Advances in metal-based vanadate compound photocatalysts: synthesis, properties and applications

  • Asieh Akhoondi 1
  • Usisipho Feleni 2
  • Bhaskar Bethi 3
  • Azeez Olayiwola Idris 4
  • Akbar Hojjati-Najafabadi 5
  • 1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 2 Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
  • 3 Department of Chemical Engineering, B. V. Raju Institute of Technology, Narsapur, Medak (Dist.), Telangana State, India
  • 4 Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
  • 5 College of Rare Earths, Jiangxi University of Science and Technology, No.86, Hongqi Ave., Ganzhou, Jiangxi, 341000, PR China

Abstract

Among the ongoing research on photocatalysis under visible-light, it has been shown that doped or hybrid catalysts are more active than a single catalyst alone. However, problems including visible light absorption, a low quantity of energetic sites on surfaces, and rapid recombination of the photo-electron hole pair produced by light have prohibited photocatalysts from being used in a practical and widespread manner. To overcome these problems, synthesis of nanostructure hybrid catalyst using several methods has attracted much attention. Several procedures have been suggested for the preparation of photocatalysts with the desired structure and morphology. Preparation methods similar to partial modification may lead to diverse structures and qualities. In this regard, the development of efficient, low-cost photocatalysts and rapid synthesis is the most important issues that should be considered. This review discusses various methods and mechanisms that work with the modification of vanadium compounds as photocatalysts to progress their photocatalytic efficiency. In addition, the effects of synthesis temperature, solution pH and concentration on the photocatalytic performance are also described in detail.

Downloads

Download data is not yet available.
Keywords: Photocatalyst, Synthesis, Solar energy, Structure, Visible-light, Vanadium

References

[1] F. Ghasemzadeh, M. Esmaeili Shayan, Nanotechnology in the Service of Solar Energy Systems, IntechOpen. (2020). https://doi.org/10.5772/intechopen.93014.
[2] M. Tawalbeh, A. Al-Othman, F. Kafiah, E. Abdelsalam, F. Almomani, M. Alkasrawi, Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook, Sci. Total Environ. 759 (2021) 143528. https://doi.org/10.1016/j.scitotenv.2020.143528.
[3] S. Lee, M. Vandiver, B. Viswanathan, V. Subramanian, Harvesting Solar Energy Using Inexpensive and Benign Materials, Handbook of Climate Change Mitigation, Springer, New York, NY. (2012) 1217–1261. https://doi.org/10.1007/978-1-4419-7991-9_32.
[4] I.R. Segundo, E. Freitas, J.S. Landi, M.F.M. Costa, J.O. Carneiro, Smart, Photocatalytic and Self-Cleaning Asphalt Mixtures: A Literature Review, Coatings. 9 (2019) 696. https://doi.org/10.3390/coatings9110696.
[5] A. Akhoondi, A.I. Osman, A. Alizadeh Eslami, Direct catalytic production of dimethyl ether from CO and CO2: A review, Synth. Sinter. 1 (2021) 105‒120. https://doi.org/10.53063/synsint.2021.1229.
[6] D. Li, X. Fang, H. Liu, H. Lu, Z. Zhang, Photo reduction of CO2 to CH4 on g-C3N4: The effect of concentrating light and pretreatment, API Conf. Proc. 1971 (2018) 020006. https://doi.org/10.1063/1.5041101.
[7] M. Liu, G. Chen, B. Min, J. Shi, Y. Chen, Q. Liu, Photocatalytic CO2 Reduction, Solar‐to‐Chemical Conversion: Photocatalytic and Photoelectrochemcial Processes, John Wiley & Sons, Ltd. (2021). https://doi.org/10.1002/9783527825073.ch9.
[8] S.Y. Lee, S.J. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem. 19 (2013) 1761–1769. https://doi.org/10.1016/j.jiec.2013.07.012.
[9] N.J.D.G. Reyes, F.K.F. Geronimo, K.A.V. Yano, H.B. Guerra, L.H. Kim, Pharmaceutical and Personal Care Products in Different Matrices: Occurrence, Pathways, and Treatment Processes, Water. 13 (2021) 1159. https://doi.org/10.3390/w13091159.
[10] S. Zhu, D. Wang, Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities, Adv. Energy Mater. 7 (2017) 1700841. https://doi.org/10.1002/aenm.201700841.
[11] S. Sakka, Sol–Gel Process and Applications, Handbook of Advanced Ceramics (Second Edition), Academic Press. (2013) 883‒910. https://doi.org/10.1016/B978-0-12-385469-8.00048-4.
[12] A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review, Indian J. Mater. Sci. (2015) 601827. https://doi.org/10.1155/2015/601827.
[13] S. Anoop Yadav, Biological and physicochemical combination processes, Nanomaterials for Air Remediation, Elsevier. (2020) 361‒372. https://doi.org/10.1016/B978-0-12-818821-7.00018-X.
[14] T.V.L. Thejaswini, D.Prabhakaran, M. Akhila Maheswari, Soft synthesis of Bi Doped and Bi–N co-doped TiO2 nanocomposites: A comprehensive mechanistic approach towards visible light induced ultra-fast photocatalytic degradation of fabric dye pollutant, J. Environ. Chem. Eng. 4 (2016) 1308–1321. https://doi.org/10.1016/j.jece.2016.01.031.
[15] C.H.A. Tsang, K.Li, Y. Zeng, W. Zhao, T. Zhang, et al., Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast, Environ. Int. 125 (2019) 200–228. https://doi.org/10.1016/j.envint.2019.01.015.
[16] S.R. Shanmugham, G.B. Jegadeesan, V. Ponnusami, Groundwater treatments using nanomaterials, Nanotechnology in the Beverage Industry, Elsevier. (2020) 25‒49. https://doi.org/10.1016/B978-0-12-819941-1.00002-X.
[17] G.-J. Lee, J.J. Wu, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — A review, Powder Technol. 318 (2017) 8–22. https://doi.org/10.1016/j.powtec.2017.05.022.
[18] X.-h. Tang, C.-h. Wei, J.-r. Liang, B.-g. Wang, Preparation and photocatalytic activity of boron doped CeO2/TiO2 mixed oxides, Huan Jing Ke Xue. 27 (2006) 1329‒1333.
[19] M. Nasirian, C.F. Bustillo-Lecompte, M. Mehrvar, Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: Effects of calcination temperature and UV-assisted thermal synthesis, J Environ Manage. 196 (2017) 487‒498. https://doi.org/10.1016/j.jenvman.2017.03.030.
[20] D. Pan, Z. Han, Y. Miao, D. Zhang, G. Li, Thermally stable TiO2 quantum dots embedded in SiO2 foams: Characterization and photocatalytic H2 evolution activity, Appl. Catal. B. 229 (2018) 130–138. https://doi.org/10.1016/j.apcatb.2018.02.022.
[21] J. Guo, J. Liang, X. Yuan, L. Jiang, G. Zeng, et al., Efficient visible-light driven photocatalyst, silver (meta) vanadate: Synthesis, morphology and modification, Chem. Eng. J. 352 (2018) 782–802. https://doi.org/10.1016/j.cej.2018.07.071.
[22] A.P. Singh, N. Kodan, B.R. Mehta, A. Held, L. Mayrhofer, M. Moseler, Band Edge Engineering in BiVO4/TiO2 Heterostructure: Enhanced Photoelectrochemical Performance through Improved Charge Transfer, ACS Catal. 6 (2016) 5311–5318. https://doi.org/10.1021/acscatal.6b00956.
[23] V.-H. Nguyen, M. Mousavi, J.B. Ghasemi, Q.V. Le, S.A. Delbari, et al., Novel p−n Heterojunction Nanocomposite: TiO2 QDs/ZnBi2O4 Photocatalyst with Considerably Enhanced Photocatalytic Activity under Visible-Light Irradiation, J. Phys. Chem. C. 124 (2020) 27519–27528. https://doi.org/10.1021/acs.jpcc.0c08316.
[24] G. Hu, J. Yang, X. Duan, R. Farnood, C. Yang, et al., Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications, Chem. Eng. J. 417 (2021) 129209. https://doi.org/10.1016/j.cej.2021.129209.
[25] R. Ameta, M.S. Solanki, S. Benjamin, S.C. Ameta, Photocatalysis, Advanced Oxidation Processes for Waste Water Treatment, Academic Press. (2018) 135–175. https://doi.org/10.1016/B978-0-12-810499-6.00006-1.
[26] B.-J. Ng, L.K. Putri, X.Y. Kong, Y.W. Teh, P. Pasbakhsh, S.-P. Chai, Z-Scheme Photocatalytic Systems for Solar Water Splitting, Adv. Sci. 7 (2020) 1903171. https://doi.org/10.1002/advs.201903171.
[27] B. Bajorowicz, M.P. Kobylański, A. Malankowska, P. Mazierski, J. Nadolna, et al., Application of metal oxide-based photocatalysis, Metal Oxide-Based Photocatalysis, Elsevier. (2018) 211‒340. https://doi.org/10.1016/B978-0-12-811634-0.00004-4.
[28] M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, H. Fu, Long-Lived, Visible-Light-Excited Charge Carriers of TiO2/BiVO4 Nanocomposites and their Unexpected Photoactivity for Water Splitting, Adv. Energy Mater. 4 (2014) 1300995. https://doi.org/10.1002/aenm.201300995.
[29] M.J. Abel, A. Pramothkumar, N. Senthilkumar, K. Jothivenkatachalam, P.F. Hilbert Inbaraj, J. Joseph prince, Flake-like CuMn2O4 nanoparticles synthesized via co-precipitation method for photocatalytic activity, Phys. B: Condens. Matter. 572 (2019) 117–124. https://doi.org/10.1016/j.physb.2019.07.047.
[30] V.S. Kirankumar, S. Sumathi, A review on photodegradation of organic pollutants using spinel oxide, Mater. Today. Chem. 18 (2020) 100355. https://doi.org/10.1016/j.mtchem.2020.100355.
[31] J.-K. Guo, J. Li, H.-M. Kou, Advanced Ceramic Materials, Modern Inorganic Synthetic Chemistry (Second Edition), Elsevier. (2017) 463–492. https://doi.org/10.1016/B978-0-444-63591-4.00017-3.
[32] A.N. El-Shazly, M.M. Rashad, E.A. Abdel-Aal, I.A. Ibrahim, M.F. El-Shahat, A.E. Shalan, Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-Precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes, J. Environ. Chem. Eng. 4 (2016) 3177–3184. https://doi.org/10.1016/j.jece.2016.06.018.
[33] X. You, F. Chen, J. Zhang, M. Anpo, A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide, Catal. Lett. 102 (2005) 247–250. https://doi.org/10.1007/s10562-005-5863-5.
[34] P. Dumrongrojthanath, A. Phuruangrat, S. Thongtem, T. Thongtem, Photocatalysis of Cd-doped ZnO synthesized with precipitation method, Rare Met. 40 (2021) 537–546. https://doi.org/10.1007/s12598-019-01283-6.
[35] S. Liu, C. Ma, M.G. Ma, F. Xu, Magnetic Nanocomposite Adsorbents, Composite Nanoadsorbents, Elsevier. (2019) 295–316. https://doi.org/10.1016/B978-0-12-814132-8.00013-7.
[36] C.Y. Teh, T.Y. Wu, J.C. Juan, An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant, Chem. Eng. J. 317 (2017) 586–612. https://doi.org/10.1016/j.cej.2017.01.001.
[37] G. Huang, C.-H. Lu, H.-H. Yang, Magnetic Nanomaterials for Magnetic Bioanalysis, Novel Nanomaterials for Biomedical, Environmental and Energy Applications, Elsevier. (2019) 89‒109. https://doi.org/10.1016/B978-0-12-814497-8.00003-5.
[38] J.J. Ng, K.H. Leong, L.C. Sim, W.-D. Oh, C. Dai, P. Saravanan, Environmental remediation using nano-photocatalyst under visible light irradiation: the case of bismuth phosphate, Nanomaterials for Air Remediation, Elsevier. (2020) 193‒207. https://doi.org/10.1016/B978-0-12-818821-7.00010-5.
[39] Q. Han, Advances in preparation methods of bismuth-based photocatalysts, Chem. Eng. J. 414 (2021) 127877. https://doi.org/10.1016/j.cej.2020.127877.
[40] M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications, J. Mater. Sci: Mater. Electron. 31 (2020) 3729–3749. https://doi.org/10.1007/s10854-020-02994-8.
[41] Q. Liang, X. Liu, G. Zeng, Z. Liu, L. Tang, et al., Surfactant-assisted synthesis of photocatalysts: Mechanism, synthesis, recent advances and environmental application, Chem. Eng. J. 372 (2019) 429–451. https://doi.org/10.1016/j.cej.2019.04.168.
[42] O. Monfort, G. Plesch, Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants, Environ. Sci. Pollut. Res. 25 (2018) 19362–19379. https://doi.org/10.1007/s11356-018-2437-9.
[43] A.J. Josephine, C.R. Dhas, R. Venkatesh, D. Arivukarasan, A.J. Christy, et al., Effect of pH on visible-light-driven photocatalytic degradation of facile synthesized bismuth vanadate nanoparticles, Mater. Res. Express. 7 (2020) 015036. https://doi.org/10.1088/2053-1591/ab653f.
[44] M. Zahid, N. Nadeem, N. Tahir, F.-Un-Nisa, M.I. Majeed, et al., Hybrid nanomaterials for water purification, Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems, Elsevier. (2020) 155–188. https://doi.org/10.1016/B978-0-12-821354-4.00007-8.
[45] A.M.-de la Cruz, U.M. García Pérez, Photocatalytic properties of BiVO4 prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation, Mater. Res. Bull. 45 (2010) 135–141. https://doi.org/10.1016/j.materresbull.2009.09.029.
[46] Z. Wang, X. Huang, X. Wang, Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting, Catal. Today. 335 (2019) 31–38. https://doi.org/10.1016/j.cattod.2019.01.067.
[47] W. Yin, W. Wang, M. Shang, L. Zhou, S. Sun, L. Wang, BiVO4 Hollow Nanospheres: Anchoring Synthesis, Growth Mechanism, and Their Application in Photocatalysis, Eur. J. Inorg. Chem. 2009 (2009) 4379–4384. https://doi.org/10.1002/ejic.200900614.
[48] W. Shi, Y. Yan, X. Yan, Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin, Chem. Eng. J. 215–216 (2013) 740–746. https://doi.org/10.1016/j.cej.2012.10.071.
[49] M.J. Madiabu, J. Gunlazuardi, Preparation and characterization of TiO2/BiVO4 composite: Can this photocatalyst, under visible light, be able to eliminate rhodamine B from water and why?, AIP Conf. Proc. 2023 (2018) 020079. https://doi.org/10.1063/1.5064076.
[50] P.P. Liu, X. Liu, X.H. Huo, Y. Tang, J. Xu, H. Ju, TiO2–BiVO4 Heterostructure to Enhance Photoelectrochemical Efficiency for Sensitive Aptasensing, ACS Appl. Mater. Interfaces. 9 (2017) 27185–27192. https://doi.org/10.1021/acsami.7b07047.
[51] S. Mansour, R. Akkari, E. Soto, S.B. Chaabene, N. Mota, et al., Pt–BiVO4/TiO2 composites as Z-scheme photocatalysts for hydrogen production from ethanol: the effect of BiVO4 and Pt on the photocatalytic efficiency, New J. Chem. 45 (2021) 4481–4495. https://doi.org/10.1039/D0NJ05596D.
[52] H. Hou, L. Wang, F. Gao, X. Yang, W. Yang, BiVO4@TiO2 core–shell hybrid mesoporous nanofibers towards efficient visible-light-driven photocatalytic hydrogen production, J. Mater. Chem. C. 7 (2019) 7858–7864. https://doi.org/10.1039/C9TC02480H.
[53] H. Gao, P. Zhang, J. Zhao, Y. Zhang, J. Hu, G. Shao, Plasmon enhancement on photocatalytic hydrogen production over the Z-scheme photosynthetic heterojunction system, Appl. Catal. B. 210 (2017) 297–305. https://doi.org/10.1016/j.apcatb.2017.03.050.
[54] K. Baďurová, O. Monfort, L. Satrapinskyy, E. Dworniczek, G. Gościniak, G. Plesch, Photocatalytic activity of Ag3PO4 and some of its composites under non-filtered and UV-filtered solar-like radiation, Ceram. Int. 43 (2017) 3706–3712. https://doi.org/10.1016/j.ceramint.2016.11.217.
[55] S. Chen, D. Huang, G. Zeng, W. Xue, L. Lei, et al., In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer, Chem. Eng. J. 382 (2020) 122840. https://doi.org/10.1016/j.cej.2019.122840.
[56] Y. Bi, H. Hu, S. Ouyang, Z. Jiao, G. Lu, J. Ye, Selective growth of Ag3PO4 submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications, J. Mater. Chem. 22 (2012) 14847–14850. https://doi.org/10.1039/C2JM32800C.
[57] C. Li, P. Zhang, R. Lv, J. Lu, T. Wang, et al., Selective Deposition of Ag3PO4 on Monoclinic BiVO4(040) for Highly Efficient Photocatalysis, Small. 9 (2013) 3951–3956. https://doi.org/10.1002/smll.201301276.
[58] W. Chen, M. Liu, X. Li, L. Mao, Synthesis of 3D mesoporous g-C3N4 for efficient overall water splitting under a Z-scheme photocatalytic system, Appl. Surf. Sci. 512 (2020) 145782. https://doi.org/10.1016/j.apsusc.2020.145782.
[59] N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity, Dalton Trans. 44 (2015) 4297–4307. https://doi.org/10.1039/C4DT03905J.
[60] P. Niu, J. Dai, X. Zhi, Z. Xia, S. Wang, L. Li, Photocatalytic overall water splitting by graphitic carbon nitride, InfoMat. 3 (2021) 931–961. https://doi.org/10.1002/inf2.12219.
[61] D.J. Martin, P.J.T. Reardon, S.J.A. Moniz, J. Tang, Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System, J. Am. Chem. Soc. 136 (2014) 12568–12571. https://doi.org/10.1021/ja506386e.
[62] V.H. Nguyen, M. Mousavi, J.B. Ghasemi, Q.V. Le, S.A. Delbari, et al., g-C3N4 nanosheet adorned with Ag3BiO3 as a perovskite: An effective photocatalyst for efficient visible-light photocatalytic processes, Mater. Sci. Semicond. Process. 125 (2021) 105651. https://doi.org/10.1016/j.mssp.2020.105651.
[63] Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, et al., In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, Appl. Catal. B. 180 (2016) 663‒673. https://doi.org/10.1016/j.apcatb.2015.06.057.
[64] T. Zhang, X. Shao, D. Zhang, X. Pu, Y. Tang, et al., Synthesis of direct Z-scheme g-C3N4/Ag2VO2PO4 photocatalysts with enhanced visible light photocatalytic activity, Sep. Purif. Technol. 195 (2018) 332–338. https://doi.org/10.1016/j.seppur.2017.12.018.
[65] X. Sun, X. Zhang, Y. Xie, Surface Defects in Two-Dimensional Photocatalysts for Efficient Organic Synthesis, Matter. 2 (2020) 842–861. https://doi.org/10.1016/j.matt.2020.02.006.
[66] S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods, J. Mater. Chem. A. 3 (2015) 10119–10126. https://doi.org/10.1039/C5TA00635J.
[67] N.T. Padmanabhan, N. Thomas, J. Louis, D.T. Mathew, P. Ganguly, et al., Graphene coupled TiO2 photocatalysts for environmental applications: A review, Chemosphere. 271 (2021) 129506. https://doi.org/10.1016/j.chemosphere.2020.129506.
[68] Y. Zhao, S. Zhang, R. Shi, G.I.N. Waterhouse, J. Tang, T. Zhang, Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances, Mater. Today. 34 (2020) 78–91. https://doi.org/10.1016/j.mattod.2019.10.022.
[69] Q. Jia, A. Iwase, A. Kudo, BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting, Chem. Sci. 5 (2014) 1513–1519. https://doi.org/10.1039/C3SC52810C.
[70] Y. Yan, X. Liu, W. Fan, P. Lv, W. Shi, InVO4 microspheres: Preparation, characterization and visible-light-driven photocatalytic activities, Chem. Eng. J. 200–202 (2012) 310–316. https://doi.org/10.1016/j.cej.2012.05.102.
[71] J. Shen, X. Li, W. Huang, N. Li, M. Ye, Synthesis of novel photocatalytic RGO-InVO4 nanocomposites with visible light photoactivity, Mater. Res. Bull. 48 (2013) 3112–3116. https://doi.org/10.1016/j.materresbull.2013.04.077.
[72] X. Lin, D. Xu, J. Zheng, M. Song, G. Che, et al., Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nanoheterostructures with enhanced visible-light photocatalytic activity, J. Alloys Compd. 688 (2016) 891–898. https://doi.org/10.1016/j.jallcom.2016.07.275.
[73] S. Chaudhary, Y. Kaur, B. Jayee, G.R. Chaudhary, A. Umar, NiO nanodisks: Highly efficient visible-light driven photocatalyst, potential scaffold for seed germination of Vigna Radiata and antibacterial properties, J. Clean. Prod. 190 (2018) 563–576. https://doi.org/10.1016/j.jclepro.2018.04.110.
[74] N.M. Hosny, Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route, Polyhedron. 30 (2011) 470–476. https://doi.org/10.1016/j.poly.2010.11.020.
[75] H.-Y. Lin, Y.-F. Chen, Y.-W. Chen, Water splitting reaction on NiO/InVO4 under visible light irradiation, Int. J. Hydrog. Energy. 32 (2007) 86–92. https://doi.org/10.1016/j.ijhydene.2006.04.007.
[76] N.M. Hosny, I. Gomaa, A. Abd El-Moemen, Z.M. Anwar, Synthesis, magnetic and adsorption of dye onto the surface of NiO nanoparticles, J. Mater. Sci: Mater. Electron. 31 (2020) 8413–8422. https://doi.org/10.1007/s10854-020-03376-w.
[77] Z. Wei, T. Xinyue, W. Xiaomeng, D. Benlin, Z. Lili, et al., Novel p-n heterojunction photocatalyst fabricated by flower-like BiVO4 and Ag2S nanoparticles: Simple synthesis and excellent photocatalytic performance, Chem. Eng. J. 361 (2019) 1173–1181. https://doi.org/10.1016/j.cej.2018.12.120.
[78] M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion, Appl. Catal. B. 217 (2017) 485–493. https://doi.org/10.1016/j.apcatb.2017.05.058.
[79] W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang, et al., Preparation of p–n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity, Appl. Catal. 134–135 (2013) 293–301. https://doi.org/10.1016/j.apcatb.2013.01.013.
[80] Y. Zheng, Y. Chen, B. Gao, B. Lin, X. Wang, Phosphorene-Based Heterostructured Photocatalysts, Engineering. 7 (2021) 991–1001. https://doi.org/10.1016/j.eng.2021.06.004.
[81] M. Zhu, Z. Sun, M. Fujitsuka, T. Majima, Inside Cover: Z-Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth Vanadate Using Visible Light, Angew. Chem. Int. Ed. 57 (2018) 2008. https://doi.org/10.1002/anie.201800579.
[82] M.B.R. Kamalam, S.S.R. Inbanathan, K. Sethuraman, A. Umar, H. Algadi, et al., Direct sunlight-driven enhanced photocatalytic performance of V2O5 nanorods/ graphene oxide nanocomposites for the degradation of Victoria blue dye, Environ. Res. 199 (2021) 111369. https://doi.org/10.1016/j.envres.2021.111369.
[83] Y. Min, K. Zhang, Y. Chen, Y. Zhang, Synthesis of novel visible light responding vanadate/TiO2 heterostructure photocatalysts for application of organic pollutants, Chem. Eng. J. 175 (2011) 76–83. https://doi.org/10.1016/j.cej.2011.09.042.
[84] Y.-R. Lv, C.-J. Liu, R.-K. He, X. Li, Y.-H. Xu, BiVO4/TiO2 heterojunction with enhanced photocatalytic activities and photoelectochemistry performances under visible light illumination, Mater. Res. Bull. 117 (2019) 35–40. https://doi.org/10.1016/j.materresbull.2019.04.032.
[85] M. Zhu, Z. Sun, M. Fujitsuka, T. Majima, Z-Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth Vanadate Using Visible Light, Angew. Chem. 130 (2018) 2182–2186. https://doi.org/10.1002/ange.201711357.
[86] M. Wang, Q. Wang, P. Guo, Z. Jiao, In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting, J. Colloid Interface Sci. 534 (2019) 338–342. https://doi.org/10.1016/j.jcis.2018.09.056.
[87] T.W. Kim, K.-S. Choi, Improving Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media by Adding a ZnFe2O4 Layer, J. Phys. Chem. Lett. 7 (2016) 447–451. https://doi.org/10.1021/acs.jpclett.5b02774.
[88] L. Zhang, C.-Y. Lin, V.K. Valev, E. Reisner, U. Steiner, J.J. Baumberg, Plasmonic Enhancement in BiVO4 Photonic Crystals for Efficient Water Splitting, Small. 10 (2014) 3970–3978. https://doi.org/10.1002/smll.201400970.
[89] Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, et al., Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency, Sci. Rep. 5 (2015) 11141. https://doi.org/10.1038/srep11141.
[90] Z. Jiao, J. Zheng, C. Feng, Z. Wang, X. Wang, et al., Fe/W Co-Doped BiVO4 Photoanodes with a Metal–Organic Framework Cocatalyst for Improved Photoelectrochemical Stability and Activity, ChemSunchem. 9 (2016) 2824–2831. https://doi.org/10.1002/cssc.201600761.
[91] R. Li, H. Han, F. Zhang, D. Wang, C. Li, Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4, Energy Environ. Sci. 7 (2014) 1369–1376. https://doi.org/10.1039/C3EE43304H.
[92] T. Lv, D. Li, Y. Hong, B. Luo, D. Xu, et al., Facile synthesis of CdS/Bi4V2O11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water, Dalton Trans. 46 (2017) 12675–12682. https://doi.org/10.1039/C7DT02151H.
[93] L.Z. Pei, N. Lin, T. Wei, H.Y. Yu, Synthesis of manganese vanadate nanobelts and their visible light photocatalytic activity for methylene blue, J. Exp. Nanosci. 11 (2016) 197–214. https://doi.org/10.1080/17458080.2015.1047418.
[94] S. Bao, Z. Wang, J. Zhang, B. Tian, Facet-Heterojunction-Based Z-Scheme BiVO4 {010} Microplates Decorated with AgBr-Ag Nanoparticles for the Photocatalytic Inactivation of Bacteria and the Decomposition of Organic Contaminants, ACS Appl. Nano Mater. 3 (2020) 8604–8617. https://doi.org/10.1021/acsanm.0c00703.
[95] M. Tayebi, A. Tayyebi, T. Soltani, B.-K. Lee, pH-Dependent photocatalytic performance of modified bismuth vanadate by bismuth ferrite, New J. Chem. 43 (2019) 9106–9115. https://doi.org/10.1039/C9NJ00214F.
[96] P. Li, N. Umezawa, H. Abe, J. Ye, Novel visible-light sensitive vanadate photocatalysts for water oxidation: implications from density functional theory calculations, J. Mater. Chem. A. 3 (2015) 10720–10723. https://doi.org/10.1039/C5TA01416F.
[97] V.-H. Nguyen, B.-S. Nguyen, C. Hu, C.C. Nguyen, D.L.T. Nguyen, et al., Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production:, A Mini-Review, Nanomaterials. 10 (2020) 602. https://doi.org/10.3390/nano10040602.
[98] S.S. Lam, V.-H. Nguyen, M.T.N. Dinh, D.Q. Khieu, D.D. La, et al., Mainstream avenues for boosting graphitic carbon nitride efficiency: towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation, J. Mater. Chem. A. 8 (2020) 10571–10603. https://doi.org/10.1039/D0TA02582H.
[99] A. Pareek, R. Dom, J. Gupta, J. Chandran, V. Adepu, P. H. Borse, Insights into renewable hydrogen energy: Recent advances and prospects, Mater. Sci. Energy Technol. 3 (2020) 319–327. https://doi.org/10.1016/j.mset.2019.12.002.
[100] H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, et al., Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst, J. Catal. 266 (2009) 165–168. https://doi.org/10.1016/j.jcat.2009.06.024.
[101] A.M. Huerta-Flores, L.M. Torres-Martínez, D. Sánchez-Martínez, M.E. Zarazúa-Morín, SrZrO3 powders: Alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting, Fuel. 158 (2015) 66–71. https://doi.org/10.1016/j.fuel.2015.05.014.
[102] S. Sreekantan, K.A. Saharudin, N. Basiron, L.C. Wei, New-generation titania-based catalysts for photocatalytic hydrogen generation, Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, Elsevier. (2020) 257–292. https://doi.org/10.1016/B978-0-12-819552-9.00008-7.
[103] R. Li, C. Li, Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts, Adv. Catal. 60 (2017) 1‒57. https://doi.org/10.1016/bs.acat.2017.09.001.
[104] H. Wang, X. Liu, P. Niu, S. Wang, J. Shi, L. Li, Porous Two-Dimensional Materials for Photocatalytic and Electrocatalytic Applications, Matter. 2 (2020) 1377–1413. https://doi.org/10.1016/j.matt.2020.04.002.
[105] X. Zhao, S. Chen, H. Yin, S. Jiang, K. Zhao, et al., Perovskite Microcrystals with Intercalated Monolayer MoS2 Nanosheets as Advanced Photocatalyst for Solar-Powered Hydrogen Generation, Matter. 3 (2020) 935–949. https://doi.org/10.1016/j.matt.2020.07.004.
[106] Y. Wang, X. Shang, J. Shen, Z. Zhang, D. Wang, et al., Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation, Nat. Commun. 11 (2020) 3043. https://doi.org/10.1038/s41467-020-16742-3.
[107] Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications, Mater. Today. 21 (2018) 1042–1063. https://doi.org/10.1016/j.mattod.2018.04.008.
[108] Z. Lei, G. Ma, M. Liu, W. You, H. Yan, et al., Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination, J. Catal. 237 (2006) 322–329. https://doi.org/10.1016/j.jcat.2005.11.022.
[109] X. Ren, M. Gao, Y. Zhang, Z. Zhang, X. Cao, et al., Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism, Appl. Catal. B. 274 (2020) 119063. https://doi.org/10.1016/j.apcatb.2020.119063.
[110] J. Bi, B. Xu, L. Sun, H. Huang, S. Fang, et al., A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO2 Reduction, ChemPlusChem. 84 (2019) 1149‒1154. http://dx.doi.org/10.1002/cplu.201900329.
[111] C. Prasad, X. Yang, Q. Liu, H. Tang, A. Rammohan, et al., Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications, J. Ind. Eng. Chem. 85 (2020) 1–33. https://doi.org/10.1016/j.jiec.2019.12.003.
[112] X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energy Environ. Sci. 9 (2016) 2177–2196. https://doi.org/10.1039/C6EE00383D.
[113] Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen, et al., A CsPbBr 3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction, J. Am. Chem. Soc. 139 (2017) 5660–5663. https://doi.org/10.1021/jacs.7b00489.
[114] H. Nakanishi, K. Iizuka, T. Takayama, A. Iwase, A. Kudo, Highly Active NaTaO3-Based Photocatalysts for CO2 Reduction to Form CO Using Water as the Electron Donor, ChemSusChem. 10 (2017) 112–118. https://doi.org/10.1002/cssc.201601360.
[115] R. Kumar, A. Umar, D.S. Rana, P. Sharma, M.S. Chauhan, S. Chauhan, Fe-doped ZnO nanoellipsoids for enhanced photocatalytic and highly sensitive and selective picric acid sensor, Mater. Res. Bull. 102 (2018) 282–288. https://doi.org/10.1016/j.materresbull.2018.02.042.
[116] S.P. Patil, R.P. Patil, V.K. Mahajan, G.H. Sonawane, V.S. Shrivastava, S. Sonawane, Facile sonochemical synthesis of BiOBr-graphene oxide nanocomposite with enhanced photocatalytic activity for the degradation of Direct green, Mater. Sci. Semicond. Process. 52 (2016) 55–61. https://doi.org/10.1016/j.mssp.2016.05.008.
[117] V.-H. Nguyen, B.-S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang, et al., Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels, Chem. Eng. J. 402 (2020) 126184. https://doi.org/10.1016/j.cej.2020.126184.
[118] T.P. Nguyen, D.M.T. Nguyen, D.L. Tran, H.K. Le, D.-V.N. Vo, et al., MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction, Mol. Catal. 486 (2020) 110850. https://doi.org/10.1016/j.mcat.2020.110850.
[119] B.G. Oliver, J.H. Carey, Photodegradation of Wastes and Pollutants in Aquatic Environment, Homogeneous and Heterogeneous Photocatalysis, Springer, Dordrecht. 174 (1986) 629–650. https://doi.org/10.1007/978-94-009-4642-2_36.
[120] Y. Paz, Application of TiO2 photocatalysis for air treatment: Patents’ overview, Appl. Catal. B. 99 (2010) 448–460. https://doi.org/10.1016/j.apcatb.2010.05.011.
[121] Y. Boyjoo, H. Sun, J. Liu, V.K. Pareek, S. Wang, A review on photocatalysis for air treatment: From catalyst development to reactor design, Chem. Eng. J. 310 (2017) 537–559. https://doi.org/10.1016/j.cej.2016.06.090.
[122] Y. Hu, W. Chen, J. Fu, M. Ba, F. Sun, et al., Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation, Appl. Surf. Sci. 436 (2018) 319–326. https://doi.org/10.1016/j.apsusc.2017.12.054.
[123] T.P.Shende, B.A. Bhanvase, A.P. Rathod, D.V. Pinjari, S.H. Sonawane, Sonochemical synthesis of Graphene-Ce-TiO2 and Graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye, Ultrason. Sonochem. 41 (2018) 582–589. https://doi.org/10.1016/j.ultsonch.2017.10.024.
[124] P. Taneja, S. Sharma, A. Umar, S.K. Mehta, A.O. Ibhadon, S.K. Kansal, Visible-light driven photocatalytic degradation of brilliant green dye based on cobalt tungstate (CoWO4) nanoparticles, Mater. Chem. Phys. 211 (2018) 335–342. https://doi.org/10.1016/j.matchemphys.2018.02.041.
[125] B. Bethi, S.H. Sonawane, G.S. Rohit, C.R. Holkar, D.V. Pinjari, et al., Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP, Ultrason. Sonochem. 28 (2016) 150–160. https://doi.org/10.1016/j.ultsonch.2015.07.008.
[126] M. Malakootian, A. Nasiri, M. Khatami, H. Mahdizadeh, P. Karimi, et al., Experimental data on the removal of phenol by electro-H2O2 in presence of UV with response surface methodology, MethodsX. 6 (2019) 1188–1193. https://doi.org/10.1016/j.mex.2019.05.004.
[127] S. Sharma, A. Umar, S.K. Mehta, A.O. Ibhadon, S.K. Kansal, Solar light driven photocatalytic degradation of levofloxacin using TiO2/carbon-dot nanocomposites, New J. Chem. 42 (2018) 7445–7456. https://doi.org/10.1039/C7NJ05118B.
[128] F. Tamaddon, A. Nasiri, G. Yazdanpanah, Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite, MethodsX. 7 (2020) 100764. https://doi.org/10.1016/j.mex.2019.12.005.
[129] W. Somraksa, S. Suwanboon, P. Amornpitoksuk, C. Randorn, Physical and Photocatalytic Properties of CeO2/ZnO/ZnAl2O4 Ternary Nanocomposite Prepared by Co-precipitation Method, Mat. Res. 23 (2020). https://doi.org/10.1590/1980-5373-MR-2019-0627.
[130] B.A. Bhanvase, T.P. Shende, S.H. Sonawane, A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment, Environ. Technol. Rev. 6 (2017) 1–14. https://doi.org/10.1080/21622515.2016.1264489.
[131] E. Kusiak-Nejman, A. Wanag, J. Kapica- Kozar, Ł. Kowalczyk, M. Zgrzebnicki, et al., Methylene blue decomposition on TiO2/reduced graphene oxide hybrid photocatalysts obtained by a two-step hydrothermal and calcination synthesis, Catal. Today. 357 (2020) 630–637. https://doi.org/10.1016/j.cattod.2019.04.078.
[132] P.K. Labhane, L.B. Patle, G.H. Sonawane, S.H. Sonawane, Fabrication of ternary Mn doped ZnO nanoparticles grafted on reduced graphene oxide (RGO) sheet as an efficient solar light driven photocatalyst, Chem. Phys. Lett. 710 (2018) 70–77. https://doi.org/10.1016/j.cplett.2018.08.066.
[133] D.N. Yadav, K.A. Kishore, B. Bethi, S.H. Sonawane, D. Bhagawan , ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of Rhodamine-B dye waste water, Environ. Dev. Sustain. 20 (2018) 2065–2078. https://doi.org/10.1007/s10668-017-9977-x.
[134] B.C.B. Salgado, R.A. Cardeal, A. Valentini, Photocatalysis and Photodegradation of Pollutants, Nanomaterials Applications for Environmental Matrices, Elsevier. (2019) 449–488. https://doi.org/10.1016/B978-0-12-814829-7.00015-X.
[135] R. Huo, X.-L. Yang, Y.-Q. Liu, Y.-H. Xu, Visible-light photocatalytic degradation of glyphosate over BiVO4 prepared by different co-precipitation methods, Mater. Res. Bull. 88 (2017) 56–61. https://doi.org/10.1016/j.materresbull.2016.12.012.
[136] V.K. Landge, S.H. Sonawane, M. Sivakumar, S.S. Sonawane, G.U. Bhaskar Babu, G. Boczkaj, S-scheme heterojunction Bi2O3-ZnO/Bentonite clay composite with enhanced photocatalytic performance, Sustain. Energy Technol. Assess. 45 (2021) 101194. https://doi.org/10.1016/j.seta.2021.101194.
[137] S.P. Patil, B. Bethi, G.H. Sonawane, V.S. Shrivastava, S. Sonawane, Efficient adsorption and photocatalytic degradation of Rhodamine B dye over Bi2O3-bentonite nanocomposites: A kinetic study, J. Ind. Eng. Chem. 34 (2016) 356–363. https://doi.org/10.1016/j.jiec.2015.12.002.
[138] F. He, W. Jeon, W. Choi, Photocatalytic air purification mimicking the self-cleaning process of the atmosphere, Nat. Commun. 12 (2021) 2528. https://doi.org/10.1038/s41467-021-22839-0.
[139] J. Wang, J. Liu, Z. Du, Z. Li, Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications, J. Energy Chem. 54 (2021) 770–785. https://doi.org/10.1016/j.jechem.2020.06.024.
[140] A. Fattahi, M.J. Arlos, L.M. Bragg, R. Liang, N. Zhou, M.R. Servos, Degradation of natural organic matter using Ag-P25 photocatalyst under continuous and periodic irradiation of 405 and 365 nm UV-LEDs, J. Environ. Chem. Eng. 9 (2021) 104844. https://doi.org/10.1016/j.jece.2020.104844.
[141] R.W. Marino, R. Howarth, Nitrogen Fixation in Freshwater and Saline Waters, Reference Module in Earth Systems and Environmental Sciences, Elsevier. (2014). https://doi.org/10.1016/B978-0-12-409548-9.09402-1.
[142] Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, et al., Alkali Etching of Layered Double Hydroxide Nanosheets for Enhanced Photocatalytic N2 Reduction to NH3, Adv. Energy Mater. 10 (2020) 2002199. https://doi.org/10.1002/aenm.202002199.
[143] V.-H. Nguyen, M. Mousavi, J.B. Ghasemi, Q.V. Le, S.A. Delbari, et al., In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity, J. Colloid Interface Sci. 587 (2021) 538–549. https://doi.org/10.1016/j.jcis.2020.11.011.
[144] P. Qiu, C. Xu, N. Zhou, H. Chen, F. Jiang, Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with Csingle bondP bonds for excellent photocatalytic nitrogen fixation, Appl. Catal. B. 221 (2018) 27–35. https://doi.org/10.1016/j.apcatb.2017.09.010.
[145] N.P. Radhika, R. Selvin, R. Kakkar, A. Umar, Recent advances in nano-photocatalysts for organic synthesis, Arab. J. Chem. 12 (2019) 4550–4578. https://doi.org/10.1016/j.arabjc.2016.07.007.
[146] V.-H. Nguyen, M. Mousavi, J.B. Ghasemi, Q.V. Le, S.A. Delbari, et al., High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO3/Carbon dots heterojunction with efficient activity in photocatalytic NH3 production, J. Taiwan Inst. Chem. Eng. 118 (2021) 140–151. https://doi.org/10.1016/j.jtice.2021.01.012.
[147] G. Dong, W. Ho, C. Wang, Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies, J. Mater. Chem. A. 3 (2015) 23435–23441. https://doi.org/10.1039/C5TA06540B.
[148] A. Kumar, P. Raizada, P. Singh, R.V. Saini, A.K. Saini, A. Hosseini-Bandegharaei, Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification, Chem. Eng. J. 391 (2020) 123496. https://doi.org/10.1016/j.cej.2019.123496.

Cited By

Crossref Google Scholar
Advances in metal-based vanadate compound photocatalysts: synthesis, properties and applications
Submitted
2021-08-26
Published
2021-09-24
How to Cite
Akhoondi, A., Feleni, U., Bethi, B., Olayiwola Idris, A., & Hojjati-Najafabadi, A. (2021). Advances in metal-based vanadate compound photocatalysts: synthesis, properties and applications . Synthesis and Sintering, 1(3), 151-168. https://doi.org/10.53063/synsint.2021.1344

Most read articles by the same author(s)