New strategies in the preparation of binary g-C3N4/MXene composites for visible-light-driven photocatalytic applications

  • Asieh Akhoondi 1
  • Mehrdad Mirzaei 2
  • Mostafa Y. Nassar 3
  • Zahra Sabaghian 4
  • Farshid Hatami 5
  • Mohammad Yusuf 6
  • 1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 2 Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
  • 3 Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt
  • 4 Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
  • 5 Chemical and Material Engineering Department, Esfarayen University of Technology, Esfarayen, Iran
  • 6 Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia

Abstract

In recent years, g-C3N4@MXene photocatalysts have received much attention due to their special composition and excellent properties. MXenes consisting of transition metal carbides, nitrides, and carbonitrides derived from the MAX phase are used as cocatalysts or g-C3N4 (GCN) supporting composites in a variety of photocatalytic processes that accelerate the separation of charge carriers with their heterojunction structure. In addition to the high ability of g-C3N4@MXene nanocomposite to absorb light, it has high photocorrosion resistance in the processes of hydrogen evolution, wastewater treatment, nitrogen fixation, NO treatment, and oxidation and reduction photoreactions. In this review, the latest developments and new technologies for the manufacture and application of noble metal-free g-C3N4@MXene nanocomposite have been discussed and the future perspective has been drawn to deal with challenges related to energy and the environment.

Downloads

Download data is not yet available.
Keywords: Photocatalyst, g-C3N4, MXene, Synthesis, Nanocomposite

References

[1] D. Li, X. Fang, H. Liu, H. Lu, Z. Zhang, Photo reduction of CO2 to CH4 on g-C3N4: The effect of concentrating light and pretreatment, API Conf. Proc. 1971 (2018) 020006. https://doi.org/10.1063/1.5041101.
[2] J. Qi, W. Zhang, R. Cao, Solar-to-Hydrogen Energy Conversion Based on Water Splitting, Adv. Energy Mater. 8 (2018) 1701620. https://doi.org/10.1002/aenm.201701620.
[3] I. Dincer, Renewable energy and sustainable development: a crucial review, Renew. Sust. Energ. Rev. 4 (2000) 157–175. https://doi.org/10.1016/S1364-0321(99)00011-8.
[4] H. Frei, Photocatalytic fuel production, Curr. Opin. Electrochem. 2 (2017) 128–135. https://doi.org/10.1016/j.coelec.2017.03.009.
[5] H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, et al., Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst, J. Catal. 266 (2009) 165–168. https://doi.org/10.1016/j.jcat.2009.06.024.
[6] G. Zhang, C.D. Sewell, P. Zhang, H. Mi, Z. Lin, Nanostructured photocatalysts for nitrogen fixation, Nano energy. 71 (2020) 104645. https://doi.org/10.1016/j.nanoen.2020.104645.
[7] M. Bowker, Photocatalytic hydrogen production and oxygenate photoreforming, Catal. Lett. 142 (2012) 923–929. https://doi.org/10.1007/s10562-012-0875-4.
[8] J. Bi, B. Xu, L. Sun, H. Huang, S. Fang, et al., A cobalt-modified covalent triazine-based framework as an efficient cocatalyst for visible-light-driven photocatalytic CO2 reduction, ChemPlusChem. 84 (2019) 1149–1154. https://doi.org/10.1002/cplu.201900329.
[9] Z. Chen, D. Yao, C. Chu, S. Mao, Photocatalytic H2O2 production Systems: Design strategies and environmental applications, Chem. Eng. J. 451 (2023) 138489. https://doi.org/10.1016/j.cej.2022.138489.
[10] D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C. 6 (2005) 186–205. https://doi.org/10.1016/j.jphotochemrev.2005.09.001.
[11] K. Li, Y. He, P. Chen, H. Wang, J. Sheng, et al., Theoretical design and experimental investigation on highly selective Pd particles decorated C3N4 for safe photocatalytic NO purification, J. Hazard. Mater. 392 (2020) 122357. https://doi.org/10.1016/j.jhazmat.2020.122357.
[12] J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-Based Heterostructured Photocatalysts, Adv. Energy. Mater. 8 (2018) 1701503. https://doi.org/10.1002/aenm.201701503.
[13] L. Shi, Z. He, S. Liu, MoS2 quantum dots embedded in g-C3N4 frameworks: A hybrid 0D-2D heterojunction as an efficient visible-light driven photocatalyst, Appl. Surf. Sci. 457 (2018) 30–40. https://doi.org/10.1016/j.apsusc.2018.06.132.
[14] Z. Chen, T. Fan, M. Shao, X. Yu, Q. Wu, et al., Simultaneously enhanced photon absorption and charge transport on a distorted graphitic carbon nitride toward visible light photocatalytic activity, Appl. Catal. B. 242 (2019) 40–50. https://doi.org/10.1016/j.apcatb.2018.09.080.
[15] S. Cao, J. Yu, g-C3N4-based photocatalysts for hydrogen generation, J. Phys. Chem. Lett. 5 (2014) 2101–2107. https://doi.org/10.1021/jz500546b.
[16] M. Nemiwal, T.C. Zhang, D. Kumar, Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity, Sci. Total Environ. 767 (2021) 144896. https://doi.org/10.1016/j.scitotenv.2020.144896.
[17] B. Xu, M.B. Ahmed, J.L. Zhou, A. Altaee, G. Xu, M. Wu, Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions, Sci. Total Environ. 633 (2018) 546–559. https://doi.org/10.1016/j.scitotenv.2018.03.206.
[18] X. Yang, Y. Ye, J. Sun, Z. Li, J. Ping, X. Sun, Recent advances in g-C3N4-based photocatalysts for pollutant degradation and bacterial disinfection: Design strategies, mechanisms, and applications, Small. 18 (2022) 2105089. https://doi.org/10.1002/smll.202105089.
[19] E. Baladi, F. Davar, A. Hojjati-Najafabadi, Synthesis and characterization of g–C3N4–CoFe2O4–ZnO magnetic nanocomposites for enhancing photocatalytic activity with visible light for degradation of penicillin G antibiotic, Environ. Res. 215 (2022) 114270. https://doi.org/10.1016/j.envres.2022.114270.
[20] I. Tateishi, M. Furukawa, H. Katsumata, S. Kaneco, Photocatalytic degradation of bisphenol A using O-doped dual g-C3N4 under visible light irradiation, Catal. Today. 411–412 (2022) 113877. https://doi.org/10.1016/j.cattod.2022.08.019.
[21] L. Deng, J. Sun, J. Sun, X. Wang, T. Shen, et al., Improved performance of photosynthetic H2O2 and photodegradation by K-, P-, O-, and S-co-doped g-C3N4 with enhanced charge transfer ability under visible light, Appl. Surf. Sci. 597 (2022) 153586. https://doi.org/10.1016/j.apsusc.2022.153586.
[22] G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction, ACS Catal. 7 (2017) 494–500. https://doi.org/10.1021/acscatal.6b02754.
[23] K.R. Garrick Lim, A.D. Handoko, S.K. Nemani, B. Wyatt, H.-Y. Jiang, et al., Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion, ACS Nano. 14 (2020) 10834–10864. https://doi.org/10.1021/acsnano.0c05482.
[24] M. Mansoorianfar, K. Shahin, A. Hojjati–Najafabadi, R. Pei, MXene–laden bacteriophage: A new antibacterial candidate to control bacterial contamination in water, Chemosphere. 290 (2022) 133383. https://doi.org/10.1016/j.chemosphere.2021.133383.
[25] M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Func. Mater. 23 (2013) 2185–2192. https://doi.org/10.1002/adfm.201202502.
[26] B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: Tunable Mechanical and Tribological Properties, Adv. Mater. 33 (2021) 2007973. https://doi.org/10.1002/adma.202007973.
[27] P. Kuang, Z. Ni, J. Yu, J. Low, New progress on MXenes-based nanocomposite photocatalysts, Mater. Rep: Energy. 2 (2022) 100081. https://doi.org/10.1016/j.matre.2022.100081.
[28] Y. Gogotsi, B. Anasori, The Rise of MXenes, ACS Nano. 13 (2019) 8491–8494. https://doi.org/10.1021/acsnano.9b06394.
[29] A. Hojjati-Najafabadi, M. Mansoorianfar, T. Liang, K. Shahin, Y. Wen, et al., Magnetic-MXene-based nanocomposites for water and wastewater treatment: A review, J. Water Process. Eng. 47 (2022) 102696. https://doi.org/10.1016/j.jwpe.2022.102696.
[30] H. Fang, Y. Pan, M. Yin, L. Xu, Y. Zhu, C. Pan, Facile synthesis of ternary Ti3C2–OH/ln2S3/CdS composite with efficient adsorption and photocatalytic performance towards organic dyes, J. Solid State Chem. 280 (2019) 120981. https://doi.org/10.1016/j.jssc.2019.120981.
[31] O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics, Mater. Today Chem. 14 (2019) 100191. https://doi.org/10.1016/j.mtchem.2019.08.010.
[32] R.T. Ginting, H. Abdullah, V. Fauzia, Facile preparation of MXene and protonated-g-C3N4 on natural latex foam for highly efficient solar steam generation, Matter. Lett. 313 (2022) 131779. https://doi.org/10.1016/j.matlet.2022.131779.
[33] P. Srinivasan, S. Samanta, A. Krishnakumar, J. Bosco Balaguru Rayappan, K. Kailasam, Insights into g-C3N4 as a chemi-resistive gas sensor for VOCs and humidity – a review of the state of the art and recent advancements, J. Mater. Chem. A. 9 (2019) 10612–10651. https://doi.org/10.1039/D0TA12500H.
[34] M. Shi, P. Xiao, J. Lang, C. Yan, X. Yan, Porous g-C3N4 and MXene Dual-Confined FeOOH Quantum Dots for Superior Energy Storage in an Ionic Liquid, Adv. Sci. 7 (2020) 1901975. https://doi.org/10.1002/advs.201901975.
[35] J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, et al., Applications of 2D MXenes in energy conversion and storage systems, Chem. Soc. Rev. 48 (2019) 72–133. https://doi.org/10.1039/C8CS00324F.
[36] X. Yu, W. Yin, T. Wang, Y. Zhang, Decorating g-C3N4 Nanosheets with Ti3C2 MXene Nanoparticles for Efficient Oxygen Reduction Reaction, Langmuir. 35 (2019) 2909–2916. https://doi.org/10.1021/acs.langmuir.8b03456.
[37] X. Ma, Z. Ma, H. Zhang, D. Lu, J. Duan, B. Hou, Interfacial Schottky junction of Ti3C2Tx MXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel, J. Photochem. Photobiol. A. 426 (2022) 113772. https://doi.org/10.1016/j.jphotochem.2022.113772.
[38] A. Alaghmandfard, K. Ghandi, A Comprehensive Review of Graphitic Carbon Nitride (g-C3N4)–Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing, Nanomater. 12 (2022) 294. https://doi.org/10.3390/nano12020294.
[39] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci. 391 (2017) 72–123. http://dx.doi.org/10.1016/j.apsusc.2016.07.030.
[40] L.C. Makola, S. Moeno, C.N.M. Ouma, A. Sharma, D.-V.N. Vo, L.N. Dlamini, Facile fabrication of a metal-free 2D–2D Nb2CTx@g-C3N4 MXene-based Schottky-heterojunction with the potential application in photocatalytic processes, J. Alloys Compd. 916 (2022) 165459. https://doi.org/10.1016/j.jallcom.2022.165459.
[41] C. Yuan, Z. He, Q. Chen, X. Wang, C. Zhai, M. Zhu, Selective and efficacious photoelectrochemical detection of ciprofloxacin based on the self-assembly of 2D/2D g-C3N4/Ti3C2 composites, Appl. Surf. Sci. 539 (2021) 148241. https://doi.org/10.1016/j.apsusc.2020.148241.
[42] Y.-P. Zhu, Y. Lei, F. Ming, E. Abou-Hamad, A.-H. Emwas, et al., Heterostructured MXene and g-C3N4 for high-rate lithium intercalation, Nano Energy. 65 (2019) 104030. https://doi.org/10.1016/j.nanoen.2019.104030.
[43] L. Wan, Y. Tang, L. Chen, K. Wang, J. Zhang, et al., In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability, Chem. Eng. J. 410 (2021) 128349. https://doi.org/10.1016/j.cej.2020.128349.
[44] F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou, et al., Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties, Appl. Surf. Sci. 416 (2017) 781–789. https://doi.org/10.1016/j.apsusc.2017.04.239.
[45] D. Wang, J. Si, S. Lin, R. Zhang, Y. Huang, et al., Achieving Macroscopic V4C3Tx MXene by Selectively Etching Al from V4AlC3 Single Crystals, Inorg. Chem. 59 (2020) 3239–3248. https://doi.org/10.1021/acs.inorgchem.9b03625.
[46] J. Li, L. Zhao, S. Wang, J. Li, G. Wang, J. Wang, In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution, Appl. Surf. Sci. 515 (2020) 145922. https://doi.org/10.1016/j.apsusc.2020.145922.
[47] M. Shao, Y. Shao, J. Chai, Y. Qu, M. Yang, et al., Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production, J. Mater. Chem. A. 5 (2017) 16748–16756. https://doi.org/10.1039/C7TA04122E.
[48] X. Yi, J. Yuan, H. Tang, Y. Du, B. Hassan, et al., Embedding few-layer Ti3C2Tx into alkalized g-C3N4 nanosheets for efficient photocatalytic degradation, J. Colloid Interface Sci. 571 (2020) 297–306. https://doi.org/10.1016/j.jcis.2020.03.061.
[49] C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, et al., 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea, Appl. Catal. B. 268 (2020) 118738. https://doi.org/10.1016/j.apcatb.2020.118738.
[50] J. Zhang, M. Wu, B. He, R. Wang, H. Wang, Y. Gong, Facile synthesis of rod-like g-C3N4 by decorating Mo2C co-catalyst for enhanced visible-light photocatalytic activity, Appl. Surf. Sci. 470 (2019) 565–572. https://doi.org/10.1016/j.apsusc.2018.11.165.
[51] K. He, J. Xie, Z.Q. Liu, N. Li, X. Chen, et al., Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light, J. Mater. Chem. A. 6 (2018) 13110–13122. https://doi.org/10.1039/C8TA03048K.
[52] C. Sun, Z. Chen, J. Cui, K. Li, H. Qu, et al., Site-exposed Ti3C2 MXene anchored in N-defect g-C3N4 heterostructure nanosheets for efficient photocatalytic N2 fixation, Catal. Sci. Technol. 11 (2021) 1027–1038. https://doi.org/10.1039/D0CY01955K.
[53] B. Li, H. Song, F. Han, L. Wei, Photocatalytic oxidative desulfurization and denitrogenation for fuels in ambient air over Ti3C2/g-C3N4 composites under visible light irradiation, Appl. Catal. B. 269 (2020) 118845. https://doi.org/10.1016/j.apcatb.2020.118845.
[54] N. Liu, N. Lu, H. Yu, S. Chen, X. Quan, Efficient day-night photocatalysis performance of 2D/2D Ti3C2/Porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants, Chemosphere. 246 (2020) 125760. https://doi.org/10.1016/j.chemosphere.2019.125760.
[55] G. Zeng, Z. He, T. Wan, T. Wang, Z. Yang, et al., A self-cleaning photocatalytic composite membrane based on g-C3N4@MXene nanosheets for the removal of dyes and antibiotics from wastewater, Sep. Purif. Technol. 292 (2022) 121037. https://doi.org/10.1016/j.seppur.2022.121037.
[56] W. Liu, M. Sun, Z. Ding, B. Gao, W. Ding, Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity, J. Alloys Compd. 877 (2021) 160223. https://doi.org/10.1016/j.jallcom.2021.160223.
[57] D. Jin, Y. Lv, D. He, D. Zhang, Y. Liu, et al., Photocatalytic degradation of COVID-19 related drug arbidol hydrochloride by Ti3C2 MXene/supramolecular g-C3N4 Schottky junction photocatalyst, Chemosphere. 308 (2022) 136461. https://doi.org/10.1016/j.chemosphere.2022.136461.
[58] Q. Tang, Z. Sun, S. Deng, H. Wang, Z. Wu, Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance, J. Colloid Interface Sci. 564 (2020) 406–417. https://doi.org/10.1016/j.jcis.2019.12.091.
[59] F. Xu, D. Zhang, Y. Liao, G. Wang, X, Shi, et al., Synthesis and photocatalytic H2-production activity of plasma-treated Ti3C2Tx MXene modified graphitic carbon nitride, J. Am. Ceram. Soc. 103 (2020) 849–858. https://doi.org/10.1111/jace.16798.
[60] H. Xu, R. Xiao, J. Huang, Y. Jiang, C. Zhao, X. Yang, In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production, Chin. J. Catal. 42 (2021) 107–114. https://doi.org/10.1016/S1872-2067(20)63559-8.
[61] A. Akhoondi, M. Aghaziarati, N. Khandan, Hydrothermal production of nano pyrite, 1st International Regional Chemical and Petroleum Engineering. (2010).
[62] H. Hu, R. Zhao, X. Fan, J. Liu, Y. Nie, D. Wang, Preparation of a novel V2C mxene/g-C3N4 and its performance in plasma catalytic denitrification, Int. Conf. Power Grid Sys. Green Energy (PGSGE). 252 (2021) 02068. https://doi.org/10.1051/e3sconf/202125202068.
[63] Y.-J. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, et al., Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity, Appl. Catal. B. 246 (2019) 120–128. https://doi.org/10.1016/j.apcatb.2019.01.043.
[64] A. Akhoondi, M. Ziarati, N. Khandan, Hydrothermal Production of Highly Pure Nano Pyrite in a Stirred Reactor, Iran. J. Chem. Chem. Eng. 33 (2014) 15–19. https://doi.org/10.30492/IJCCE.2014.7189.
[65] B.P. Kafle, Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization, Chemical Analysis and Material Characterization by Spectrophotometry, Elsevier. (2020) 147–198. https://doi.org/10.1016/B978-0-12-814866-2.00006-3.
[66] P. Shafiee, M. Reisi Nafchi, S. Eskandarinezhad, S. Mahmoudi, E. Ahmadi, Sol-gel zinc oxide nanoparticles: advances in synthesis and applications, Synth. Sinter. 1 (2021) 242–254. https://doi.org/10.53063/synsint.2021.1477.
[67] A. Akhoondi, M. Aghaziarati, N. Khandan, Thermal Treatment on Synthesized Nano Pyrite, NTC2011. (2011).
[68] Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal Synthesis of Nanomaterials, J. Nanomater. 2020 (2020) 8917013. https://doi.org/10.1155/2020/8917013.
[69] Q. Zhang, L. Gao, Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights from Rutile TiO2, Langmuir. 19 (2003) 967–971. https://doi.org/10.1021/la020310q.
[70] A. Akhoondi, M. Aghaziarati, N. Khandan, Nano pyrite production by hydrothermal method and marcasite removal using sodium bicarbonate, Nanotechnology Iranian Student Conference. (2012).
[71] L. Ndlwana, N. Raleie, K.M. Dimpe, H.F. Ogutu, E.O. Oseghe, et al., Sustainable Hydrothermal and Solvothermal Synthesis of Advanced Carbon Materials in Multidimensional Applications: A Review, Materials. 14 (2021) 5094. https://doi.org/10.3390/ma14175094.
[72] R.-C. Xie, J.K. Shang, Morphological control in solvothermal synthesis of titanium oxide, J. Mater. Sci. 42 (2007) 6583–6589. https://doi.org/10.1007/s10853-007-1506-0.
[73] A. Akhoondi, M. Aghaziarati, N. Khandan, Production of highly pure iron disulfide nanoparticles using hydrothermal synthesis method, Appl. Nanosci. 3 (2013) 417–422. https://doi.org/10.1007/s13204-012-0153-1.
[74] W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane, Nano Energy. 13 (2015) 757–770. https://doi.org/10.1016/j.nanoen.2015.03.014.
[75] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci. 391 (2017) 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030.
[76] J. Hu, J. Ding, Q. Zhong, Ultrathin 2D Ti3C2 MXene Co-catalyst anchored on porous g-C3N4 for enhanced photocatalytic CO2 reduction under visible-light irradiation, J. Colloid Interface Sci. 582 (2021) 647–657. https://doi.org/10.1016/j.jcis.2020.08.047.
[77] Q. Song, J. Hu, Y. Zhou, Q. Ye, X. Shi, et al., Carbon vacancy-mediated exciton dissociation in Ti3C2Tx/g-C3N4 Schottky junctions for efficient photoreduction of CO2, J. Colloid Interface Sci. 623 (2022) 487–499. https://doi.org/10.1016/j.jcis.2022.05.064.
[78] Y. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, et al., Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production, Appl. Catal. B. 258 (2019) 117956. https://doi.org/10.1016/j.apcatb.2019.117956.
[79] J. Kang, S. Byun, S. Kim, J. Lee, M. Jung, et al., Design of Three-Dimensional Hollow-Sphere Architecture of Ti3C2Tx MXene with Graphitic Carbon Nitride Nanoshells for Efficient Photocatalytic Hydrogen Evolution, ACS Appl. Energy Mater. 3 (2020) 9226–9233. https://doi.org/10.1021/acsaem.0c01590.
[80] N. Liu, N. Lu, Y. Su, P. Wang, Q. Quan, Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation, Sep. Purif. Technol. 211 (2019) 782–789. https://doi.org/10.1016/j.seppur.2018.10.027.
[81] B. Chang, Y. Guo, H. Liu, L. Li, B. Yang, Engineering a surface defect-rich Ti3C2 quantum dots/mesoporous C3N4 hollow nanosphere Schottky junction for efficient N2 photofixation, J. Mater. Chem. A. 10 (2022) 3134–3145. https://doi.org/10.1039/D1TA09941H.
[82] T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, et al., A Self-Templated Route to Hollow Silica Microspheres, J. Phys. Chem. C. 113 (2009) 3168–3175. https://doi.org/10.1021/jp810360a.
[83] J. He, J. Yang, F. Jiang, P. Liu, M. Zhu, Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac, Chemosphere. 258 (2020) 127339. https://doi.org/10.1016/j.chemosphere.2020.127339.
[84] Y. Zhou, C. Zhang, D. Huang, W. Wang, Y. Zhai, et al., Structure defined 2D Mo2C/2Dg-C3N4 Van der Waals heterojunction: Oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic degradation of pharmaceutical and personal care products, Appl. Catal. B. 301 (2022) 120749. https://doi.org/10.1016/j.apcatb.2021.120749.
[85] S. Lin. N. Zhang, F. Wang, J. Lei, L. Zhou, et al., Carbon Vacancy Mediated Incorporation of Ti3C2 Quantum Dots in a 3D Inverse Opal g-C3N4 Schottky Junction Catalyst for Photocatalytic H2O2 Production, ACS Sustain. Chem. Eng. 9 (2021) 481–488. https://doi.org/10.1021/acssuschemeng.0c07753.
[86] T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, et al., 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution, Nanoscale. 11 (2019) 8138–8149. https://doi.org/10.1039/C9NR00168A.
[87] X.-X. Wang, S. Meng, S. Zhang, X. Zheng, S. Chen, 2D/2D MXene/g-C3N4 for photocatalytic selective oxidation of 5-hydroxymethylfurfural into 2,5-formylfuran, Catal. Commun. 147 (2020) 106152. https://doi.org/10.1016/j.catcom.2020.106152.
[88] Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, J. Tian, Boosting the Photocatalytic Ability of g-C3N4 for Hydrogen Production by Ti3C2 MXene Quantum Dots, ACS Appl. Mater. Interfaces. 11 (2019) 41440–41447. https://doi.org/10.1021/acsami.9b14985.
[89] J. Zhang, L. Qian, W. Fu, J. Xi, Z. Ji, Alkaline-Earth Metal Ca and N Codoped TiO2 with Exposed {001} Facets for Enhancing Visible Light Photocatalytic Activity, J. Am. Ceram. Soc. 97 (2014) 2615–2622. https://doi.org/10.1111/jace.12957.
[90] W. Liu, D. Zhang, R. Wang, Z. Zhang, S. Qiu, 2D/2D Interface Engineering Promotes Charge Separation of Mo2C/g-C3N4 Nanojunction Photocatalysts for Efficient Photocatalytic Hydrogen Evolution, ACS Appl. Mater. Interfaces. 14 (2022) 31782–31791. https://doi.org/10.1021/acsami.2c03421.
[91] M.S.I. Nasri, M.F.R. Samsudin, A.A. Tahir, S. Sufian, Effect of MXene Loaded on g-C3N4 Photocatalyst for the Photocatalytic Degradation of Methylene Blue, Energies. 15 (2022) 955. https://doi.org/10.3390/en15030955.
[92] M.S.I. Nasri, M. Zulfiqar, M.F.R. Samsudin, S. Sufian, Photo-Fenton Oxidation and Adsorption Performance of MXene/G-C3N4 Heterostructures Under H2O2 Oxidizer: Experimental & Modeling Approach, SSRN. http://dx.doi.org/10.2139/ssrn.4136268.
[93] Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, et al., Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides, J. Am. Chem. Soc. 136 (2014) 6385–6394. https://doi.org/10.1021/ja501520b.
[94] H. Dong, X. Zhang, Y. Zuo, N. Song, X. Xin, et al., 2D Ti3C2 as electron harvester anchors on 2D g-C3N4 to create boundary edge active sites for boosting photocatalytic performance, Appl. Catal. A. 590 (2020) 117367. https://doi.org/10.1016/j.apcata.2019.117367.
[95] S. Li, Y. Wang, J. Wang, J. Liang, Y. Li, P. Li, Modifying g-C3N4 with oxidized Ti3C2 MXene for boosting photocatalytic U(VI) reduction performance, J. Mol. Liq. 346 (2022) 117937. https://doi.org/10.1016/j.molliq.2021.117937.
[96] J. Li, Q. Zhang, Y. Zou, Y. Cao, W. Cui, et al., Ti3C2 MXene modified g-C3N4 with enhanced visible-light photocatalytic performance for NO purification, J. Colloid Interface Sci. 575 (2020) 443–451. https://doi.org/10.1016/j.jcis.2020.04.119.
[97] J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8 (2017) 28045015. https://doi.org/10.1038/ncomms13907.
[98] J. Li, J. Li, C. Wu, Z. Li, L. Cai, et al., Crystalline carbon nitride anchored on MXene as an ordered Schottky heterojunction photocatalyst for enhanced visible-light hydrogen evolution, Carbon. 179 (2021) 387–399. https://doi.org/10.1016/j.carbon.2021.04.046.
[99] X. Li, Y. Bai, X. Shi, J. Huang, K. Zhang, et al., Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction, Appl. Surf. Sci. 546 (2021) 149111. https://doi.org/10.1016/j.apsusc.2021.149111.
[100] Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao, et al., g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution, J. Mater. Chem. A. 6 (2018) 9124–9131. https://doi.org/10.1039/C8TA02706D.
[101] M.A. Hope, A.C. Forse, K.J. Griffith, M.R. Lukatskaya, M. Ghidiu, et al., NMR reveals the surface functionalisation of Ti3C2 MXene, Phys. Chem. Chem. Phys. 18 (2016) 5099–5102. https://doi.org/10.1039/C6CP00330C.
[102] Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu, et al., Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2, Mater. Sci. Eng. B. 191 (2015) 33–40. https://doi.org/10.1016/j.mseb.2014.10.009.
[103] G. Imanova, Molecular hydrogen production by radiolysis of water on the surface of nano-ZrO2 under the influence of gamma rays, Synth. Sinter. 2 (2022) 9–13. https://doi.org/10.53063/synsint.2022.21105.
[104] G.A. Naikoo, H. Salim, T. Awan, I.U. Hassan, M.A. Tabook, et al., Recent trends in MXenes hybrids as efficient 2D materials for photo- and electrocatalysis hydrogen production, Mater. Today Chem. 26 (2022) 101108. https://doi.org/10.1016/j.mtchem.2022.101108.
[105] V.Q. Hieu, T.C. Lam, A. Khan, T.-T. Thi Vo, T.Q. Nguyen, et al., TiO2/Ti3C2/g-C3N4 ternary heterojunction for photocatalytic hydrogen evolution, Chemosphere. 285 (2021) 131429. https://doi.org/10.1016/j.chemosphere.2021.131429.
[106] X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4, Phys. Chem. Chem. Phys. 20 (2018) 11405–11411. https://doi.org/10.1039/C8CP01123K.
[107] X.Liu, W.Kang, L.Qi, J.Zhao, Two-dimensional g-C3N4/Ti2CO2 heterostructure as a direct Z-scheme photocatalyst for water splitting: A hybrid density functional theory investigation, Phys. E: Low-Dimens. Syst. Nanostructures. 134 (2021) 114872. https://doi.org/10.1016/j.physe.2021.114872.
[108] Z. Khorasani Baghini, A. Mostafaei, M. Abbasnejad, Y2CF2 and Lu2CF2 MXenes under applied strain: Electronic, optical, and photocatalytic properties, J. Alloys Compd. 922 (2022) 166198. https://doi.org/10.1016/j.jallcom.2022.166198.
[109] M. Madi, M. Tahir, Z.Y. Zakaria, 2D/2D V2C mediated porous g-C3N4 heterojunction with the role of monolayer/multilayer MAX/MXene structures for stimulating photocatalytic CO2 reduction to fuels, J. CO2 Util. 65 (2022) 102238. https://doi.org/10.1016/j.jcou.2022.102238.
[110] L. Biswal, S. Nayak, K. Parida, Recent progress on strategies for the preparation of 2D/2D MXene/g-C3N4 nanocomposites for photocatalytic energy and environmental applications, Catal. Sci. Technol. 11 (2021) 1222–1248. https://doi.org/10.1039/D0CY02156C.
[111] M. Mansoorianfar, H. Nabipour, F. Pahlevani, Y. Zhao, Z. Hussain, et al., Recent progress on adsorption of cadmium ions from water systems using metal-organic frameworks (MOFs) as an efficient class of porous materials, Environ Res. 214 (2022) 114113. https://doi.org/10.1016/j.envres.2022.114113.
[112] H. Hou, G. Shao, W. Yang, Recent advances in g-C3N4-based photocatalysts incorporated by MXenes and their derivatives, J. Mater. Chem. A. 9 (2021) 13722–13745. https://doi.org/10.1039/D1TA02527A.
[113] I. Salahshoori, A. Seyfaee, A. Babapoor, Recent advances in synthesis and applications of mixed matrix membranes, Synth. Sinter. 1 (2021) 1–27. https://doi.org/10.53063/synsint.2021.116.
[114] W. Tu, Y. Liu, M. Chen, Y. Zhou, Z. Xie, et al., Carbon nitride coupled with Ti3C2-Mxene derived amorphous Ti-peroxo heterojunction for photocatalytic degradation of rhodamine B and tetracycline, Colloids Surf. A: Physicochem. Eng. 640 (2022) 128448. https://doi.org/10.1016/j.colsurfa.2022.128448.
[115] S. Li, G. Dong, R. Hailili, L. Yang, Y. Li, et al., Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies, Appl. Catal. B. 190 (2016) 26–35. https://doi.org/10.1016/j.apcatb.2016.03.004.
[116] H. Hou, X. Zeng, X. Zhang, Production of Hydrogen Peroxide by Photocatalytic Processes, Angew. Chem. Int. Ed. 59 (2020) 17356–17376. https://doi.org/10.1002/anie.201911609.
[117] W. Xiong, Z. Zeng, G. Zeng, Z. Yang, R. Xiao, et al., Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution, Chem. Eng. J. 374 (2019) 91–99. https://doi.org/10.1016/j.cej.2019.05.164.
[118] K. He, G. Chen, G. Zeng, A. Chen, Z. Huang, et al., Three-dimensional graphene supported catalysts for organic dyes degradation, Appl. Catal. B. 228 (2018) 19–28. https://doi.org/10.1016/j.apcatb.2018.01.061.
[119] S. Zhao, T. Guo, X. Li, T. Xu, B. Yang, X. Zhao, Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light, Appl. Catal. B. 224 (2018) 725–732. https://doi.org/10.1016/j.apcatb.2017.11.005.
[120] M. Cheng, Y. Liu, D. Huang, C. Lai, G. Zeng, et al., Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values, Chem. Eng. J. 362 (2019) 865–876. https://doi.org/10.1016/j.cej.2019.01.101.
[121] X. Li, P. Xu, M. Chen, G. Zeng, D. Wang, et al., Application of silver phosphate-based photocatalysts: Barriers and solutions, Chem. Eng. J. 366 (2019) 339–357. https://doi.org/10.1016/j.cej.2019.02.083.
[122] Q. Liu, L. Ai, J. Jiang, MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation, J. Mater. Chem. A. 6 (2018) 4102–4110. https://doi.org/10.1039/C7TA09350K.

Cited By

Crossref Google Scholar
New strategies in the preparation of binary g-C3N4/MXene composites for visible-light-driven photocatalytic applications
Submitted
2022-08-29
Published
2022-12-25
How to Cite
Akhoondi, A., Mirzaei, M., Nassar, M. Y., Sabaghian, Z., Hatami, F., & Yusuf, M. (2022). New strategies in the preparation of binary g-C3N4/MXene composites for visible-light-driven photocatalytic applications. Synthesis and Sintering, 2(4), 151-169. https://doi.org/10.53063/synsint.2022.24121

Most read articles by the same author(s)