Recent advances in hydrogen production using MXenes-based metal sulfide photocatalysts

  • Asieh Akhoondi 1
  • Hadi Ghaebi 2
  • Lakshmanan Karuppasamy 3
  • Mohammed M. Rahman 4
  • Panneerselvam Sathishkumar 5
  • 1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 2 Department of Mechanical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
  • 3 Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan
  • 4 Department of Chemistry, King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia
  • 5 Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore - 63014, India

Abstract

At present, the composition and crystalline structure of transition metal nitrides or carbides (MXenes) and their derivatives are continuously expanding due to their unique physicochemical properties, especially in the photocatalytic field. Advances over the past four years have led to improved preparation of new MAX phases, resulting in new MXenes with excellent photo-thermal effect, considerable specific surface area, long-term stability and optimum activity. Since MXenes have good electrical conductivity and their bandgap is adjustable under the visible light range, this group is one of the best promising candidates for hydrogen production from photo-splitting of water as an environment-friendly method of converting sunlight to chemical energy. Progress in noble metal-free photocatalyst associated with more understanding of the fundamental mechanism of photocatalysis has enabled a proper choice of cocatalyst with better efficiency. In this study, the photocatalytic production of hydrogen through MXens as a support and co-catalyst on metal sulfide is summarized and discussed. Recent advances in the design and synthesis of MXenes-based metal sulfide nanocomposites to increase the efficiency of photocatalytic hydrogen production are then highlighted. Finally, the challenges and future prospects for the development of MXenes-based metal sulfide composites are outlined.

Downloads

Download data is not yet available.
Keywords: MXenes-based metal sulfide, Photocatalyst, H2 production, Semiconductor, Synthesis

References

[1] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535. https://doi.org/10.1039/C3CS60378D.
[2] B. Su, F. Lin, J. Ma, S. Huang, Y. Wang, et al., System integration of multi-grade exploitation of biogas chemical energy driven by solar energy, Energy. 241 (2022) 122857. https://doi.org/10.1016/j.energy.2021.122857.
[3] T. Hisatomi, K. Takanabe, K. Domen, Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives, Catal. Lett. 145 (2015) 95–108. https://doi.org/10.1007/s10562-014-1397-z.
[4] V.K.H. Bui, T.N. Nguyen, V.V. Tran, J. Hur, I.T. Kim, et al., Photocatalytic materials for indoor air purification systems: An updated mini-review, Environ. Technol. Innov. 22 (2021) 101471. https://doi.org/10.1016/j.eti.2021.101471.
[5] A.V. Zaitsev, I.A. Astapov, Prospects for creating regenerated photocatalytic materials for solar water treatment units, Mater. Lett. 310 (2022) 131509. https://doi.org/10.1016/j.matlet.2021.131509.
[6] G. Zhang, C.D. Sewell, P. Zhang, H. Mi, Z. Lin, Nanostructured photocatalysts for nitrogen fixation, Nano Energy. 71 (2020) 104645. https://doi.org/10.1016/j.nanoen.2020.104645.
[7] Z. Fu, Q. Yang, Z. Liu, F. Chen, F. Yao, et al., Photocatalytic conversion of carbon dioxide: From products to design the catalysts, J. CO2 Util. 34 (2019) 63–73. https://doi.org/10.1016/j.jcou.2019.05.032.
[8] X. Ma, H. Cheng, Facet-dependent photocatalytic H2O2 production of single phase Ag3PO4 and Z-scheme Ag/ZnFe2O4-Ag-Ag3PO4 composites, Chem. Eng. J. 429 (2022) 132373. https://doi.org/10.1016/j.cej.2021.132373.
[9] R.M.N. Yerga, M.C. Alvarez-Galván, F. Vaquero, J. Arenales, J.L.G. Arenales, Hydrogen Production from Water Splitting Using Photo-Semiconductor Catalysts, Renewable Hydrogen Technologies, Elsevier. (2013) 43–61. https://doi.org/10.1016/B978-0-444-56352-1.00003-9.
[10] S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Shahedi Asl, Z. Ahmadi, S. Ghosh, Synthesis of novel ternary g-C3N4/SiC/C-Dots photocatalysts and their visible-light-induced activities in removal of various contaminants, J. Photochem. Photobiol. A. 39 (2020) 112431. https://doi.org/10.1016/j.jphotochem.2020.112431.
[11] B. Mazinani, A. Beitollahi, A.K. Masrom, L. Samiee, Z. Ahmadi, Synthesis and photocatalytic performance of hollow sphere particles of SiO2-TiO2 composite of mesocellular foam walls, Ceram. Int. 43 (2017) 11786–11791. https://doi.org/10.1016/j.ceramint.2017.06.017.
[12] V.-H. Nguyen, M. Mousavi, J.B. Ghasemi, Q.V. Le, S.A. Delbari, et al., High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO3/Carbon dots heterojunction with efficient activity in photocatalytic NH3 production, J. Taiwan Inst. Chem. Eng. 118 (2021) 140–151. https://doi.org/10.1016/j.jtice.2021.01.012.
[13] V.-H. Nguyen, M. Mousavi, J.B. Ghasemi, Q.V. Le, S.A. Delbari, A. Sabahi Namini, Novel p–n Heterojunction Nanocomposite: TiO2 QDs/ZnBi2O4 Photocatalyst with Considerably Enhanced Photocatalytic Activity under Visible-Light Irradiation, J. Phys. Chem. C. 124 (2020) 27519–27528. https://doi.org/10.1021/acs.jpcc.0c08316.
[14] C. Xia, T.H.C. Nguyen, X.C. Nguyen, S.Y. Kim, D.L.T. Nguyen, et al., Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: Progress and perspectives, Fuel. 307 (2022) 121745. https://doi.org/10.1016/j.fuel.2021.121745.
[15] X. Li, W. Zhang, J. Li, G. Jiang, Y. Zhou, et al., Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3, Appl. Catal. B. 241 (2019) 187–195. https://doi.org/10.1016/j.apcatb.2018.09.032.
[16] D.J. Martin, N. Umezawa, X. Chen, J. Ye, J. Tang, Facet engineered Ag3PO4 for efficient water photooxidation, Energy Environ. Sci. 6 (2013) 3380–3386. https://doi.org/10.1039/C3EE42260G.
[17] T. Wei, J. Xu, C. Kan, L. Zhang, X. Zhu, Au tailored on g-C3N4/TiO2 heterostructure for enhanced photocatalytic performance, J. Alloys Compd. 894 (2022) 162338. https://doi.org/10.1016/j.jallcom.2021.162338.
[18] Y.-P. Yuan, L.-S. Yin, S.-W. Cao, G.-S. Xu, C.-H. Li, C. Xue, Improving photocatalytic hydrogen production of metal–organic framework UiO-66 octahedrons by dye-sensitization, Appl. Catal. B. 168–169 (2015) 572–576. https://doi.org/10.1016/j.apcatb.2014.11.007.
[19] M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, et al., Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides, Adv. Func. Mater. 23 (2013) 2185–2192. https://doi.org/10.1002/adfm.201202502.
[20] P. Kuang, Z. Ni, J. Yu, J. Low, New progress on MXenes-based nanocomposite photocatalysts, Mater. Rep: Energy. 2 (2022) 100081. https://doi.org/10.1016/j.matre.2022.100081.
[21] H. Fang, Y. Pan, M. Yin, L. Xu, Y. Zhu, C. Pan, Facile synthesis of ternary Ti3C2–OH/ln2S3/CdS composite with efficient adsorption and photocatalytic performance towards organic dyes, J. Solid State Chem. 280 (2019) 120981. https://doi.org/10.1016/j.jssc.2019.120981.
[22] J. Ji, L. Zhao, Y. Shen, S. Liu, Y. Zhang, Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties, FlatChem. 17 (2019) 100128. https://doi.org/10.1016/j.flatc.2019.100128.
[23] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, et al., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248–4253. https://doi.org/10.1002/adma.201102306.
[24] R. Syamsai, J.R. Rodriguez, V.G. Pol, Q.V. Le, K.M. Batoo, et al., Double transition metal MXene (TixTa4−xC3) 2D materials as anodes for Li-ion batteries, Sci. Rep. 11 (2021) 688. https://doi.org/10.1038/s41598-020-79991-8.
[25] X. Li, X. Ma, Y. Hou, Z. Zhang, Y. Lu, et al., Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning, Joule. 5 (2021) 2993–3005. https://doi.org/10.1016/j.joule.2021.09.006.
[26] X. Zhai, H. Dong, Y. Li, X. Yang, L. Li, et al., Termination effects of single-atom decorated v-Mo2CTx MXene for the electrochemical nitrogen reduction reaction, J. Colloid Interface Sci. 605 (2022) 897–905. https://doi.org/10.1016/j.jcis.2021.07.083.
[27] Y. Gao, Y. Cao, H. Zhuo, X. Sun, Y. Gu, et al., Mo2TiC2 MXene: A Promising Catalyst for Electrocatalytic Ammonia Synthesis, Catal. Today. 339 (2020) 120–126. https://doi.org/10.1016/j.cattod.2018.12.029.
[28] Y. Wang, X. Hu, H. Song, Y. Cai, Z. Li, et al., Oxygen vacancies in actiniae-like Nb2O5/Nb2C MXene heterojunction boosting visible light photocatalytic NO removal, Appl. Catal. B. 299 (2021) 120677. https://doi.org/10.1016/j.apcatb.2021.120677.
[29] T. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov, et al., One-Step Synthesis of Nb2O5/C/Nb2C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution, ChemSunChem. 11 (2018) 688–699. https://doi.org/10.1002/cssc.201702317.
[30] D. Zu, H. Song, Y. Wang, Z. Chao, Z. Li, et al., One-pot in-situ hydrothermal synthesis of CdS/Nb2O5/Nb2C heterojunction for enhanced visible-light-driven photodegradation, Appl. Catal. B. 277 (2020) 119140. https://doi.org/10.1016/j.apcatb.2020.119140.
[31] A. Sherryna, M. Tahir, Role of Ti3C2 MXene as Prominent Schottky Barriers in Driving Hydrogen Production through Photoinduced Water Splitting: A Comprehensive Review, ACS Appl. Energy Mater. 4 (2021) 11982–12006. https://doi.org/10.1021/acsaem.1c02241.
[32] S.D. Chakraborty, P. Bhattacharya, T. Mishra, Recent advances in 2D MXene-based heterostructured photocatalytic materials, Sustainable Material Solutions for Solar Energy Technologies, Processing Techniques and Applications, Solar Cell Engineering, Elsevier. (2021) 329–362. https://doi.org/10.1016/B978-0-12-821592-0.00005-4.
[33] P. Gnanasekar, J. Kulandaivel, Two-Dimensional Materials for Renewable Energy Devices, Encyclopedia of Applied Physics, Wiley-VCH Verlag GmbH & Co. KGaA (Ed.). (2021). https://doi.org/10.1002/3527600434.eap957.
[34] L. Biswal, S. Nayak, K. Parida, Recent progress on strategies for the preparation of 2D/2D MXene/g-C3N4 nanocomposites for photocatalytic energy and environmental applications, Catal. Sci. Technol. 11 (2021) 1222–1248. https://doi.org/10.1039/D0CY02156C.
[35] S.B. Ambade, R.B. Ambade, W. Eom, S.H. Noh, S.H. Kim, T.H. Han, 2D Ti3C2 MXene/WO3 Hybrid Architectures for High-Rate Supercapacitors, Adv. Mater. Interfaces. 5 (2018) 1801361. https://doi.org/10.1002/admi.201801361.
[36] X. Feng, Z. Yu, Y. Sun, M. Shan, R. Long, X. Li, 3D MXene/Ag2S material as Schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance, Sep. Purif. Technol. 266 (2021) 118606. https://doi.org/10.1016/j.seppur.2021.118606.
[37] L. Biswal, R. Mohanty, S. Nayak, K. Parida, Review on MXene/TiO2 nanohybrids for photocatalytic hydrogen production and pollutant degradations, J. Environ. Chem. Eng. 10 (2022) 107211. https://doi.org/10.1016/j.jece.2022.107211.
[38] V.-H. Nguyen, B.-S. Nguyen, C. Hu, C.C. Nguyen, D.L.T. Nguyen, et al., Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review, Nanomaterials. 10 (2020) 602. https://doi.org/10.3390/nano10040602.
[39] Y. Li, Y. Liu, T. Zheng, S.-i. Ssaki, H. Tamiaki, X.-F. Wang, Chlorophyll derivative sensitized monolayer Ti3C2Tx MXene nanosheets for photocatalytic hydrogen evolution, J. Photochem. Photobiol. A. 427 (2022) 113792. https://doi.org/10.1016/j.jphotochem.2022.113792.
[40] M. Tahir, A. Sherryna, R. Mansoor, A.A. Khan, S. Tasleem, B. Tahir, Titanium Carbide MXene Nanostructures as Catalysts and Cocatalysts for Photocatalytic Fuel Production: A Review, ACS Appl. Nano Mater. 5 (2022) 18–54. https://doi.org/10.1021/acsanm.1c03112.
[41] K.R.G. Lim, A.D. Handoko, S.K. Nemani, B. Wyatt, H.-Y. Jiang, et al., Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion, ACS Nano. 14 (2020) 10834–10864. https://doi.org/10.1021/acsnano.0c05482.
[42] G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction, ACS Catal. 7 (2017) 494–500. https://doi.org/10.1021/acscatal.6b02754.
[43] X. Yang, D. Singh, R. Ahuja, Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for Water Splitting, Catalysts. 10 (2020) 1111. https://doi.org/10.3390/catal10101111.
[44] F. Zhang, S.S. Wong, Controlled Synthesis of Semiconducting Metal Sulfide Nanowires, Chem. Mater. 21 (2009) 4541–4554. https://doi.org/10.1021/cm901492f.
[45] A. Akhoondi, M. Aghaziarati, N. Khandan, Production of highly pure iron disulfide nanoparticles using hydrothermal synthesis method, Appl. Nanosci. 3 (2013) 417–422. https://doi.org/10.1007/s13204-012-0153-1.
[46] S. Iqbal, A. Bahadur, S. Anwer, S. Ali, A. Saeed, et al., Shape and phase-controlled synthesis of specially designed 2D morphologies of l-cysteine surface capped covellite (CuS) and chalcocite (Cu2S) with excellent photocatalytic properties in the visible spectrum, Appl. Surf. Sci. 526 (2020) 146691. https://doi.org/10.1016/j.apsusc.2020.146691.
[47] H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng, et al., Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance, Appl. Catal. B. 233 (2018) 213–225. https://doi.org/10.1016/j.apcatb.2018.04.012.
[48] S. Guo, L. Yang, Y. Zhang, Z. Huang, X. Ren, et al., Enhanced hydrogen evolution via interlaced Ni3S2/MoS2 heterojunction photocatalysts with efficient interfacial contact and broadband absorption, J. Alloys Compd. 749 (2018) 473–480. https://doi.org/10.1016/j.jallcom.2018.03.329.
[49] C.-H. Lai, M.-Y. Lu, L.-J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage, J. Mater. Chem. 22 (2012) 19–30. https://doi.org/10.1039/C1JM13879K.
[50] H. Kisch, Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions, Acc. Chem. Res. 50 (2017) 1002–1010. https://doi.org/10.1021/acs.accounts.7b00023.
[51] S.-C. Zhu, S. Li, B. Tang, H. Liang, B.-J. Liu, et al., MXene-motivated accelerated charge transfer over TMCs quantum dots for solar-powered photoreduction catalysis, J. Catal. 404 (2021) 56–66. https://doi.org/10.1016/j.jcat.2021.09.001.
[52] S. Shanmugaratnam, S. Rasalingam, Transition Metal Chalcogenide (TMC) Nanocomposites for Environmental Remediation Application over Extended Solar Irradiation, Nanocatalysts, IntechOpen. (2019). https://doi.org/10.5772/intechopen.83628.
[53] T. Heine, Transition Metal Chalcogenides: Ultrathin Inorganic Materials with Tunable Electronic Properties, Acc. Chem. Res. 48 (2015) 65–72. https://doi.org/10.1021/ar500277z.
[54] C. Prasad, X. Yang, Q. Liu, H. Tang, A. Rammohan, et al., Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications, J. Ind. Eng. Chem. 85 (2020) 1–33. https://doi.org/10.1016/j.jiec.2019.12.003.
[55] W.-K. Jo, T.S. Natarajan, Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation, Chem. Eng. J. 281 (2015) 549–565. https://doi.org/10.1016/j.cej.2015.06.120.
[56] A. Sherryna, M. Tahir, Role of surface morphology and terminating groups in titanium carbide MXenes (Ti3C2Tx) cocatalysts with engineering aspects for modulating solar hydrogen production: A critical review, Chem. Eng. J. 433 (2022) 134573. https://doi.org/10.1016/j.cej.2022.134573.
[57] S. Kahng, H. Yoo, J.H. Kim, Recent advances in earth-abundant photocatalyst materials for solar H2 production, Adv. Powder Technol. 31 (2020) 11–28. https://doi.org/10.1016/j.apt.2019.08.035.
[58] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253–278. https://doi.org/10.1039/B800489G.
[59] X. Liu, P. Wang, X. Liang, Q. Zhang, Z. Wang, et al., Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting, Mater Today Energy. 18 (2020) 100524. https://doi.org/10.1016/j.mtener.2020.100524.
[60] V. Kumaravel, M. Danyal Imam, A. Badreldin, R.K. Chava, J.Y. Do, et al., Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts, Catalysts. 9 (2019) 276. https://doi.org/10.3390/catal9030276.
[61] M. Kang, V. Kumaravel, Photocatalytic Hydrogen Evolution, Catalysts. (2020). https://doi.org/10.3390/books978-3-03936-311-7.
[62] Y. Li, J. Wang, S. Peng, G. Lu, S. Li, Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation, Int. J. Hyrog. Energy. 35 (2010) 7116–7126. https://doi.org/10.1016/j.ijhydene.2010.02.017.
[63] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, et al., Two-Dimensional Transition Metal Carbides, ACS Nano. 6 (2012) 1322–1331. https://doi.org/10.1021/nn204153h.
[64] Y.L. Du, Z.M. Sun, H. Hashimoto, M.W. Barsoum, Electron correlation effects in the MAX phase Cr2AlC from first-principles, J. Appl. Phys. 109 (2011) 063707. https://doi.org/10.1063/1.3562145.
[65] D. Music, Z. Sun, J.M. Schneider, Electronic structure of Sc2AC (A=Al, Ga, In, Tl), Solid State Commun. 133 (2005) 381–383. https://doi.org/10.1016/j.ssc.2004.11.034.
[66] P. Simon, Two-Dimensional MXene with Controlled Interlayer Spacing for Electrochemical Energy Storage, ACS Nano. 11 (2017) 2393–2396. https://doi.org/10.1021/acsnano.7b01108.
[67] D. Magne, V. Mauchamp, S. Célérier, P. Chartier, T. Cabioc'h, Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups, Phys. Chem. Chem. Phys. 18 (2016) 30946–30953. https://doi.org/10.1039/C6CP05985F.
[68] M.A. Iqbal, S.I. Ali, F. Amin, A. Tariq, M.Z. Iqbal, S. Rizwan, La- and Mn-Codoped Bismuth Ferrite/Ti3C2 MXene Composites for Efficient Photocatalytic Degradation of Congo Red Dye, ACS Omega. 4 (2019) 8661–8668. https://doi.org/10.1021/acsomega.9b00493.
[69] L. Wang, W. Tao, L. Yuan, Z. Liu, O. Huang, et al., Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment, Chem. Commun. 53 (2017) 12084–12087. https://doi.org/10.1039/C7CC06740B.
[70] L. Li, F. Wang, J. Zhu, W. Wu, The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties, Dalton Trans. 46 (2017) 14880–14887. https://doi.org/10.1039/C7DT02688A.
[71] S. Ahmad, I. Ashraf, M.A. Mansoor, S. Rizwan, M. Iqbal, An Overview of Recent Advances in the Synthesis and Applications of the Transition Metal Carbide Nanomaterials, Nanomaterials. 11 (2021) 776. https://doi.org/10.3390/nano11030776.
[72] S. Biswas, P.S. Alegaonkar, MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications, Surfaces. 5 (2022) 1–34. https://doi.org/10.3390/surfaces5010001.
[73] G. Li, L. Tan, Y. Zhang, B. Wu, L. Li, Highly Efficiently Delaminated Single-Layered MXene Nanosheets with Large Lateral Size, Langmuir. 33 (2017) 9000–9006. https://doi.org/10.1021/acs.langmuir.7b01339.
[74] C. Kai, F. Zhang, C. Kong, W. Cai, Progress in photocatalysis of new two-dimensional layered materials MXenes, Rev. Roum. Chim. 12 (2020) 1079–1091. https://doi.org/10.33224/rrch.2020.65.12.03.
[75] C. Peng, T. Zhou, P. Wei, H. Ai, B. Zhou, et al., Regulation of the rutile/anatase TiO2 phase junction in-situ grown on –OH terminated Ti3C2Tx (MXene) towards remarkably enhanced photocatalytic hydrogen evolution, Chem. Eng. J. 439 (2022) 135685. https://doi.org/10.1016/j.cej.2022.135685.
[76] H. Zong, R. Qi, K. Yu, Z. Zhu, Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation, Electrochim. Acta. 393 (2021) 139068. https://doi.org/10.1016/j.electacta.2021.139068.
[77] K. Huang, C. Li, X. Zhang, L. Wang, W. Wang, X. Meng, Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution, Green Energy Environ. 8 (2023) 233–245. https://doi.org/10.1016/j.gee.2021.03.011.
[78] M. Zhang, J. Qin, S. Rajendran, X. Zhang, R. Liu, Heterostructured d-Ti3C2/TiO2/g-C3N4 Nanocomposites with Enhanced Visible-Light Photocatalytic Hydrogen Production Activity, ChemSunChem. 11 (2018) 4226–4236. https://doi.org/10.1002/cssc.201802284.
[79] M. Mozafari, M. Soroush, Surface functionalization of MXenes, Mater. Adv. 2 (2021) 7277–7307. https://doi.org/10.1039/D1MA00625H.
[80] J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto, et al., Control of MXenes’ electronic properties through termination and intercalation, Nat. Commun. 10 (2019) 522. https://doi.org/10.1038/s41467-018-08169-8.
[81] G. Huang, C.-H. Lu, H.-H. Yang, Novel Nanomaterials for Biomedical, Environmental and Energy Applications, Elsevier. (2019) 89–109. https://doi.org/10.1016/B978-0-12-814497-8.00003-5.
[82] B.P. Kafle, Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization, Chemical Analysis and Material Characterization by Spectrophotometry, Elsevier. (2020) 147–198. https://doi.org/10.1016/B978-0-12-814866-2.00006-3.
[83] A. Akhoondi, M. Ziarati, N. Khandan, Hydrothermal Production of Highly Pure Nano Pyrite in a Stirred Reactor, Iran. J. Chem. Chem. Eng. 33 (2014) 15–19. https://doi.org/10.30492/IJCCE.2014.7189.
[84] Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal Synthesis of Nanomaterials, J. Nanomater. 2020 (2020) 8917013. https://doi.org/10.1155/2020/8917013.
[85] A.D. Li, W.C. Liu, Optical properties of ferroelectric nanocrystal/polymer composites, Physical Properties and Applications of Polymer Nanocomposites, Woodhead Publishing. (2010) 108–158. https://doi.org/10.1533/9780857090249.1.108.
[86] N. Asim, S. Ahmadi, M.A. Alghoul, F.Y. Hammadi, K. Saeedfar, K. Sopian, Research and Development Aspects on Chemical Preparation Techniques of Photoanodes for Dye Sensitized Solar Cells, Int. J. Photoenergy. 2014 (2014) 518156. https://doi.org/10.1155/2014/518156.
[87] G. Zou, H. Li, Y. Zhang, K. Xiong, Y. Qian, Solvothermal/hydrothermal route to semiconductor nanowires, Nanotechnology. 17 (2006) S313. https://doi.org/10.1088/0957-4484/17/11/S14.
[88] L. Tie, S. Yang, C. Yu, H. Chen, Y. Liu, et al., In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution, J. Colloid Interf. Sci. 545 (2019) 63–70. https://doi.org/10.1016/j.jcis.2019.03.014.
[89] A. Akhoondi, A.I. Osman, A. Alizadeh Eslami, Direct catalytic production of dimethyl ether from CO and CO2: A review, Synth. Sinter. 1 (2021) 105–120. https://doi.org/10.53063/synsint.2021.1229.
[90] C. Su, B.-Y. Hong, C.-M. Tseng, Sol–gel preparation and photocatalysis of titanium dioxide, Catal. Today. 96 (2004) 119–126. https://doi.org/10.1016/j.cattod.2004.06.132.
[91] E.M. Modon, A.G. Plăiașu, Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials, The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metall. Mater. Sci. 43 (2020) 53–60. https://doi.org/10.35219/mms.2020.1.08.
[92] H. Xiao, Z. Chen, K. Sun, C. Yan, J. Xiao, et al., Sol-gel solution-processed Cu2SrSnS4 thin films for solar energy harvesting, Thin Solid Films. 697 (2020) 137828. https://doi.org/10.1016/j.tsf.2020.137828.
[93] D. Tetzlaff, C. Simon, D.S. Achilleos, M. Smialkowski, K.j. Puring, et al., FexNi9−xS8 (x = 3–6) as potential photocatalysts for solar-driven hydrogen production?, Faraday Discuss. 215 (2019) 216–226. https://doi.org/10.1039/C8FD00173A.
[94] H. Xu, B.W. Zeiger, K.S. Suslick, Sonochemical synthesis of nanomaterials, Chem. Soc. Rev. 42 (2013) 2555–2567. https://doi.org/10.1039/C2CS35282F.
[95] J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8 (2017) 13907. https://doi.org/10.1038/ncomms13907.
[96] J.-Y. Li, Y.-H. Li, F. Zhang, Z.-R. Tang, Y.-J. Xu, Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites, Appl. Catal. B. 269 (2020) 118783. https://doi.org/10.1016/j.apcatb.2020.118783.
[97] R. Xiao, C. Zhao, Z. Zou, Z. Chen, L. Tian, et al., In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution, Appl. Catal. B. 268 (2020) 118382. https://doi.org/10.1016/j.apcatb.2019.118382.
[98] X. Chen, Y. Guo, R. Bian, Y. Ji, X. Wang, et al., Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production, J. Colloid Interface Sci. 613 (2022) 644–651. https://doi.org/10.1016/j.jcis.2022.01.079.
[99] J. Yin, F. Zhan, T. Jiao, W. Wang, G. Zhang, et al., Facile preparation of self-assembled MXene@Au@CdS nanocomposite with enhanced photocatalytic hydrogen production activity, Sci. China Mater. 63 (2020) 2228–2238. https://doi.org/10.1007/s40843-020-1299-4.
[100] Y. Yang, D. Zhang, Q. Xiang, Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production, Nanoscale. 11 (2019) 18797–18805. https://doi.org/10.1039/C9NR07242J.
[101] Z. Ai, K. Zhang, B. Chang, Y. Shao, L. Zhang, et al., Construction of CdS@Ti3C2@CoO hierarchical tandem p-n heterojunction for boosting photocatalytic hydrogen production in pure water, Chem. Eng. J. 383 (2020) 123130. https://doi.org/10.1016/j.cej.2019.123130.
[102] S. Jin, Z. Shi, H. Jing, L. Wang, Q. Hu, et al., Mo2C-MXene/CdS Heterostructures as Visible-Light Photocatalysts with an Ultrahigh Hydrogen Production Rate, ACS Appl. Energy Mater. 4 (2021) 12754–12766. https://doi.org/10.1021/acsaem.1c02456.
[103] W. Wang, Z.D. Hood, X. Zhang, I.N. Ivanov, Z. Bao, et al., Construction of 2D BiVO4−CdS−Ti3C2Tx Heterostructures for Enhanced Photo-redox Activities, ChemCatChem. 12 (2020) 3496–3503. https://doi.org/10.1002/cctc.202000448.
[104] M. Ding, R. Xiao, C. Zhao, D. Bukhvalov, Z. Chen, et al., Evidencing Interfacial Charge Transfer in 2D CdS/2D MXene Schottky Heterojunctions toward High-Efficiency Photocatalytic Hydrogen Production, Sol. RRL. 5 (2021) 2000414. https://doi.org/10.1002/solr.202000414.
[105] X. Liu, Q. Liu, C. Chen, Ultrasonic oscillation synthesized ZnS nanoparticles/layered MXene sheet with outstanding photocatalytic activity under visible light, Vacuum. 183 (2021) 109834. https://doi.org/10.1016/j.vacuum.2020.109834.
[106] Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, et al., 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity, Appl. Catal. B. 246 (2019) 12–20. https://doi.org/10.1016/j.apcatb.2019.01.051.
[107] Y. Li, S. Yang, Z. Liang, Y. Xue, H. Cui, J. Tian, 1T-MoS2 nanopatch/Ti3C2 MXene/TiO2 nanosheet hybrids for efficient photocatalytic hydrogen evolution, Mater. Chem. Front. 3 (2019) 2673–2680. https://doi.org/10.1039/C9QM00608G.
[108] Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui, J. Tian, Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2, Chem. Eng. J. 383 (2020) 123178. https://doi.org/10.1016/j.cej.2019.123178.
[109] J. Zhang, C. Xing, F. Shi, MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation, Int. J. Hydrog. Energy. 45 (2020) 6291–6301. https://doi.org/10.1016/j.ijhydene.2019.12.109.
[110] Z. Yao, H. Sun, H. Sui, X. Liu, 2D/2D Heterojunction of R-scheme Ti3C2 MXene/MoS2 Nanosheets for Enhanced Photocatalytic Performance, Nanoscale Res. Lett. 15 (2020) 78. https://doi.org/10.1186/s11671-020-03314-z.
[111] Y. Li, L. Ding, S. Yin, Z. Liang, Y. Xue, et al., Photocatalytic H2 Evolution on TiO2 Assembled with Ti3C2 MXene and Metallic 1T-WS2 as Co-catalysts, Nano-Micro Lett. 12 (2020) 6. https://doi.org/10.1007/s40820-019-0339-0.
[112] K. Huang, C. Li, X. Meng, In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution, J. Colloid Interface Sci. 580 (2020) 669–680. https://doi.org/10.1016/j.jcis.2020.07.044.
[113] G. Zuo, Y. Wang, W.L. Teo, M. Xie, Y. Guo, et al., Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution, Angew. Chem. Int. 132 (2020) 11383–11388. https://doi.org/10.1002/ange.202002136.
[114] H. Wang, Y. Sun, Y. Wu, W. Tu, S. Wu, et al., Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation, Appl. Catal. B. 245 (2019) 290–301. https://doi.org/10.1016/j.apcatb.2018.12.051.
[115] M. Ou, J. Li, Y. Chen, S. Wan, S. Zhao, et al., Formation of noble-metal-free 2D/2D ZnmIn2Sm+3 (m = 1, 2, 3)/MXene Schottky heterojunction as an efficient photocatalyst for hydrogen evolution, Chem. Eng. J. 424 (2021) 130170. https://doi.org/10.1016/j.cej.2021.130170.
[116] T. Su, C. Men, L. Chen, B. Chu, X. Luo, et al., Sulfur Vacancy and Ti3C2Tx Cocatalyst Synergistically Boosting Interfacial Charge Transfer in 2D/2D Ti3C2Tx/ZnIn2S4 Heterostructure for Enhanced Photocatalytic Hydrogen Evolution, Adv. Sci. 9 (2022) 2103715. https://doi.org/10.1002/advs.202103715.
[117] L. Pan, H. Mei, H. Liu, H. Pan, X. Zhao, et al., High-efficiency carrier separation heterostructure improve the photocatalytic hydrogen production of sulfide, J. Alloys Compd. 817 (2020) 153242. https://doi.org/10.1016/j.jallcom.2019.153242.
[118] B. Cao, S. Wan, Y. Wang, H. Guo, M. Ou, Q. Zhong, Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1-xS photocatalyst, J. Colloid Interface Sci. 605 (2022) 311–319. https://doi.org/10.1016/j.jcis.2021.07.113.
[119] G. Zeng, Y. Cao, Y. Wu, H. Yuan, B. Zhang, et al., Cd0.5Zn0.5S/Ti3C2 MXene as a Schottky catalyst for highly efficient photocatalytic hydrogen evolution in seawater, Appl. Mater. Today. 22 (2021) 100926. https://doi.org/10.1016/j.apmt.2020.100926.
[120] S. Zheng, S. Peng, Z. Wang, J. Huang, X. Luo, et al., Schottky-structured 0D/2D composites via electrostatic self-assembly for efficient photocatalytic hydrogen evolution, Ceram. Int. 47 (2021) 28304–28311. https://doi.org/10.1016/j.ceramint.2021.06.247.
[121] L. Cheng, Q. Chen, J. Li, H. Liu, Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst, Appl. Catal. B. 267 (2020) 118379. https://doi.org/10.1016/j.apcatb.2019.118379.
[122] W. Yang, G. Ma, Y. Fu, K. Peng, H. Yang, et al., Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J. 429 (2022) 132381. https://doi.org/10.1016/j.cej.2021.132381.
[123] J.-H. Zhao, L.-W. Liu, K. Li, T. Li, F.-T. Liu, Conductive Ti3C2 and MOF-derived CoSx boosting the photocatalytic hydrogen production activity of TiO2, CrystEngComm. 21 (2019) 2416–2421. https://doi.org/10.1039/C8CE02050G.
[124] Y. Xie, M.M. Rahman, S. Kareem, H. Dong, F. Qiao, et al., Facile synthesis of CuS/MXene nanocomposites for efficient photocatalytic hydrogen generation, CrystEngComm. 22 (2020) 2060–2066. https://doi.org/10.1039/D0CE00104J.
[125] Y.-J. Yuan, D. Chen, Z.-T. Yu, Z.-G. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production, J. Mater. Chem. A. 6 (2018) 11606–11630. https://doi.org/10.1039/C8TA00671G.
[126] G.-J. Lee, J.J. Wu, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — A review, Powder Technol. 318 (2017) 8–22. https://doi.org/10.1016/j.powtec.2017.05.022.
[127] B. Archana, N. Kottam, S. Nayak, K.B. Chandrasekhar, M.B. Sreedhara, Superior Photocatalytic Hydrogen Evolution Performances of WS2 over MoS2 Integrated with CdS Nanorods, J. Phys. Chem. C. 124 (2020) 14485–14495. https://doi.org/10.1021/acs.jpcc.0c03411.
[128] Q. Wang, J. Li, Y. Bai, J. Lian, H. Huang, et al., Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation, Green Chem. 16 (2014) 2728–2735. https://doi.org/10.1039/C3GC42466A.
[129] S. Tso, W.-S. Li, B.-H. Wu, L.-J. Chen, Enhanced H2 production in water splitting with CdS-ZnO core-shell nanowires, Nano Energy. 43 (2018) 270–277. https://doi.org/10.1016/j.nanoen.2017.11.048.
[130] G.-J. Lee, S. Anandan, S.J. Masten, J.J. Wu, Sonochemical Synthesis of Hollow Copper Doped Zinc Sulfide Nanostructures: Optical and Catalytic Properties for Visible Light Assisted Photosplitting of Water, Ind. Eng. Chem. Res. 53 (2014) 8766–8772. https://doi.org/10.1021/ie500663n.
[131] H. Tada, M. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system, Nat. Mater. 5 (2006) 782–786. https://doi.org/10.1038/nmat1734.
[132] M. Li, Z. Cui, E. Li, Silver-modified MoS2 nanosheets as a high-efficiency visible-light photocatalyst for water splitting, Ceram. Int. 45 (2019) 14449–14456. https://doi.org/10.1016/j.ceramint.2019.04.166.
[133] Q. Xiang, F. Cheng, D. Lang, Hierarchical Layered WS2/Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution, ChemsunChem. 9 (2016) 996–1002. https://doi.org/10.1002/cssc.201501702.
[134] T.P. Nguyen, Q. Van Le, K.S. Choi, J.H. Oh, Y.G. Kim, et al., MoS2 Nanosheets Exfoliated by Sonication and Their Application in Organic Photovoltaic Cells, Sci. Adv. Mater. 7 (2015) 700–705. https://doi.org/10.1166/sam.2015.1891.
[135] X. Zong, J. Han, G. Ma, H. Yan, G. Wu, C. Li, Photocatalytic H2 Evolution on CdS Loaded with WS2 as Cocatalyst under Visible Light Irradiation, J. Phys. Chem. C. 115 (2011) 12202–12208. https://doi.org/10.1021/jp2006777.
[136] X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, et al., Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation, J. Phys. Chem. C. 114 (2010) 1963–1968. https://doi.org/10.1021/jp904350e.
[137] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotech. 7 (2012) 699–712. https://doi.org/10.1038/nnano.2012.193.
[138] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2 A New Direct-Gap Semiconductor, Phys. Rev. Lett. 105 (2010) 136805. https://doi.org/10.1103/PhysRevLett.105.136805.
[139] K. Chang, X. Hai, J. Ye, Transition Metal Disulfides as Noble-Metal-Alternative Co-Catalysts for Solar Hydrogen Production, Adv. Energy. Mater. 6 (2016) 1502555. https://doi.org/10.1002/aenm.201502555.
[140] B.-J. Ng, L. K. Putri, X.Y. Kong, K.P.Y. Shak, P. Pasbakhsh, et al., Sub-2 nm Pt-decorated Zn0.5Cd0.5S nanocrystals with twin-induced homojunctions for efficient visible-light-driven photocatalytic H2 evolution, Appl. Catal. B. 224 (2018) 360–367. https://doi.org/10.1016/j.apcatb.2017.10.005.
[141] H. Abid, G. Rekhila, F.A. Ihaddadene, Y. Bessekhouad, M. Trari, Hydrogen evolution under visible light illumination on the solid solution CdxZn1-xS prepared by ultrasound-assisted route, Int. J. Hydrog. Energy. 44 (2019) 10301–10308. https://doi.org/10.1016/j.ijhydene.2019.02.231.
[142] C. Xing, Y. Zhang, W. Yan, L. Guo, Band structure-controlled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting, Int. J. Hydrog. Energy. 31 (2006) 2018–2024. https://doi.org/10.1016/j.ijhydene.2006.02.003.
[143] H. Du, K. Liang, C.-Z. Yuan, H.L. Guo, X. Zhou, et al., Bare Cd1–xZnxS ZB/WZ Heterophase Nanojunctions for Visible Light Photocatalytic Hydrogen Production with High Efficiency, ACS Appl. Mater. Interfaces. 8 (2016) 24550–24558. https://doi.org/10.1021/acsami.6b06182.
[144] R. Janani, R. Preethi V, S. Singh, A. Rani, C.-T. Chang, Hierarchical Ternary Sulfides as Effective Photocatalyst for Hydrogen Generation Through Water Splitting: A Review on the Performance of ZnIn2S4, Catalysts. 11 (2021) 277. https://doi.org/10.3390/catal11020277.
[145] J. Bai, W. Chen, R. Shen, Z. Jiang, P. Zhang, et al., Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution, J. Mater. Sci. Technol. 112 (2022) 85–95. https://doi.org/10.1016/j.jmst.2021.11.003.
[146] Z. Ai, Y. Shao, B. Chang, B. Huang, Y. Wu, X. Hao, Effective orientation control of photogenerated carrier separation via rational design of a Ti3C2(TiO2)@CdS/MoS2 photocatalytic system, Appl. Catal. B. 242 (2019) 202–208. https://doi.org/10.1016/j.apcatb.2018.09.101.
[147] R. Chen, P. Wang, J. Chen, C. Wang, Y. Ao, Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation, App. Surf. Sci. 473 (2019) 11–19. https://doi.org/10.1016/j.apsusc.2018.12.071.

Cited By

Crossref Google Scholar
Recent advances in hydrogen production using MXenes-based metal sulfide photocatalysts
Submitted
2022-02-27
Available online
2022-03-29
How to Cite
Akhoondi, A., Ghaebi, H., Karuppasamy, L., Rahman, M. M., & Sathishkumar, P. (2022). Recent advances in hydrogen production using MXenes-based metal sulfide photocatalysts. Synthesis and Sintering, 2(1), 37-54. https://doi.org/10.53063/synsint.2022.21106

Most read articles by the same author(s)