan, S. Tian, T. Zhang, K. Wang, L. Xiao, et al., Probing Hydrophobization of a Cu/ZnO Catalyst for Suppression of Water–Gas Shift Reaction in Syngas Conversion, ACS Catal. 11 (2021) 4633–4643. https://doi.org/10.1021/acscatal.0c05585.
[75] D. Xu, X. Hong G. Liu, Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol: Insight into hydrogen spillover, J. Catal. 393 (2021) 207–214. https://doi.org/10.1016/j.jcat.2020.11.039.
[76] W.-H. Chen, B.-J. Lin, H.-M. Lee, M.-H. Huang, One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity, Appl. Energy. 98 (2012) 92–101. https://doi.org/10.1016/j.apenergy.2012.02.082.
[77] C.-H. Kim, J.S. Lee, D.L. Trimm, The Preparation and Characterisation of Pd–ZnO Catalysts for Methanol Synthesis, Top. Catal. 22 (2003) 319–324. https://doi.org/10.1023/A:1023596524663.
[78] X.-L. Liang, X. Dong, G.-D. Lin, H.-B. Zhang, Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol, Appl. Catal. B. 88 (2009) 315–322. https://doi.org/10.1016/j.apcatb.2008.11.018.
[79] J. Xu, X. Su, X. Liu, X. Pan, G. Pei, et al., Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: Catalyst structure dependence of methanol selectivity, Appl. Catal. A. 514 (2016) 51–59. https://doi.org/10.1016/j.apcata.2016.01.006.
[80] M.-H. Zhang, Z.-M. Liu, G.-D. Lin, H.-B. Zhang, Pd/CNT-promoted CuZrO2/HZSM-5 hybrid catalysts for direct synthesis of DME from CO2/H2, Appl. Catal. A. 451 (2013) 28–35. https://doi.org/10.1016/j.apcata.2012.10.038.
[81] L.T.M. Nguyen, H. Park, M. Banu, J.Y. Kim, D.H. Youn, et al., Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts, RSC Adv. 5 (2015) 105560–105566. https://doi.org/10.1039/C5RA21017H.
[82] H. Takahashi, L.H. Liu, Y. Yashiro, K. Ioku, G. Bignall, et al., CO2 reduction using hydrothermal method for the selective formation of organic compounds, J. Mater. Sci. 41 (2006) 1585–1589. https://doi.org/10.1007/s10853-006-4649-5.
[83] H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, et al., Pd/ZnO catalysts for direct CO2 hydrogenation to methanol, J. Catal. 343 (2016) 133–146. https://doi.org/10.1016/j.jcat.2016.03.017.
[84] N. Duangkaew, N. Suparee, P. Athikaphan, A. Neramittagapong, S. Neramittagapong, Photocatalytic reduction of CO2 into methanol over Cu–Ni–TiO2 supported on SiO2-Al2O3 catalyst, Energy Rep. 6 (2020) 1157–1161. https://doi.org/10.1016/j.egyr.2020.11.060.
[85] X. Jiang, N. Koizumi, X. Guo, C. Song, Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol, Appl. Catal. B. 170–171 (2015) 173–185. https://doi.org/10.1016/j.apcatb.2015.01.010.
[86] A. Álvarez, A. Bansode, A. Urakawa, A.V. Bavykina, T.A. Wezendonk, et al., Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes, Chem. Rev. 117 (2017) 9804–9838. https://doi.org/10.1021/acs.chemrev.6b00816.
[87] J.-H. Kim, M.J. Park, S.J. Kim, O.-S. Joo, K.-D. Jung, DME synthesis from synthesis gas on the admixed catalysts of Cu/ZnO/Al2O3 and ZSM-5, Appl. Catal. A. 264 (2004) 37–41. https://doi.org/10.1016/j.apcata.2003.12.058.
[88] D. Mao, J. Xia, B. Zhang, G. Lu, Highly efficient synthesis of dimethyl ether from syngas over the admixed catalyst of CuO-ZnO-Al2O3 and antimony oxide modified HZSM-5 zeolite, Energy Convers. Manage. 51 (2010) 1134–1139. https://doi.org/10.1016/j.enconman.2009.12.022.
[89] F. Arena, G. Italiano, K. Barbera, S. Bordiga, G. Bonura, et al., Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH, Appl. Catal. A. 350 (2008) 16–23. https://doi.org/10.1016/j.apcata.2008.07.028.
[90] S. Natesakhawat, J.W. Lekse, J.P. Baltrus, P.R. Ohodnicki, B.H. Howard, et al., Active Sites and Structure–Activity Relationships of Copper-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, ACS Catal. 2 (2012) 1667–1676. https://doi.org/10.1021/cs300008g.
[91] Y. Jiang, H. Yang, P. Gao, X. Li, J. Zhang, et al., Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts, J. CO2 Util. 26 (2018) 642–651. https://doi.org/10.1016/j.jcou.2018.06.023.
[92] S. Kühl, A. Tarasov, S. Zander, I. Kasatkin, M. Behrens, Cu-Based Catalyst Resulting from a Cu,Zn,Al Hydrotalcite-Like Compound: A Microstructural, Thermoanalytical, and In Situ XAS Study, Chem. Eur. J. 20 (2014) 3782–3792. https://doi.org/10.1002/chem.201302599.
[93] M. Behrens, G. Lolli, N. Muratova, I. Kasatkin, M. Hävecker, et al., The effect of Al-doping on ZnO nanoparticles applied as catalyst support, Phys. Chem. Chem. Phys. 15 (2013) 1374–1381. https://doi.org/10.1039/C2CP41680H.
[94] A. Kornas, R. Grabowski, M. Śliwa, K. Samson, M. Ruggiero-Mikołajczyk, A. Żelazny, Dimethyl ether synthesis from CO2 hydrogenation over hybrid catalysts: effects of preparation methods, React. Kinet. Mech. Catal. 121 (2017) 317–327. https://doi.org/10.1007/s11144-017-1153-7.
[95] M. Cai, A. Palčić, V. Subramanian, S. Moldovan, O. Ersen, et al., Direct dimethyl ether synthesis from syngas on copper–zeolite hybrid catalysts with a wide range of zeolite particle sizes, J. Catal. 338 (2016) 227–238. https://doi.org/10.1016/j.jcat.2016.02.025.
[96] W. Dai, Q. Sun, J. Deng, D. Wu, Y. Sun, XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2, Appl. Surf. Sci. 177 (2001) 172–179. https://doi.org/10.1016/S0169-4332(01)00229-X.
[97] G. Wang, D. Mao, X. Guo, J. Yu, Enhanced performance of the CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to methanol by WO3 modification, Appl. Surf. Sci. 456 (2018) 403–409. https://doi.org/10.1016/j.apsusc.2018.06.090.
[98] L. Li, D. Mao, J. Yu, X. Guo, Highly selective hydrogenation of CO2 to methanol over CuO-ZnO-ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method, J. Power Sources. 279 (2015) 394–404. https://doi.org/10.1016/j.jpowsour.2014.12.142.
[99] X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation, J. Catal. 271 (2010) 178–185. https://doi.org/10.1016/j.jcat.2010.01.009.
[100] X. Dong, F. Li, N. Zhao, F. Xiao, J. Wang, Y. Tan, CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method, Appl. Catal. B. 191 (2016) 8–17. https://doi.org/10.1016/j.apcatb.2016.03.014.
[101] C. Huang, D. Mao, X. Guo, J. Yu, Microwave-assisted hydrothermal synthesis of CuO-ZnO-ZrO2 as catalyst for direct synthesis of methanol by carbon dioxide hydrogenation, Energy Technol. 5 (2017) 2100–2107. https://doi.org/10.1002/ente.201700190.
[102] J. Słoczyński, R. Grabowski, A. Kozłowska, P. Olszewski, M. Lachowska, et al., Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2, Appl. Catal. A. 249 (2003) 129–138. https://doi.org/10.1016/S0926-860X(03)00191-1.
[103] J. Słoczyński, R. Grabowski, P. Olszewski, A. Kozłowska, J. Stoch, et al., Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2, Appl. Catal. A. 310 (2006) 127–137. https://doi.org/10.1016/j.apcata.2006.05.035.
[104] W. Wang, Z. Qu, L. Song, Q. Fu, CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction, J. Energy Chem. 40 (2020) 22–30. https://doi.org/10.1016/j.jechem.2019.03.001.
[105] F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, et al., Morphology-Dependent Interactions of ZnO with Cu Nanoparticles at the Materials’ Interface in Selective Hydrogenation of CO2 to CH3OH, Angew. Chem. Int. Ed. Ed. 50 (2011) 2162–2165. https://doi.org/10.1002/anie.201007108.
[106] Y.N. Kavil, Y.A. Shaban, M.I. Orif, R. Al-Farawati, M. Zobidi, S.U.M. Khan, Production of Methanol as a Fuel Energy from CO2 Present in Polluted Seawater-A Photocatalytic Outlook, Open Chem. 16 (2018) 1089–1098. https://doi.org/10.1515/chem-2018-0120.
[107] P. Athikaphan, S. Neramittagapong, P. Assawasaengrat, A. Neramittagapong, Methanol production from CO2 reduction over Ni/TiO2 catalyst, Energy Rep. 6 (2020) 1162–1166. https://doi.org/10.1016/j.egyr.2020.11.059.
[108] W. Jia, T. Liu, Q. Li, J. Yang, Highly efficient photocatalytic reduction of CO2 on surface-modified Ti-MCM-41 zeolite, Catal. Today. 335 (2019) 221–227. https://doi.org/10.1016/j.cattod.2018.11.046.
[109] A. Dyer, Zeolites, Encyclopedia of Materials: Science and Technology, Elsevier. (2001) 9859–9863. https://doi.org/10.1016/B0-08-043152-6/01784-8.
[110] R.A.V. Santen, C. Liu, Theory of Zeolite Catalysis: An Introductory Account, Modelling and Simulation in the Science of Micro- and Meso-Porous Materials, Elsevier. (2018) 151–188. https://doi.org/10.1016/B978-0-12-805057-6.00005-3.
[111] J. Yu, Synthesis of Zeolites, Studies in Surface Science and Catalysis, Elsevier. 168 (2007) 39–103.
[112] K. Ramesh, D.D. Reddy, Zeolites and Their Potential Uses in Agriculture, Advances in Agronomy, Elsevier. 113 (2011) 219–241. https://doi.org/10.1016/B978-0-12-386473-4.00004-X.
[113] D.R. Fernandes, N. Rosenbach Jr, C.J. Mota, Catalytic conversion of chloromethane to methanol and dimethyl ether over metal-exchanged zeolite Y, Applied Catalysis A: General. 367 (2009) 108–112. https://doi.org/10.1016/j.apcata.2009.07.043.
[114] A. García–Trenco, A. Martínez, Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity, Appl. Catal. 411–412 (2012) 170–179. https://doi.org/10.1016/j.apcata.2011.10.036.
[115] I. Rosadi, P. Athikaphan, P. Chantanachat, A. Neramittagapong, S. Neramittagapong, The catalytic activity of Co/kaolinite catalyst for dimethyl ether synthesis via methanol dehydration, Energy Rep. 6 (2020) 469–473. https://doi.org/10.1016/j.egyr.2020.11.212.
[116] V. Vishwanathan, K.-W. Jun, J.-W. Kim, H.-S. Roh, Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts, Appl. Catal. A. 276 (2004) 251–255. https://doi.org/10.1016/j.apcata.2004.08.011.
[117] J.M. Campelo, F. Lafont, J.M. Marinas, M. Ojeda, Studies of catalyst deactivation in methanol conversion with high, medium and small pore silicoaluminophosphates, Appl. Catal. A. 192 (2000) 85–96. https://doi.org/10.1016/S0926-860X(99)00329-4.
[118] S. Kim, Y.T. Kim, C. Zhang, G. Kwak, K.-W. Jun, Effect of Reaction Conditions on the Catalytic Dehydration of Methanol to Dimethyl Ether Over a K-modified HZSM-5 Catalyst, Catal. Lett. 147 (2017) 792–801. https://doi.org/10.1007/s10562-017-1981-0.
[119] C. Li, Y.J. Zhang, H. Chen, P. He, Highly-effective production of renewable energy dimethyl ether over geopolymer-based ferrierite, Fuel. 293 (2021) 120486. https://doi.org/10.1016/j.fuel.2021.120486.
[120] R. Chu, W. Hou, X. Meng, T. Xu, Z. Miao, et al., Catalytic kinetics of dimethyl ether one-step synthesis over CeO2–CaO–Pd/HZSM-5 catalyst in sulfur-containing syngas process, Chin. J. Chem. Eng. 24 (2016) 1735–1741. https://doi.org/10.1016/j.cjche.2016.09.008.
[121] Y. Ma, Q. Ge, W. Li, H. Xu, Methanol synthesis from sulfur-containing syngas over Pd/CeO2 catalyst, Appl. Catal. B. 90 (2009) 99–104. https://doi.org/10.1016/j.apcatb.2009.02.020.
[122] S. Hosseini, M. Taghizadeh, A. Eliassi, Optimization of hydrothermal synthesis of H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether using full factorial design, J. Nat. Gas Chem. 21 (2012) 344–351. https://doi.org/10.1016/S1003-9953(11)60375-7.
[123] E. Catizzone, A. Aloise, E. Giglio, G. Ferrarelli, M. Bianco, et al., MFI vs. FER zeolite during methanol dehydration to dimethyl ether: The crystal size plays a key role, Catal. Commun. 149 (2021) 106214. https://doi.org/10.1016/j.catcom.2020.106214.
[124] Q. Tang, H. Xu, Y. Zheng, J. Wang, H. Li, J. Zhang, Catalytic dehydration of methanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41 composite molecular sieves, Appl. Catal. A. 413–414 (2012) 36–42. https://doi.org/10.1016/j.apcata.2011.10.039.
[125] Y.J. Lee, J.M. Kim, J.W. Bae, C.H. Shin, K.W. Jun, Phosphorus induced hydrothermal stability and enhanced catalytic activity of ZSM-5 in methanol to DME conversion, Fuel. 88 (2009) 1915–1921. https://doi.org/10.1016/j.fuel.2009.04.007.
[126] W. Prachumsai, S. Pangtaisong, S. Assabumrungrat, P. Bunruam, C. Nakvachiratrakul, et al., Carbon dioxide reduction to synthetic fuel on zirconia supported copper-based catalysts and gibbs free energy minimization: Methanol and dimethyl ether synthesis, J. Environ. Chem. Eng. 9 (2021) 104979. https://doi.org/10.1016/j.jece.2020.104979.
[127] S. Ren, S. Li, N. Klinghoffer, M. Yu, X. Liang, Effects of mixing methods of bifunctional catalysts on catalyst stability of DME synthesis via CO2 hydrogenation, Carbon Resour. Convers. 2 (2019) 85–94. https://doi.org/10.1016/j.crcon.2019.03.002.
[128] B.P. Karaman, N. Oktar, Tungstophosphoric acid incorporated hierarchical HZSM-5 catalysts for direct synthesis of dimethyl ether, Int. J. Hydrog. Energy. 45 (2020) 34793–34804. https://doi.org/10.1016/j.ijhydene.2020.07.044.
[129] G. Yang, N. Tsubaki, J. Shamoto, Y. Yoneyama, Y. Zhang, Confinement Effect and Synergistic Function of H-ZSM-5/Cu-ZnO-Al2O3 Capsule Catalyst for One-Step Controlled Synthesis, J. Am. Chem. Soc. 132 (2010) 8129–8136. https://doi.org/10.1021/ja101882a.
[130] M. Cai, D. Xiang, Q. Cheng, Direct Synthesis of Dimethyl Ether from Syngas Over Hybrid Catalyst with Hierarchical ZSM-5 as the Methanol Dehydration Catalyst, J. nanosci nanotechnol. 20 (2020) 1245–1252. https://doi.org/10.1166/jnn.2020.16976.
[131] X. Fan, S. Ren, B. Jin, S. Li et al., Enhanced stability of Fe-modified CuO-ZnO-ZrO2-Al2O3/HZSM-5 bifuncional catalysts for dimethyl ether synthesis from CO2 hydrogenation, Chin. J. Chem. Eng. 38 (2020) 106–113. https://doi.org/10.1016/j.cjche.2020.11.031.
[132] N. Khandan, M. Kazemeini, M. Aghaziarati, Direct production of dimethyl ether from synthesis gas utilizing bifunctional catalysts, Appl. Petrochem. Res. 1 (2012) 21–27. https://doi.org/10.1007/s13203-011-0002-2.
[133] F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri, Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol, J. Catal. 249 (2007) 185–194. https://doi.org/10.1016/j.jcat.2007.04.003.
[134] A. El-Aziz A. Said, M.M. Abd El-Wahab, M. AbdEl-Aal, The catalytic performance of sulfated zirconia in the dehydration of methanol to dimethyl ether, J. Mol. Catal. A: Chem. 394 (2014) 40–47. https://doi.org/10.1016/j.molcata.2014.06.041.
[135] A. El-Aziz A. Said, M. AbEl-Aal, Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether, J. Fuel Chem. Technol. 46 (2018) 67–74. https://doi.org/10.1016/S1872-5813(18)30004-5.
[136] G. Bonura, S. Todaro, L. Frusteri, I. Majchrzak-Kucęba, D. Wawrzyńczak, et al., Inside the reaction mechanism of direct CO2 conversion to DME over zeolite-based hybrid catalysts, Appl. Catal. B. 294 (2021) 120255. https://doi.org/10.1016/j.apcatb.2021.120255.
[137] G. Bonura, M. Cordaro, C. Cannilla, F. Arena, F. Frusteri, The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol, Appl. Catal. B. 152–153 (2014) 152–161. https://doi.org/10.1016/j.apcatb.2014.01.035.
[138] Y. Wang, W.l. Wang, Y.-x. Chen, J.-j. Zheng, R.-f. Li, Synthesis of dimethyl ether from syngas using a hierarchically porous composite zeolite as the methanol dehydration catalyst, J. Fuel Chem. Technol. 41 (2013) 873–880. https://doi.org/10.1016/S1872-5813(13)60037-7.
[139] D.S. El-Desouki, A.H. Ibrahim, S.M. Abdelazim, N.A. Aboul-Gheit, D.R. Abdel-Hafizar, The optimum conditions for methanol conversion to dimethyl ether over modified sulfated zirconia catalysts prepared by different methods, J. Fuel Chem. Technol. 49 (2021) 63–71. https://doi.org/10.1016/S1872-5813(21)60009-9.
[140] M.N. Timofeeva, Acid catalysis by heteropoly acids, Appl. Catal. A. 256 (2003) 19–35. https://doi.org/10.1016/S0926-860X(03)00386-7.
[141] E. Millán, N. Mota, R. Guil-López, B. Pawelec, J.L. García Fierro, R.M. Navarro, Direct Synthesis of Dimethyl Ether from Syngas on Bifunctional Hybrid Catalysts Based on Supported H3PW12O40 and Cu-ZnO(Al): Effect of Heteropolyacid Loading on Hybrid Structure and Catalytic Activity, Catalysts. 10 (2020) 1071. https://doi.org/10.3390/catal10091071.
[142] A. Palčić, S.N. Jaén, D. Wu, M. Cai, C. Liu, et al., Embryonic zeolites for highly efficient synthesis of dimethyl ether from syngas, Microporous Mesoporous Mater. 322 (2021) 111138. https://doi.org/10.1016/j.micromeso.2021.111138.
[143] Q. Sheng, R.-P Ye, W. Gong, X. Shi, B. Xu, et al., Mechanism and catalytic performance for direct dimethyl ether synthesis by CO2 hydrogenation over CuZnZr/ferrierite hybrid catalyst, J. Environ. Sci. 92 (2020) 106–117. https://doi.org/10.1016/j.jes.2020.02.015.
[144] J. Bedoya, R. Valdez, L. Cota, M.A. Alvarez-Amparán, A. Olivas, Performance of Al-MCM-41 nanospheres as catalysts for dimethyl ether production, Catal. Today. 388–389 (2021) 55–62. https://doi.org/10.1016/j.cattod.2021.01.010.
[145] B. Şeker, A. Khodadadi Dizaji, V. Balci, A. Uzun, MCM-41-supported tungstophosphoric acid as an acid function for dimethyl ether synthesis from CO2 hydrogenation, Renew. Energy. 171 (2021) 47–57. https://doi.org/10.1016/j.renene.2021.02.060.
[146] A. Ateka, P. Rodriguez-Vega, T. Cordero-Lanzac, J. Bilbao, A.T. Aguayo, Model validation of a packed bed LTA membrane reactor for the direct synthesis of DME from CO/CO2, Chem. Eng. J. 408 (2021) 127356. https://doi.org/10.1016/j.cej.2020.127356.
[147] M. Sánchez-Contador, A. Ateka, A.T. Aguayo, J. Bilbao, Direct synthesis of dimethyl ether from CO and CO2 over a core-shell structured CuO-ZnO-ZrO2 @SAPO-11 catalyst, Fuel Process. Technol. 179 (2018) 258–268. https://doi.org/10.1016/j.fuproc.2018.07.009.
[148] F. Yaripour, F. Baghaei, I. Schmidt, J. Perregaard, Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts, Catal. Commun. 6 (2005) 147–152. https://doi.org/10.1016/j.catcom.2004.11.012.
[149] J. Sun, G. Yang, Y. Yoneyama, N. Tsubaki, Catalysis Chemistry of Dimethyl Ether Synthesis, ACS Catal. 4 (2014) 3346–3356. https://doi.org/10.1021/cs500967j.
[150] K.C. Tokay, T. Dogu, G. Dogu, Dimethyl ether synthesis over alumina based catalysts, Chem. Eng. J. 184 (2012) 278–285. https://doi.org/10.1016/j.cej.2011.12.034.
[151] C. Peinado, D. Liuzzi, M. Retuerto, Study of catalyst bed composition for the direct synthesis of dimethyl ether from CO2-rich syngas, Chem. Eng. J. Adv. 4 (2020) 100039. https://doi.org/10.1016/j.ceja.2020.100039.
[152] A. EA. A. Said, M.M.M. Abd El-Wahab, M. Abd El-Aal, Catalytic dehydration of methanol to dimethyl ether over nano-sized WO3/Al2O3 system under inert and oxidative atmosphere, Monatsh. Chem. 147 (2016) 1507–1516. https://doi.org/10.1007/s00706-015-1649-7.
[153] A.I. Osman, J.K. Abu-Dahrieh, D.W. Rooney, S.A. Halawy, M.A. Mohamed, A. Abdelkader, Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether, Appl. Catal. B. 127 (2012) 307–315. https://doi.org/10.1016/j.apcatb.2012.08.033.
[154] C.H. Mejía, D.M.A. Verbart, K.P. de Jong, Niobium-based solid acids in combination with a methanol synthesis catalyst for the direct production of dimethyl ether from synthesis gas, Catal. Today. 369 (2021) 77–87. https://doi.org/10.1016/j.cattod.2020.07.059.
[155] H.-Y. Lin, Y.-W. Chen, Preparation of Spherical Hexagonal Mesoporous Silica, J. Porous Mater. 12 (2005) 95–105. https://doi.org/10.1007/s10934-005-6766-y.
[156] B. Sabour, M.H. Peyrovi, T. Hamoule, M. Rashidzadeh, Catalytic dehydration of methanol to dimethyl ether (DME) over Al-HMS catalysts, J. Ind. Eng. Chem. 20 (2014) 222–227. https://doi.org/10.1016/j.jiec.2013.03.044.
[157] R. Dębek, M.F.G. Ribeiro, A. Fernandes, M. Motak, Dehydration of methanol to dimethyl ether over modified vermiculites, C. R. Chim. 18 (2015) 1211–1222. https://doi.org/10.1016/j.crci.2015.05.003.
[158] X. Su, X. Yang, B. Zhao, Y. Huang, Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions, J. Energy Chem. 26 (2017) 854–867. https://doi.org/10.1016/j.jechem.2017.07.006.
[159] L. Yang, L. Pastor-Pérez, J. Villora-Pico, S. Gu, A. Sepúlveda-Escribano, T.R. Reina, CO2 valorisation via reverse water-gas shift reaction using promoted Fe/CeO2-Al2O3 catalysts: Showcasing the potential of advanced catalysts to explore new processes design, Appl. Catal. A. 593 (2020) 117442. https://doi.org/10.1016/j.apcata.2020.117442.
[160] R. Büchel, A. Baiker, S.E. Pratsinis, Effect of Ba and K addition and controlled spatial deposition of Rh in Rh/Al2O3 catalysts for CO2 hydrogenation, Appl. Catal. A. 477 (2014) 93–101. https://doi.org/10.1016/j.apcata.2014.03.010.
[161] B. Liang, H. Duan, X. Su, X. Chen, Y. Huang, et al., Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst, Catal. Today. 281 (2017) 319–326. https://doi.org/10.1016/j.cattod.2016.02.051.
[162] L. Pastor-Pérez, F. Baibars, E. Le Sache, H.Arellano-García, S. Gu, T.R. Reina, CO2 valorisation via Reverse Water-Gas Shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts, J. CO2 Util. 21 (2017) 423–428. https://doi.org/10.1016/j.jcou.2017.08.009.
[163] Y. Zhuang, R. Currie, K.B. McAuley, D.S.A. Simakov, Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5wt% Ru-promoted Cu/ZnO/Al2O3 catalyst, Appl. Catal. A. 575 (2019) 74–86. https://doi.org/10.1016/j.apcata.2019.02.016.
[164] M.J.L. Ginés, A.J. Marchi, C.R. Apesteguía, Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts, Appl. Catal. A. 154 (1997) 155–171. https://doi.org/10.1016/S0926-860X(96)00369-9.
[165] I. Nakamura, T. Fujitani, T. Uchijima, J. Nakamura, The synthesis of methanol and the reverse water-gas shift reaction over Zn-deposited Cu(100) and Cu(110) surfaces: comparison with Zn/Cu(111), Surf. Sci. 400 (1998) 387–400. https://doi.org/10.1016/S0039-6028(97)00899-6.
[166] C.-S. Chen, W.-H. Cheng, S.-S. Lin, Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction, Appl. Catal. A. 257 (2004) 97–106. https://doi.org/10.1016/S0926-860X(03)00637-9.
[167] G. Zhou, F. Xie, L. Deng, G. Zhang, H. Xie, Supported mesoporous Cu/CeO2-δ catalyst for CO2 reverse water–gas shift reaction to syngas, Int. J. Hydrog. Energy. 45 (2020) 11380–11393. https://doi.org/10.1016/j.ijhydene.2020.02.058.
[168] M.D. Porosoff, X. Yang, J.A. Boscoboinik, J.G. Chen, Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO2 to CO, Angew. Chem. Int. Ed. 53 (2014) 6705–6709. https://doi.org/10.1002/anie.201404109.
[169] M.D. Porosoff, S. Kattel, W. Li, P. Liu, J.G. Chen, Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides, Chem. Commun. 51 (2015) 6988–6991. https://doi.org/10.1039/C5CC01545F.
[170] R. Khoshbin, M. Haghighi, Direct conversion of syngas to dimethyl ether as a green fuel over CuO-ZnO-Al2O3/HZSM-5 nanocatalyst: Effect of aging time on physicochemical and catalytic properties, J. Renew. Sust. Energy. 7 (2015) 023127. https://doi.org/10.1063/1.4918733.
[171] R. Nie, H. Lei, S. Pan, L. Wang, J. Fei, Z. Hou, Core–shell structured CuO–ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether, Fuel. 96 (2012) 419–425. https://doi.org/10.1016/j.fuel.2011.12.048.
[172] X. An, Y.-Z. Zou, Q. Zhang, D.-z. Wang, J.-F. Wang, Dimethyl Ether Synthesis from CO2 Hydrogenation on a CuO−ZnO−Al2O3−ZrO2/HZSM-5 Bifunctional Catalyst, Ind. Eng. Chem. Res. 47 (2008) 6547–6554. https://doi.org/10.1021/ie800777t.
[173] S. Ren, W.R. Shoemaker, X. Wang, Z. Shang, N. Klinghoffer, et al., Highly active and selective Cu-ZnO based catalyst for methanol and dimethyl ether synthesis via CO2 hydrogenation, Fuel. 239 (2019) 1125–1133. https://doi.org/10.1016/j.fuel.2018.11.105.
[174] S. Allahyari, M. Haghighi, A. Ebadi, H. Qavam Saeedi, Direct synthesis of dimethyl ether as a green fuel from syngas over nanostructured CuO–ZnO–Al2O3/HZSM-5 catalyst: Influence of irradiation time on nanocatalyst properties and catalytic performance, J. Power Sources. 272 (2014) 929–939. https://doi.org/10.1016/j.jpowsour.2014.07.152.
[175] Y. Hu, Y. Zhang, J. Du, C. Li, K. Wang, et al., The influence of composition on the functionality of hybrid CuO–ZnO–Al2O3/HZSM-5 for the synthesis of DME from CO2 hydrogenation, RSC Adva. 8 (2018) 30387. https://doi.org/10.1039/C8RA04814B.
[176] S. Wang, D. Mao, X. Guo, G. Wu, G. Lu, Dimethyl ether synthesis via CO2 hydrogenation over CuO–TiO2–ZrO2/HZSM-5 bifunctional catalysts, Catal. Commun. 10 (2009) 1367–1370. https://doi.org/10.1016/j.catcom.2009.02.001.
[177] R.-w. Liu, Z.-z. Qin, H.-b. Ji, T.-m. Su, Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system, Ind. Eng. Chem. Res. 52 (2013) 16648–16655. https://doi.org/10.1021/ie401763g.
[178] J. Abu-Dahrieh, D. Rooney, A. Goguet, Y. Saih, Activity and deactivation studies for direct dimethyl ether synthesis using CuO–ZnO–Al2O3 with NH4ZSM-5, HZSM-5 or γ-Al2O3, Chem. Eng. J. 203 (2012) 201–211. https://doi.org/10.1016/j.cej.2012.07.011.
[179] W. Gao, H. Wang, Y. Wang, W. Guo, M. Jia, Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts, J. Rare Earths. 31 (2013) 470–476. https://doi.org/10.1016/S1002-0721(12)60305-6.
[180] G.-X. Qi, J.-H. Fei, X.-M. Zheng, Z.-Y. Hou, DME synthesis from carbon dioxide and hydrogen over Cu–Mo/HZSM-5, Catal. Lett. 72 (2001) 121–124. https://doi.org/10.1023/A:1009049513834.
[181] X. Zhou, T. Su, Y. Jiang, Z. Qin, H.Ji, Z. Guo, CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis, Chem. Eng. Sci. 153 (2016) 10–20. https://doi.org/10.1016/j.ces.2016.07.007.
[182] Z.-z. Qin, X.-h. Zhou, T.-m. Su, Y.-x. Jiang, H.-b. Ji, Hydrogenation of CO2 to dimethyl ether on La-Ce-modified Cu-Fe/HZSM-5 catalysts, Catal. Commun. 75 (2016) 78–82. https://doi.org/10.1016/j.catcom.2015.12.010.
[183] T. Su, X. Zhou, Z. Qin, H. Ji, Intrinsic Kinetics of Dimethyl Ether Synthesis from Plasma Activation of CO2 Hydrogenation over Cu-Fe-Ce/HZSM-5, Chemphyschem. 18 (2017) 299–309. https://doi.org/10.1002/cphc.201601283.
[184] J. Ereña, R. Garoña, J.M. Arandes, A.T. Aguayo, J. Bilbao, Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst, Catal. Today. 107–108 (2005) 467–473. https://doi.org/10.1016/j.cattod.2005.07.116.
[185] Y. Zhang, D. Li, S. Zhang, K. Wang, J. Wu, CO2 hydrogenation to dimethyl ether over CuO–ZnO–Al2O3/HZSM-5 prepared by combustion route, RSC Adv. 4 (2014) 16391–16396. https://doi.org/10.1039/C4RA00825A.
[186] S.P. Naik, T. Ryu, V. Bui, J.D. Miller, N.B. Drinnan, W. Zmierczak, Synthesis of DME from CO2/H2 gas mixture, Chem. Eng. J. 167 (2011) 362–368. https://doi.org/10.1016/j.cej.2010.12.087.
[187] A.Y. Khodakov, V.V. Ordomsky, A. Palčić, M. Cai, V. Subramanian, et al., Assessment of metal sintering in the copper-zeolite hybrid catalyst for direct dimethyl ether synthesis using synchrotron-based X-ray absorption and diffraction, Catal. Today. 343 (2020) 199–205. https://doi.org/10.1016/j.cattod.2019.01.023.
[188] Y. Zhao, J. Chen, J. Zhang, Effects of ZrO2 on the Performance of CuO-ZnO-Al2O3/HZSM-5 Catalyst for Dimethyl Ether Synthesis from CO2 Hydrogenation, J. Nat. Gas Chem. 16 (2007) 389–392. https://doi.org/10.1016/S1003-9953(08)60009-2.
[189] H. Bahruji, R.D. Armstrong, J.R. Esquius, W. Jones, M. Bowker, G.J. Hutchings, Hydrogenation of CO2 to Dimethyl Ether over Brønsted Acidic PdZn Catalysts, Ind. Eng. Chem. Res. 57 (2018) 6821–6829. https://doi.org/10.1021/acs.iecr.8b00230.
[190] J. Park, Y. Woo, H.S. Jung, H. Yang, W.B. Lee et al., Kinetic modeling for direct synthesis of dimethyl ether from syngas over a hybrid Cu/ZnO/Al2O3/ferrierite catalyst, Catal. Today. 388–389 (2020) 323–328. https://doi.org/10.1016/j.cattod.2020.06.023.
[191] G. Bonura, C. Cannilla, L. Frusteri, A. Mezzapica, F. Frusteri, DME production by CO2 hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts, Catal. Today. 281 (2017) 337–344. https://doi.org/10.1016/j.cattod.2016.05.057.
[192] G. Bonura, F. Frusteri, C. Cannilla, G.D. Ferrante, A. Aloise, et al., Catalytic features of CuZnZr–zeolite hybrid systems for the direct CO2-to-DME hydrogenation reaction, Catal. Today. 277 (2016) 48–54. https://doi.org/10.1016/j.cattod.2016.02.013.
[193] Y. Suwannapichat, T. Numpilai, N. Chanlek, K. Faungnawakij, M. Chareonpanich, et al., Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalysts containing a Cu-ZnO-ZrO2 catalyst admixed with WOx/Al2O3 catalysts: Effects of pore size of Al2O3 support and W loading content, Energy Convers. Manag. 159 (2018) 20–29. https://doi.org/10.1016/j.enconman.2018.01.016.
[194] T. Witoon, P. Kidkhunthod, M. Chareonpanich, J. Limtrakul, Direct synthesis of dimethyl ether from CO2 and H2 over novel bifunctional catalysts containing CuO-ZnO-ZrO2 catalyst admixed with WOx/ZrO2 catalysts, Chem. Eng. J. 348 (2018) 713–722. https://doi.org/10.1016/j.cej.2018.05.057.
[195] F. Frusteri, G. Bonura, C. Cannilla, G.D. Ferrante, A. Aloise, et al., Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation, Appl. Catal. B. 176–177 (2015) 522–531. https://doi.org/10.1016/j.apcatb.2015.04.032.
[196] G. Bonura, C. Cannilla, L. Frusteri, F. Frusteri, The influence of different promoter oxides on the functionality of hybrid CuZn-ferrierite systems for the production of DME from CO2-H2 mixtures, Appl. Catal. A. 544 (2017) 21–29. https://doi.org/10.1016/j.apcata.2017.07.010.
[197] F. Zha, H. Tian, J. Yan, Y. Chang, Multi-walled carbon nanotubes as catalyst promoter for dimethyl ether synthesis from CO2 hydrogenation, Appl. Surf. Sci. 285 (2013) 945–951. https://doi.org/10.1016/j.apsusc.2013.06.150.
[198] C. Temvuttirojn, N. Chuasomboon, T. Numpilai, K. Faungnawakij, M. Chareonpanich, et al., Development of SO42-–ZrO2 acid catalysts admixed with a CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to dimethyl ether, Fuel. 241 (2019) 695–703. https://doi.org/10.1016/j.fuel.2018.12.087.
[199] Y. Zhang, D. Li, Y. Zhang, Y. Cao, S. Zhang, et al., V-modified CuO–ZnO–ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation, Catal. Commun. 55 (2014) 49–52. https://doi.org/10.1016/j.catcom.2014.05.026.
[200] K. Sun, W. Lu, M. Wang, X. Xu, Low-temperature synthesis of DME from CO2/H2 over Pd-modified CuO–ZnO–Al2O3–ZrO2/HZSM-5 catalysts, Catal. Commun. 5 (2004) 367–370. https://doi.org/10.1016/j.catcom.2004.03.012.
[201] F. Zha, J. Ding, Y. Chang, J. Ding, J. Wang, J. Ma, Cu–Zn–Al oxide cores packed by metal-doped amorphous silica–alumina membrane for catalyzing the hydrogenation of carbon dioxide to dimethyl ether, Ind. Eng. Chem. Res. 51 (2012) 345–352. https://doi.org/10.1021/ie202090f.
[202] J.-H. Fei, M.-X. Yang, Z.-Y. Hou, X.-M. Zheng, Effect of the Addition of Manganese and Zinc on the Properties of Copper-Based Catalyst for the Synthesis of Syngas to Dimethyl Ether, Energy Fuels. 18 (2004) 1584–1587. https://doi.org/10.1021/ef049961f.

Cited By

Crossref Google Scholar
Direct catalytic production of dimethyl ether from CO and CO2: A review
Submitted
2021-06-01
Available online
2021-06-28
How to Cite
Akhoondi, A., Osman, A. I., & Alizadeh Eslami , A. (2021). Direct catalytic production of dimethyl ether from CO and CO2: A review. Synthesis and Sintering, 1(2), 105-120. https://doi.org/10.53063/synsint.2021.1229

Most read articles by the same author(s)