New updates on vanadate compounds synthesis and visible-light-driven photocatalytic applications

  • Mehrdad Mirzaei 1
  • Asieh Akhoondi 2
  • Wael Hamd 3
  • Jorge Noé Díaz de León 4
  • Rengaraj Selvaraj 5
  • 1 Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
  • 2 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 3 Chemical Engineering Department, Faculty of Engineering, University of Balamand, P.O. Box 33, El-Koura, Lebanon
  • 4 Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107, C. P. 22800, Ensenada, Baja California, México
  • 5 Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box- 36, P.C. 9 123, Al-Khoudh, Muscat, Oman

Abstract

Photocatalysis is known as a new and cost-effective method to solve the problems of energy shortage and environmental pollution. Although the application of this method seems practical, finding an efficient and stable photocatalyst with a suitable bandgap and visible-light sensitivity remains challenging. In this context, vanadate compounds photocatalysts have been synthesized and used as emerging composites, and their efficiency has been improved through elemental doping and morphology modifications. In this review, the major synthesis methods, and the design of the latest photocatalytic compounds based on vanadate are presented. In addition, the effect of vanadate microstructures on various photocatalytic applications such as hydrogen production, CO2 reduction, and removal of organic pollutants and heavy metals are discussed. For instance, the application of a 2D-1D BiVO4/CdS heterostructure photocatalyst enhances 40 times the hydrogen production from benzyl alcohol than pure BiVO4. Similarly, the InVO4/Bi2WO6 composite has a superior photocatalytic capability for the reduction of CO2 into CO compared to pure InVO4. A CO production rate of 18 μmol.g-1.h-1 can be achieved by using this heterostructure. Regarding the organic pollutants’ removal, the use of Montmorillonite/BiVO4 structure allows a complete removal of Brilliant Red 80 dye after only 2 hours of irradiation. Finally, copper heavy metal is reduced to 90% in water, by using BiVO4/rGO/g-C3N4 optimized photocatalyst structure. Other examples on decorated vanadate compounds for enhancing photocatalytic activities are also treated.

Downloads

Download data is not yet available.
Keywords: Photocatalyst, Synthesis, Solar energy, Vanadate compound, Nanocomposite

References

[1] M. Yang, G. Ma, H. Yang, Z. Xiaoqiang, W. Yang, H. Hou, Advanced strategies for promoting the photocatalytic performance of FeVO4 based photocatalysts: A review of recent progress, J. Alloys Compd. 941 (2023) 168995. https://doi.org/10.1016/j.jallcom.2023.168995.
[2] G.-Q. Zhao, X. Long, J. Zou, J. Hu, F.-P. Jiao, Design of hollow nanostructured photocatalysts for clean energy production, Coord. Chem. Rev. 477 (2023) 214953. https://doi.org/10.1016/j.ccr.2022.214953.
[3] R. Yang, Y. Zhang, Y. Fan, R. Wang, R. Zhu, et al., InVO4-based photocatalysts for energy and environmental applications, Chem. Eng. J. 428 (2022) 131145. https://doi.org/10.1016/j.cej.2021.131145.
[4] A. Akhoondi, A.I. Osman, A.A. Eslami, Direct catalytic production of dimethyl ether from CO and CO2: A review, Synth. Sinter. 1 (2021) 105–120. https://doi.org/10.53063/synsint.2021.1229.
[5] Q. Jia, A. Iwase, A. Kudo, BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting, Chem. Sci. 5 (2014) 1513. https://doi.org/10.1039/C3SC52810C.
[6] H.Y. Lin, Y. Chen, Y. Chen, Water splitting reaction on NiO/InVO4 under visible light irradiation, Int. J. Hydrog. Energy. 32 (2007) 86–92. https://doi.org/10.1016/j.ijhydene.2006.04.007.
[7] W. Hamd, S. Cobo, J. Fize, G. Baldinozzi, W. Schwartz, et al., Mesoporous α-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation, Phys. Chem. Chem. Phys. 14 (2012) 13224–13232. https://doi.org/10.1039/C2CP42535A.
[8] T. Lv, D. Li, Y. Hong, B. Luo, D. Xu, et al., Facile synthesis of CdS/Bi4V2O11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water, Dalton Trans. 46 (2017) 12675–12682. https://doi.org/10.1039/C7DT02151H.
[9] N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity, Dalton Trans. 44 (2015) 4297–4307. https://doi.org/10.1039/C4DT03905J.
[10] W. Shi, Y. Yan, X. Yan, Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin, Chem. Eng. J. 215–216 (2013) 740–746. https://doi.org/10.1016/j.cej.2012.10.071.
[11] A. Akhoondi, U. Feleni, B. Bethi, A.O. Idris, A. Hojjati-Najafabadi, Advances in metal-based vanadate compound photocatalysts: synthesis, properties and applications, Synth. Sinter. 1 (2021) 151–168. https://doi.org/10.53063/synsint.2021.1344.
[12] B.C.B. Salgado, R.A. Cardeal, A. Valentini, Photocatalysis and photodegradation of pollutants, nanomaterials applications for environmental matrices, Elsevier. (2019). https://doi.org/10.1016/B978-0-12-814829-7.00015-X.
[13] A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications, Appl. Catal. A. 555 (2018) 47–74. https://doi.org/10.1016/j.apcata.2018.02.010.
[14] P. Dhull, A. Sudhaik, V. Sharma, P. Raizada, V. Hasija, et al., An overview on InVO4-based photocatalysts: Electronic properties, synthesis, enhancement strategies, and photocatalytic applications, Mol. Catal. 539 (2023) 113013. https://doi.org/10.1016/j.mcat.2023.113013.
[15] L. Zhang, H.H. Mohamed, R. Dillert, D. Bahnemann, Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review, J. Photochem. Photobiol. C. 13 (2012) 263–276. https://doi.org/10.1016/j.jphotochemrev.2012.07.002.
[16] Q. Han, Advances in preparation methods of bismuth-based photocatalysts, Chem. Eng. J. 414 (2021) 127877. https://doi.org/10.1016/j.cej.2020.127877.
[17] M.S. Shruti, S. Khilari, E.J.J. Samuel, H. Han, A.K. Nayak, Recent trends in graphene assisted vanadium based nanocomposites for supercapacitor applications, J. Energy Storage. 63 (2023) 107006. https://doi.org/10.1016/j.est.2023.107006.
[18] D.T.T. Trinh, W. Khanitchaidecha, D. Channei, A. Nakaruk, Synthesis, characterization and environmental applications of bismuth vanadate, Res. Chem. Intermed. 45 (2019) 5217–5259. https://doi.org/10.1007/s11164-019-03912-2.
[19] E. Suvaci, E. Özel, Hydrothermal Synthesis, Encyclopedia of Materials: Technical Ceramics and Glasses, Elsevier. 1 (2021) 59–68. https://doi.org/10.1016/B978-0-12-803581-8.12096-X.
[20] S.-H. Feng, G.-H. Li, Hydrothermal and solvothermal syntheses, modern inorganic synthetic chemistry (2nd Edition), Elsevier. (2017) 73–104. https://doi.org/10.1016/B978-0-444-63591-4.00004-5.
[21] H.K. Lin, T.-H. Yan, S. Bashir, J.L. Liu, Synthesis of nanomaterials using bottom-up methods, Advanced Nanomaterials and Their Applications in Renewable Energy (Second Edition), Elsevier. (2022) 61–110. https://doi.org/10.1016/B978-0-323-99877-2.00003-5.
[22] D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, et al., Synthesis, design, and morphology of metal oxide nanostructures, Elsevier. (2019) 21–57. https://doi.org/10.1016/B978-0-12-811512-1.00002-3.
[23] N.S. Bajaj, R.A. Joshi, Energy materials: synthesis and characterization techniques, Energy Materials, Elsevier. (2021) 61–82. https://doi.org/10.1016/B978-0-12-823710-6.00019-4.
[24] A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, Synthesis of Inorganic Nanomaterials, Elsevier. (2018) 121–139. https://doi.org/10.1016/B978-0-08-101975-7.00005-1.
[25] M.M. Ahmad, S. Mushtaq, H.S. Al Qahtani, A. Sedky, M.W. Alam, Investigation of TiO2 Nanoparticles Synthesized by Sol-Gel Method for Effectual Photodegradation, Oxidation and Reduction Reaction, Crystals. 11 (2021) 1456. https://doi.org/10.3390/cryst11121456.
[26] J.G. Mahy, L. Lejeune, T. Haynes, S.D. Lambert, R.H.M. Marcilli, et al., Eco-Friendly Colloidal Aqueous Sol-Gel Process for TiO2 Synthesis: The Peptization Method to Obtain Crystalline and Photoactive Materials at Low Temperature, Catalysts. 11 (2021) 768. https://doi.org/10.3390/catal11070768.
[27] A. Akhoondi, M. Ziarati, N. Khandan, Hydrothermal Production of Highly Pure Nano Pyrite in a Stirred Reactor, Iran J. Chem. Chem. Eng. 33 (2014) 15–19. https://doi.org/10.30492/IJCCE.2014.7189.
[28] B.P. Kafle, Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization, Chemical Analysis and Material Characterization by Spectrophotometry, Elsevier. (2020) 147–198. https://doi.org/10.1016/B978-0-12-814866-2.00006-3.
[29] Q. Zhang, L. Gao, Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from rutile TiO2, Langmuir. 19 (2003) 967–971. https://doi.org/10.1021/la020310q.
[30] A. Akhoondi, M. Aghaziarati, N. Khandan, Production of highly pure iron disulfide nanoparticles using hydrothermal synthesis method, Appl. Nanosci. 3 (2013) 417–422. https://doi.org/10.1007/s13204-012-0153-1.
[31] Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal Synthesis of Nanomaterials, J. Nanomater. 2020 (2020) 8917013. https://doi.org/10.1155/2020/8917013.
[32] R.L. Naik, T.B. Narsaiah, Hydrothermal synthesis and characterization of nanocrystalline zinc vanadate (Zn2V2O7) on graphene oxide scaffolds, Mater. Today: Proc. 72 (2023) 268–273. https://doi.org/10.1016/j.matpr.2022.07.266.
[33] K. Sekar, A. Kassam, Y. Bai, B. Coulson, W. Li, et al., Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation, Appl. Mater. Today. 22 (2021) 100963. https://doi.org/10.1016/j.apmt.2021.100963.
[34] A. Akhoondi, M. Aghaziarati, N. Khandan, Hydrothermal production of nano pyrite, 1st Int. Region. Chem. Petrol. Eng. (2010).
[35] X. Cao, Y. Gu, Y. Fang, D. Johnson, C. Chen, et al., Self-assembled BiVO4 mesocrystals for efficient photocatalytic decontamination of microcystin-LR, Environ. Chem. Lett. 20 (2022) 1595–1601. https://doi.org/10.1007/s10311-022-01426-9.
[36] G.Q. Tan, C. Xu, H.J. Ren, W. Yang, C.C. Zhao, A. Xia, Synthesis and Photocatalytic Activities of Bamboo-Like FeVO4 Nanocrystalline, J. Nano Res. 46 (2017) 123–134. https://doi.org/10.4028/www.scientific.net/JNanoR.46.123.
[37] A. Akhoondi, M. Aghaziarati, N. Khandan, Termal Treatment on Synthesized Nano Pyrite, NTC2011 (2011).
[38] Z. Li, Z. Bao, F. Yao, H. Cao, J. Wang, et al., One-dimensional bismuth vanadate nanostructures constructed Z-scheme photocatalyst for highly efficient degradation of antibiotics, J. Water Process. Eng. 46 (2022) 102599. https://doi.org/10.1016/j.jwpe.2022.102599.
[39] Y. Lin, H. Chi, J. Lin, F. Chen, C. Chen, C. Lu, Eight crystalline phases of bismuth vanadate by controllable hydrothermal synthesis exhibiting visible-light-driven photocatalytic activity, Mol. Catal. 506 (2021) 111547. https://doi.org/10.1016/j.mcat.2021.111547.
[40] A. Akhoondi, M. Aghaziarati, N. Khandan, Nano pyrite production by hydrothermal method and marcasite removal using sodium bicarbonate, Nanotechnology Iranian Student Conference. (2012).
[41] M.M. Sajid, H. Zhai, N.A. Shad, M. Shafique, A.M. Afzal, et al., Photocatalytic performance of ferric vanadate (FeVO4) nanoparticles synthesized by hydrothermal method, Mater. Sci. Semicond. Process. 129 (2021) 105785. https://doi.org/10.1016/j.mssp.2021.105785.
[42] F.-L. Zeng, H.-L. Zhu, R.-N. Wang, X.-Y. Yuan, K. Sun, et al., Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)–H bonds, Chin. J. Catal. 46 (2023) 157–166. https://doi.org/10.1016/S1872-2067(23)64391-8.
[43] S.S. Basu, S. Rahut, A.S. Bisht, J.K. Basu, Surfactant-assisted tuning of K2V3O8 nanorods for robust charge dynamics in semiconductor photocatalysis, Mater. Sci. Semicond. Process. 147 (2022) 106681. https://doi.org/10.1016/j.mssp.2022.106681.
[44] T. Zhang, H. Li, X. Tang, J. Zhong, J. Li, et al., Boosted photocatalytic performance of OVs-rich BiVO4 hollow microsphere self-assembled with the assistance of SDBS, J. Colloid Interface Sci. 634 (2023) 874–886. https://doi.org/10.1016/j.jcis.2022.12.057.
[45] M.M. Sajid, H. Assaedi, H. Zhai, Transition metal vanadates (MVO; M=Bi, Fe, Zn) synthesized by a hydrothermal method for efficient photocatalysis. J Mater Sci: Mater Electron. 34 (2023) 539. https://doi.org/10.1007/s10854-023-09923-5.
[46] R. Huo, X. Yang, J. Yang, S. Yang, Y. Xu, Self-assembly synthesis of BiVO4/Polydopamine/g-C3N4 with enhanced visible light photocatalytic performance, Mater. Res. Bull. 98 (2018) 225–230. https://doi.org/10.1016/j.materresbull.2017.10.016.
[47] Y. Deng, H. Zhou, Y. Zhao, B. Yang, M. Shi, et al., Spatial Separation of Photogenerated Charges on Well-Defined Bismuth Vanadate Square Nanocrystals, Small. 18 (2022) 2103245. https://doi.org/10.1002/smll.202103245.
[48] Y. Xing, X. Lu, Y. Li, B. Yang, Y. Huang, et al., Self-assembled Ag4V2O7/Ag3VO4 Z-scheme heterojunction by pH adjustment with efficient photocatalytic performance, J. Adv. Ceram. 11 (2022) 1789–1800. https://doi.org/10.1007/s40145-022-0648-5.
[49] W. Zhao, Y. Feng, H. Huang, P. Zhou, J. Li, et al., A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism, Appl. Catal. B: Environ. 245 (2019) 448–458. https://doi.org/10.1016/j.apcatb.2019.01.001.
[50] Q. Wang, J. Li, L. Xiao, Y. Wang, H. Du, Constructing Z-scheme fe3n/bivo4 heterojunction via electrostatic self-assembly toward high visible-light photocatalytic hydrogen evolution, J. Alloys Compd. 935 (2023) 168062. https://doi.org/10.1016/j.jallcom.2022.168062.
[51] L. Xiao, L. Lin, J. Song, Z. Zhang, X. Wang, W. Su, Construction of a direct Z-scheme InVO4/La2Ti2O7 photocatalyst toward efficient and selective CO2 reduction to CO, J. Alloys Compd. 935 (2023) 168086. https://doi.org/10.1016/j.jallcom.2022.168086.
[52] W. Lou, L. Wang, S. Dong, Z. cao, J. Sun, Y. Zhang, A facility synthesis of bismuth-iron bimetal MOF composite silver vanadate applied to visible light photocatalysis, Opt. Mater. 126 (2022) 112168. https://doi.org/10.1016/j.optmat.2022.112168.
[53] N. Ghazkoob, M. Zargar Shoushtari, I. Kazeminezhad, S.M. Lari Baghal, Investigation of structural, magnetic, optical and photocatalytic properties of zinc ferrite nanowires/bismuth vanadate composite, J. Alloys Compd. 900 (2022) 163467. https://doi.org/10.1016/j.jallcom.2021.163467.
[54] A. Zonarsaghar, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, Co-precipitation synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage, J. Mater. Sci: Mater. Electron. 33 (2022) 6549–6554. https://doi.org/10.1007/s10854-022-07829-2.
[55] M. Iqbal, M.Z. Ahmad, K. Qureshi, I.A. Bhatti, N. Alwadai, H.S. Kusuma, Template free zinc vanadate flower synthesis, characterization and efficiency for cetirizine-dihydrochloride degradation under UV light irradiation, Mater. Chem. Phys. 272 (2021) 124968. https://doi.org/10.1016/j.matchemphys.2021.124968.
[56] N. Ghazkoob, M. Zargar, I. Kazeminejad, S.M. Lari, Synthesis of BiVO4 nanoparticles by the co-precipitation method and study the crystal structure, optical and photocatalytic properties of them, Iran. J. Crystallogr. Mineral. 28 (2020) 797–806. https://doi.org/10.29252/ijcm.28.3.797.
[57] W. Guo, P. Yu, H. Luo, J. Chi, Z. Jiang, et al., Unveiling the role of surface heterostructure in Bi0.5Y0.5VO4 solid solution for photocatalytic overall water splitting, J. Catal. 406 (2022) 193–205. https://doi.org/10.1016/j.jcat.2022.01.011.
[58] S. Wang, L. Zhao, L. Gao, D. Yang, S. Wen, et al., Fabrication of ternary dual Z-Scheme AgI/ZnIn2S4/BiVO4 heterojunction photocatalyst with enhanced photocatalytic degradation of tetracycline under visible light, Arab. J. Chem. 15 (2022) 104159. https://doi.org/10.1016/j.arabjc.2022.104159.
[59] A. Karami, R. Monsef, M.R.a Shihan, L.Y. Qassem, M.W. Falah, M. Salavati-Niasari, UV-light-induced photocatalytic response of Pechini sol–gel synthesized erbium vanadate nanostructures toward degradation of colored pollutants, Environ. Technol. Innov. 28 (2022) 102947. https://doi.org/10.1016/j.eti.2022.102947.
[60] Y. Feng, C. Jia, H. Zhao, K. Wang, X.-T. Wang, Phase-dependent photocatalytic selective oxidation of cyclohexane over copper vanadates, New J. Chem. 46 (2022) 4082–4089. https://doi.org/10.1039/D1NJ05677H.
[61] N.R. Aswathy, J. Varghese, R. Vinod Kumar, Photocatalytic degradation of malachite green using vanadium pentoxide-doped NiO thin film by sol–gel spin coating, Eur. Phys. J. Plus. 137 (2022) 1344. https://doi.org/10.1140/epjp/s13360-022-03559-w.
[62] K. Anwar, F.K. Naqvi, S. Beg, Synthesis of tetragonally stabilized lanthanum doped bismuth vanadium oxide nanoparticles and its enhanced visible light induced photocatalytic performance, Phase Transit. 95 (2022) 64–79. https://doi.org/10.1080/01411594.2021.2012175.
[63] S.A. El-Hakam, F.T. ALShorifi, R.S. Salama, S. Gamal, W.S. Abo El-Yazeed, et al., Application of nanostructured mesoporous silica/ bismuth vanadate composite catalysts for the degradation of methylene blue and brilliant green, J. Mater. Res. Technol. 18 (2022) 1963–1976. https://doi.org/10.1016/j.jmrt.2022.03.067.
[64] D. Karthigaimuthu, S. Ramasundaram, P. Nisha, B.A. Kumar, J. Sriram, et al., Synthesis of MoS2/Mg(OH)2/BiVO4 hybrid photocatalyst by ultrasonic homogenization assisted hydrothermal methods and its application as sunlight active photocatalyst for water decontamination, Chemosphere. 308 (2022) 136406. https://doi.org/10.1016/j.chemosphere.2022.136406.
[65] V. Thirupugazhmani, S. Shameena, K. Thirumalai, A. Ravi, P.A. Vivekanand, et al., Ultrasonic assisted synthesis of RGO supported HoVO4-ZnO nanocomposites, their enhanced photocatalytic activities and Rhodamine B degradation, Environ. Res. 214 (2022) 113743. https://doi.org/10.1016/j.envres.2022.113743.
[66] H.Q. Alijani, S. Iravani, R.S. Varma, Bismuth vanadate (BiVO4) nanostructures: eco-friendly synthesis and their photocatalytic applications, Catalysts. 13 (2023) 59. https://doi.org/10.3390/catal13010059.
[67] A. Ansari, D. Mohanta, Structural and XPS studies of polyhedral europium doped gadolinium orthovanadate (Eu3+:GdVO4) nanocatalyst for augmented photodegradation against Congo-red, Phys. E: Low-Dimens. Syst. Nanostruct. 143 (2022) 115357. https://doi.org/10.1016/j.physe.2022.115357.
[68] Y. Chen, Y. Zhang, W. Wang, X. Xu, Y. Li, et al., Bandgap Engineering and Oxygen Vacancies of NixV2O5+x (x = 1, 2, 3) for Efficient Visible Light-Driven CO2 to CO with Nearly 100% Selectivity, Sol. RRL. 6 (2022) 2200099. https://doi.org/10.1002/solr.202200099.
[69] X. Jin, R. Wang, Y. Zhou, J. Lai, J. Li, et al., A comprehensive experimental and first-principles study on magnesium-vanadium oxides, J. Alloys Compd. 896 (2022) 162862. https://doi.org/10.1016/j.jallcom.2021.162862.
[70] S.S. Patil, J. Lee, T. Kim, L.R. Nagappagari, K. Lee, Controlled synthesis and structural modulation to boost intrinsic photocatalytic activity of BiVO4, CrystEngComm. 24 (2022) 2686. https://doi.org/10.1039/D1CE01700D.
[71] I.A. Mkhalid, R.M. Mohamed, M. Alhaddad, A. Basaleh, L.A. Al-Hajji, A.A. Ismail, Construction of mesoporous lanthanum orthovanadate/carbon nitride heterojunction photocatalyst for the mineralization of trichloroethylene, Ceram. Int. 48 (2022) 14899–14912. https://doi.org/10.1016/j.ceramint.2022.02.028.
[72] T. Du, M. Cui, Y. Chao, Y. Xiao, Z. Ren, et al., Preparation and photocatalytic properties of highly dispersed samarium vanadate nanoparticles supported on H-mordenite composites by template-free method, J. Photochem. Photobiol. A. 433 (2022) 114207. https://doi.org/10.1016/j.jphotochem.2022.114207.
[73] I.B. Elizabeth, E. Elanthamilan, S.-F. Wang, I.S. Lydia, Facile synthesis of multifunctional zinc vanadate/polyaniline composite for photocatalytic degradation and supercapacitor applications, Chemosphere. 307 (2022) 136123. https://doi.org/10.1016/j.chemosphere.2022.136123.
[74] M. Nadolska, M. Szkoda, K. Trzciński, P. Niedziałkowski, J. Ryl, et al., Insight into Potassium Vanadates as Visible-Light-Driven Photocatalysts: Synthesis of V(IV)-Rich Nano/Microstructures for the Photodegradation of Methylene Blue, Inorg. Chem. 61 (2022) 9433–9444. https://doi.org/10.1021/acs.inorgchem.2c00136.
[75] J. Huang, Y. Ma, Q. Chen, J. Zhu, H. Jiang, et al., Effect of water-oil ratio on the photocatalytic performance of visible light-active BiVO4 nanoparticles prepared by inverse microemulsion-calcination method, Chemosphere. 299 (2022) 134454. https://doi.org/10.1016/j.chemosphere.2022.134454.
[76] S. Bakhtiarnia, S. Sheibani, A. Billard, E. Aubry, M. Arab, Deposition of nanoporous BiVO4 thin-film photocatalyst by reactive magnetron sputtering: Effect of total pressure and substrate, Trans. Nonferrous Met. Soc. China. 32 (2022) 957–971. https://doi.org/10.1016/S1003-6326(22)65846-1.
[77] R.D. Tentu, S. Basu, Photocatalytic water splitting for hydrogen production, Curr. Opin. Electrochem. 5 (2017) 56–62. https://doi.org/10.1016/j.coelec.2017.10.019.
[78] X. Zhong, Y. Li, H. Wu, R. Xie, Recent progress in BiVO4-based heterojunction nanomaterials for photocatalytic applications, Mater. Sci. Eng. B. 289 (2023) 116278. https://doi.org/10.1016/j.mseb.2023.116278.
[79] P. Bai, P. Wang, Y. Wu, X. Pang, M. Song, et al., Junction of ZnmIn2S3+m and bismuth vanadate as Z-scheme photocatalyst for enhanced hydrogen evolution activity: The role of interfacial interactions, J. Colloid Interface Sci. 628 (2022) 488–499. https://doi.org/10.1016/j.jcis.2022.08.078.
[80] F.-K. Shang, M.-Y. Qi, C.-L. Tan, Z.-R. Tang, Y.-J. Xu, Nanoscale Assembly of CdS/BiVO4 Hybrids for Coupling Selective Fine Chemical Synthesis and Hydrogen Production under Visible Light, ACS Phys. Chem Au. 2 (2022) 216–224. https://doi.org/10.1021/acsphyschemau.1c00053.
[81] Y. Fan, R. Yang, R. Zhu, Z. Zhu, CdS decorated artificial leaf BiVO4/InVO4 for photocatalytic hydrogen production and simultaneous degradation of biological hydrogen production wastewater, Catal. Today. 364 (2021) 190–195. https://doi.org/10.1016/j.cattod.2020.04.012.
[82] M. Imran, A.B. Yousaf, M. Farooq, P. Kasak, Enhancement of visible light-driven hydrogen production over zinc cadmium sulfide nanoparticles anchored on BiVO4 nanorods, Int. J. Hydrog. Energy. 47 (2022) 8327–8337. https://doi.org/10.1016/j.ijhydene.2021.12.193.
[83] K. Manikantan, K. Shanmugasundaram, P. Thirunavukkarasu, Enhanced photocatalytic dye degradation and hydrogen evolution performance of Cu encapsulated BiVO4 under visible light irradiation, Chem. Phys. Impact. 6 (2023) 100178. https://doi.org/10.1016/j.chphi.2023.100178.
[84] S. Yue, W. Hu, J. Wang, M. Sun, Z. Huang, et al., Dramatically promoted photocatalytic water splitting over InVO4 via extending hole diffusion length by surface polarization, Chem. Eng. J. 435 (2022) 135005. https://doi.org/10.1016/j.cej.2022.135005.
[85] A. Akhoondi, H. Ghaebi, L. Karuppasamy, M.M. Rahman, P. Sathishkumar, Recent advances in hydrogen production using MXenes-based metal sulfide photocatalysts, Synth. Sinter. 2 (2022) 37–54. https://doi.org/10.53063/synsint.2022.21106.
[86] Y. Li, Y. Liu, D. Xing, J. Wang, L. Zheng, et al., 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting, Appl. Catal. B. 285 (2021) 119855. https://doi.org/10.1016/j.apcatb.2020.119855.
[87] W. Wang, M. Chi, X.Y. Zhang, I.N. Ivafov, Z. Bao, et al., Construction of 2D BiVO4−CdS−Ti3C2Tx Heterostructures for Enhanced Photo-redox Activities, ChemCatChem. 12 (2020) 3496–3503. https://doi.org/10.1002/cctc.202000448.
[88] X. Du, T. Zhao, X. Xiu, Z. Xing, Z. Li, et al., BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-Scheme photocatalysts for efficient visible-light-driven overall water splitting, Appl. Mater. Today. 20 (2020) 100719. https://doi.org/10.1016/j.apmt.2020.100719.
[89] A. Hayat, M. Sohail, T.A. Taha, S. Kumar, A.G. Al-Sehemi, et al., Synergetic effect of bismuth vanadate over copolymerized carbon nitride composites for highly efficient photocatalytic H2 and O2 generation, J. Colloid Interface Sci. 627 (2022) 621–629. https://doi.org/10.1016/j.jcis.2022.07.012.
[90] H.Y. Hafeez, S.K. Lakhera, M.V. Shankar, B. Neppolian, Synergetic improvement in charge carrier transport and light harvesting over ternary InVO4-g-C3N4/rGO hybrid nanocomposite for hydrogen evolution reaction, Int. J. Hydrog. Energy. 45 (2020) 7530–7540. https://doi.org/10.1016/j.ijhydene.2019.05.235.
[91] B. Hu, F. Cai, T. Chen, M. Fan, C. Song, et al., Hydrothermal Synthesis g-C3N4/Nano-InVO4 Nanocomposites and Enhanced Photocatalytic Activity for Hydrogen Production under Visible Light Irradiation, ACS Appl. Mater. Interfaces. 7 (2015) 18247–18256. https://doi.org/10.1021/acsami.5b05715.
[92] F.-Y. Chen, L. Cheng, Y.-B. Tang, K.-K. Shu, W.-L. Shi, Construction of Z-scheme heterojunction g-C3N4/CQDs/InVO4 with broad-spectrum response for efficient rhodamine B degradation and H2 evolution under visible light, Chem. Technol. Biotechnol. 96 (2021) 3074–3083. https://doi.org/10.1002/jctb.6859.
[93] Y. Fan, R. Yang, R. Zhu, H. Zhao, Q. Lu, et al., CdS-based artificial leaf for photocatalytic hydrogen evolution and simultaneous degradation of biological wastewater, Chemosphere. 301 (2022) 134713. https://doi.org/10.1016/j.chemosphere.2022.134713.
[94] H.Y. Hafeez, J. Mohammed, A.B. Suleiman, C.E. Ndikilar, I. Muhammad, R.S. Sa’id, Robust One-Pot Solvothermal Incorporation of Invo4 with Polymeric-C3n4 Nanosheets with Improved Charge Carrier Separation and Transfer: A Highly Efficient and Stable Photocatalyst for Solar Fuel (H2) Generation, SSRN. http://dx.doi.org/10.2139/ssrn.4217383.
[95] A.S. Alkorbi, K.Y. Kumar, M.K. Prashanth, L. Parashuram, A. Abate, et al., Samarium vanadate affixed sulfur self doped g-C3N4 heterojunction; photocatalytic, photoelectrocatalytic hydrogen evolution and dye degradation, Int. J. Hydrog. Energy. 47 (2022) 12988–13003. https://doi.org/10.1016/j.ijhydene.2022.02.071.
[96] S. Sun, R. Gao, X. Liu, L. Pan, C. Shi, et al., Engineering interfacial band bending over bismuth vanadate/carbon nitride by work function regulation for efficient solar-driven water splitting, Sci. Bull. 67 (2022) 389–397. https://doi.org/10.1016/j.scib.2021.10.009.
[97] S. Zang, X. Cai, M. Chen, D. Teng, F. Jing, et al., Tunable Carrier Transfer of Polymeric Carbon Nitride with Charge-Conducting CoV2O6∙2H2O for Photocatalytic O2 Evolution, Nanomaterials. 12 (2022) 1931. https://doi.org/10.3390/nano12111931.
[98] X. Li, J. Hu, T. Yang, X. Yang, J. Qu, et al., Efficient photocatalytic H2-evolution coupled with valuable furfural-production on exquisite 2D/2D LaVO4/g-C3N4 heterostructure, Nano Energy. 92 (2022) 106714. https://doi.org/10.1016/j.nanoen.2021.106714.
[99] W. Guo, H. Luo, Z. Jiang, W. Shangguan, In-situ pressure-induced BiVO4/Bi0.6Y0.4VO4 S-scheme heterojunction for enhanced photocatalytic overall water splitting activity, Chin. J. Catal. 43 (2022) 316–328. https://doi.org/10.1016/S1872-2067(21)63846-9.
[100] B. Zhang, L. Sun, G. Lei, W. Zhao, Z. Guo, et al., Effect for the electronic configurations of LuVO4 induced by D4h crystal-field-splitting discovered in the systematic DFT investigation on photocatalysis capacities of vanadates, Mater. Today Chem. 29 (2023) 101395. https://doi.org/10.1016/j.mtchem.2023.101395.
[101] K.K. Mandari, N. Son, T. Kim, M. Kang, Highly efficient SnS2@Ag/AgVO3 heterostructures for improved charge carriers in photocatalytic H2 production, J. Alloys Compd. 927 (2022) 166886. https://doi.org/10.1016/j.jallcom.2022.166886.
[102] X.-P. Wang, Z. Jin, X. Li, Monoclinic β-AgVO3 coupled with CdS formed a 1D/1D p–n heterojunction for efficient photocatalytic hydrogen evolution, Rare Met. 42 (2023) 1494–1507. https://doi.org/10.1007/s12598-022-02183-y.
[103] A. Chowdhury, S. Balu, T.C.-K. Yang, Construction of α-Fe2O3-NPs@AgVO3-NRs Z-scheme heterojunction: An efficient photo(electro)catalyst for Cr(VI) reduction and oxygen evolution reactions under visible-light, J. Environ. Chem. Eng. 11 (2023) 109769. https://doi.org/10.1016/j.jece.2023.109769.
[104] X. Wei, S. Naraginti, X. Yang, X. Xu, J. Li, et al., A novel magnetic AgVO3/rGO/CuFe2O4 hybrid catalyst for efficient hydrogen evolution and photocatalytic degradation, Environ. Res. 229 (2023) 115948. https://doi.org/10.1016/j.envres.2023.115948.
[105] M.F.R. Samsudin, S. Sufian, B.H. Hameed, Epigrammatic progress and perspective on the photocatalytic properties of BiVO4-based photocatalyst in photocatalytic water treatment technology: A review, J. Mol. Liq. 268 (2018) 438–459. https://doi.org/10.1016/j.molliq.2018.07.051.
[106] X. Li, H. Sun, Y. Xie, Y. Liang, X. Gong, et al., Principles, synthesis and applications of dual Z-scheme photocatalysts, Coord. Chem. Rev. 467 (2022) 214596. https://doi.org/10.1016/j.ccr.2022.214596.
[107] H. Li, L. Wang, X. Pi, M. Ma, X. Jiang, et al., Effect of the wettability of Ag2MoO4/BiVO4 {010} composite on the photocatalytic degradation for 17α-ethinyl estradiol, J. Alloys Compd. 899 (2022) 163295. https://doi.org/10.1016/j.jallcom.2021.163295.
[108] M.H.T. Tung, L.M. Cuong, T.T.T. Phuong, C.V. Hoang, T.T.T. Hien, et al., Construction of Ag decorated on InVO4/g-C3N4 for novel photocatalytic degradation of residual antibiotics, J. Solid State Chem. 305 (2022) 122643. https://doi.org/10.1016/j.jssc.2021.122643.
[109] D.V. Thuan, T.L. Nguyen, H. Ha, N.T. Thanh, S. Ghotekar, et al., Development of Indium vanadate and Silver deposited on graphitic carbon nitride ternary heterojunction for advanced photocatalytic degradation of residual antibiotics in aqueous environment, Opt. Mater. 123 (2022) 111885. https://doi.org/10.1016/j.optmat.2021.111885.
[110] S. Li, S. Hu, W. Jiang, Y. Liu, Y. Liu, et al., Ag3VO4 Nanoparticles Decorated Bi2O2CO3 Micro-Flowers: An Efficient Visible-Light-Driven Photocatalyst for the Removal of Toxic Contaminants, Front. Chem. 6 (2018) 255. https://doi.org/10.3389/fchem.2018.00255.
[111] D. Jiang, P. Xiao, L. Shao, D. Li, RGO-Promoted All-Solid-State g-C3N4/BiVO4 Z-Scheme Heterostructure with Enhanced Photocatalytic Activity toward the Degradation of Antibiotics, Ind. Eng. Chem. Res. 56 (2017) 8823–8832. https://doi.org/10.1021/acs.iecr.7b01840.
[112] E.S. Alsolami, I.A. Mkhalid, A. Shawky, M.A. Hussein, AgVO3-anchored 2D CeO2 nanocrystals prepared by solution process for visible-light-driven photooxidation of ciprofloxacin antibiotic in water, J. Photochem. Photobiol. A: Chem. 441 (2023) 114725. https://doi.org/10.1016/j.jphotochem.2023.114725.
[113] A. Raja, N. Son, M. Kang, Reduced graphene oxide decorated transition metal manganese vanadium oxide nanorods for electrochemical supercapacitors and photocatalytic degradation of pollutants in water, J. Taiwan Inst. Chem. Eng. 144 (2023) 104762. https://doi.org/10.1016/j.jtice.2023.104762.
[114] Z. Bao, Z. Li, Y. Du, M. Zhang, J. Wang, et al., A Solid-State Carrier Transport-Prompted Z-Scheme BiVO4 Quantum Dots-Based Photocatalyst for Boosted Photocatalytic Degradation of Antibiotics, Energy Technol. 10 (2022) 2200536. https://doi.org/10.1002/ente.202200536.
[115] P. Akhter, I. Shafiq, F. Ali, F. Hassan, R. Rehman, et al., Montmorillonite-Supported BiVO4 nanocomposite: Synthesis, interface characteristics and enhanced photocatalytic activity for Dye-contaminated wastewater, J. Ind. Eng. Chem. 123 (2023) 238–247. https://doi.org/10.1016/j.jiec.2023.03.039.
[116] A. Hassani, S. Krishnan, J. Scaria, P. Eghbali, P.V. Nidheesh, Z-scheme photocatalysts for visible-light-driven pollutants degradation: A review on recent advancements, Curr. Opin. Solid State Mater. Sci. 25 (2021) 100941. https://doi.org/10.1016/j.cossms.2021.100941.
[117] P.J. Mafa, M.E. Malefane, A.O. Idris, B.B. Mamba, D. Liu, et al., Cobalt oxide/copper bismuth oxide/samarium vanadate (Co3O4/CuBi2O4/SmVO4) dual Z-scheme heterostructured photocatalyst with high charge-transfer efficiency: Enhanced carbamazepine degradation under visible light irradiation, J. Colloid Interface Sci. 603 (2021) 666–684. https://doi.org/10.1016/j.jcis.2021.06.146.
[118] K. Leeladevi, J. Kumar, M. Arunpandian, M. Thiruppathi, E.R. Nagarajan, Investigation on photocatalytic degradation of hazardous chloramphenicol drug and amaranth dye by SmVO4 decorated g-C3N4 nanocomposites, Mater. Sci. Semicond. 123 (2021) 105563. https://doi.org/10.1016/j.mssp.2020.105563.
[119] J. Chen, X. Xu, L. Feng, A. He, L. Liu, et al., One-step MOF assisted synthesis of SmVO4 nanorods for photocatalytic degradation of tetracycline under visible light, Mater. Lett. 276 (2020) 128213. https://doi.org/10.1016/j.matlet.2020.128213.
[120] Y. Chen, Y. Zhou, J. Zhang, J. Li, T. Yao, et al., Ag bridged Z-scheme AgVO3/Bi4Ti3O12 heterojunction for enhanced antibiotic degradation, J. Phys. Chem. Solids. 161 (2022) 110428. https://doi.org/10.1016/j.jpcs.2021.110428.
[121] T. Wang, J. Cai, J. Zheng, K. Fang, I. Hussain, D. Z. Husein, Facile synthesis of activated biochar/BiVO4 heterojunction photocatalyst to enhance visible light efficient degradation for dye and antibiotics: applications and mechanisms, J. Mater. Res. Technol. 19 (2022) 5017–5036. https://doi.org/10.1016/j.jmrt.2022.06.177.
[122] P.O. Oladoye, T.O. Ajiboye, E.O. Omotola, O.J. Oyewola, Methylene blue dye: Toxicity and potential elimination technology from wastewater, Results Eng. 16 (2022) 100678. https://doi.org/10.1016/j.rineng.2022.100678.
[123] E.A. Daher, B. Riachi, J. Chamoun, C. Laberty-Robert, W. Hamd, New approach for designing wrinkled and porous ZnO thin films for photocatalytic applications, Colloids Surf. A: Physicochem. Eng. Asp. 658 (2023) 130628. https://doi.org/10.1016/j.colsurfa.2022.130628.
[124] X. Chen, Q. Dong, S. Chen, Z. Zhang, X. Zhang, et al., Halloysite nanotubes supported BiVO4/BaSnO3 p-n heterojunction photocatalysts for the enhanced degradation of methylene blue under visible light, Colloids Surf. A: Physicochem. Eng. Asp. 664 (2023) 131143. https://doi.org/10.1016/j.colsurfa.2023.131143.
[125] A. Karami, R. Monsef, I. Waleed, H.L. Kareem, I.T. Ibrahim, M. Salavati-Niasari, Microwave synthesized erbium vanadate nano-photocatalyst: Application for enhanced degradation of contaminated water, Int. J. Hydrog. Energy. 48 (2023) 8499–8513. https://doi.org/10.1016/j.ijhydene.2022.12.017.
[126] S. Deka, M. Bidyarani Devi, M.R. Khan, N. Keerthana, A. Venimadhav, B. Choudhury, Piezo-photocatalytic and photocatalytic bismuth vanadate nanorods with antibacterial property, ACS Appl. Nano Mater. 5 (2022) 10724–10734. https://doi.org/10.1021/acsanm.2c02072.
[127] M. Faisal, A. Iqbal, F. Adam, R. Jothiramalingam, Effect of Cu doping on the photocatalytic activity of InVO4 for hazardous dye photodegradation under LED light and its mechanism, Water Sci. Technol. 84 (2021) 576–595. https://doi.org/10.2166/wst.2021.244.
[128] S. Bansal, A. Singh, D. Poddar, P. Jain, Fabrication and photocatalytic evaluation of functionalized chitosan decorated vanadium pentoxide nano-adsorbents for water remediation, Ceram. Int. 49 (2023) 8871–8885. https://doi.org/10.1016/j.ceramint.2022.11.043.
[129] V. Jayaraman, C. Ayappan, A. Mani, Facile preparation of bismuth vanadate-sheet/carbon nitride rod-like interface photocatalyst for efficient degradation of model organic pollutant under direct sunlight irradiation, Chemosphere. 287 (2022) 132055. https://doi.org/10.1016/j.chemosphere.2021.132055.
[130] K. Wannakan, K. Khansamrit, T. Senasu, S. Nanan, Ultrasound-Assisted Synthesis of a ZnO/BiVO4 S-Scheme Heterojunction Photocatalyst for Degradation of the Reactive Red 141 Dye and Oxytetracycline Antibiotic, ACS Omega. 8 (2023) 4835–4852. https://doi.org/10.1021/acsomega.2c07020.
[131] L.N. Ramavathu, B.N. Tumma, P. Justin, Photocatalytic degradation studies of malachite green dye by hydrothermally synthesized Cobalt Vanadate nanoparticles, Int. J. Nano Dimens. 14 (2022) 145–156. https://doi.org/10.22034/IJND.2022.1965246.2172.
[132] P.K. Panda, D. Pradhan, S.K. Dash, Solar light induced photocatalytic degradation of malachite green using BiVO4 catalyst, NeuroQuantology. 20 (2022) 1518–1526. https://doi.org/10.48047/NQ.2022.20.20.NQ109154.
[133] D. Channei, P. Thammaacheep, S. Kerdphon, P. Jannoey, W. Khanitchaidecha, A. Nakaruk, Domestic microwave-assisted synthesis of Pd doped-BiVO4 photocatalysts, Inorg. Chem. Commun. 150 (2023) 110478. https://doi.org/10.1016/j.inoche.2023.110478.
[134] S.P. Keerthana, R. Yuvakkumar, P.S. Kumar, G. Ravi, D. Velauthapillai, Surfactant induced copper vanadate (β-Cu2V2O7, Cu3V2O8) for different textile dyes degradation, Environ. Res. 211 (2022) 112964. https://doi.org/10.1016/j.envres.2022.112964.
[135] D. Vaya, P.K. Surolia, Semiconductor based photocatalytic degradation of pesticides: An overview, Environ. Technol. Innov. 20 (2020) 101128. https://doi.org/10.1016/j.eti.2020.101128.
[136] M. Piao, Y. Sun, Y. Wang, H. Teng, Preparation of BiVO4/RGO-TNT Nanomaterials for Efficient and Recyclable Photocatalysis of Imidacloprid Insecticide, Chem. Select. 7 (2022) e202200182. https://doi.org/10.1002/slct.202200182.
[137] H. Chawla, S. Grag, J. Rohilla, Á. Szamosvölgyi, A. Efremova, et al., Visible LED-light driven photocatalytic degradation of organochlorine pesticides (2,4-D & 2,4-DP) by Curcuma longa mediated bismuth vanadate, J. Clean. Prod. 367 (2022) 132923. https://doi.org/10.1016/j.jclepro.2022.132923.
[138] Q. Wang, B. Xue, M. Tan, N. Li, H. Zhou, et al., Visible-light-driven Ag3VO4-BiVO4/C3N4 with continuous type II heterojunctions for effective removal of Cr(VI), J. Environ. Chem. Eng. 11 (2023) 109245. https://doi.org/10.1016/j.jece.2022.109245.
[139] H. Sun, Q. Dai, J. Liu, T. Zhou, M. Chen, et al., BiVO4–Deposited MIL–101–NH2 for Efficient Photocatalytic Elimination of Cr(VI), Molecules. 28 (2023) 1218. https://doi.org/10.3390/molecules28031218.
[140] L.-H. Wang, H.-Y. Zeng, J. Xiong, S. Xu, D.-S. An, BiVO4/PANI composite with p-n heterostructure for enhanced photocatalytic activity towards Cr(VI) reduction, Vacuum. 202 (2022) 111203. https://doi.org/10.1016/j.vacuum.2022.111203.
[141] G. Xu, M. Du, J. Zhang, T. Li, Y. Guan, C. Guo, Facile fabrication of magnetically recyclable Fe3O4/BiVO4/CuS heterojunction photocatalyst for boosting simultaneous Cr(VI) reduction and methylene blue degradation under visible light, J. Alloys Compd. 895 (2022) 162631. https://doi.org/10.1016/j.jallcom.2021.162631.
[142] P. Liu, J. Yi, R. Bao, H. Zhao, Theory-oriented Synthesis of 2D/2D BiVO4/MXene Heterojunction for Simultaneous Removal of Hexavalent Chromium and Methylene Blue, ChemCatChem. 13 (2021) 3046. https://doi.org/10.1002/cctc.202100315.
[143] S. Luo, S. Li, S. Zhang, Z. Cheng, T.T. Nguyen, M. Guo, Visible-light-driven Z-scheme protonated g-C3N4/wood flour biochar/BiVO4 photocatalyst with biochar as charge-transfer channel for enhanced RhB degradation and Cr(VI) reduction, Sci. Total Environ. 806 (2022) 150662. https://doi.org/10.1016/j.scitotenv.2021.150662.
[144] V. Balakumar, C. Chuaicham, K. Sasaki, K. Sekar, Fabrication of BiVO4/ reduced graphene oxide photocatlyst for hexavalent chromium reduction under visible region, Mater. Today. 50 (2022) 400–405. https://doi.org/10.1016/j.matpr.2021.11.381.
[145] U. Zahoor, M.I. Rameel, A.H. Javed, M. Abdullah Khan, J.Y. Al-Humaidi, et al., Yttrium Doped Bismuth Vanadate Titania Heterojunction for Efficient Photoreduction of Cr from Wastewater Under Visible Light, Int. J. Environ. Res. 26 (2022) 88. https://doi.org/10.1007/s41742-022-00466-x.
[146] J. Sun, Y. Rong, Y. Hou, L. Tu, Q. Wang, et al., Synchronous removal of tetracycline and copper (II) over Z scheme BiVO4/rGO/g-C3N4 photocatalyst under visible-light irradiation, Environ. Sci. Pollut. Res. 29 (2022) 19148–19164. https://doi.org/10.1007/s11356-021-16996-4.
[147] M. Alhaddad, M.S. Amin, Z.I. Zaki, Novel BiVO4/ZnO heterojunction for amended photoreduction of mercury (II) ions, Opt. Mater. 127 (2022) 112251. https://doi.org/10.1016/j.optmat.2022.112251.
[148] X. Hu, R. Guo, X. Chena, Z. Bi, J. Wang, W. Pan, Bismuth-based Z-scheme structure for photocatalytic CO2 reduction: A review, J. Environ. Chem. Eng. 10 (2022) 108582. https://doi.org/10.1016/j.jece.2022.108582.
[149] A. Bhattacharya, A. Selvaraj, Photocatalytic conversion of CO2 into beneficial fuels and chemicals – a new horizon in atmospheric CO2 mitigation, Process Saf. Environ. Prot. 156 (2021) 256–287. https://doi.org/10.1016/j.psep.2021.10.003.
[150] K. Zhao, X. Liu, Q. He, W. Zhou, K. Yang, et al., Preparation and characterization of Sm3+/Tm3+ co-doped BiVO4 micro-squares and their photocatalytic performance for CO2 reduction, J. Taiwan Inst. Chem. Eng. 144 (2023) 104737. https://doi.org/10.1016/j.jtice.2023.104737.
[151] J. Li, W. Shao, M. Geng, S. Wan, M. Ou, Y. Chen, Combined Schottky junction and doping effect in CdxZn1-xS@Au/BiVO4 Z-Scheme photocatalyst with boosted carriers charge separation for CO2 reduction by H2O, J. Colloid Interface Sci. 606 (2022) 1469–1476. https://doi.org/10.1016/j.jcis.2021.08.103.
[152] J. Wei, S. Zhang, J. Sun, T. Liang, Z. Li, et al., Z-scheme CoAl-layered double hydroxide/indium vanadate heterojunction for enhanced and highly selective photocatalytic reduction of carbon dioxide to carbon monoxide, J. Colloid Interface Sci. 629 (2023) 92–102. https://doi.org/10.1016/j.jcis.2022.08.148.
[153] M. Yu, J. Wang, G. Li, S. Zhang, Q. Zhong, Construction of 3D/2D indium vanadate /graphite carbon nitride with nitrogen defects Z-scheme heterojunction for improving photocatalytic carbon dioxide reduction, J. Mater. Sci. Technol.154 (2023) 129–139. https://doi.org/10.1016/j.jmst.2022.12.070.
[154] J. Li, F. Wei, Z. Xiu, X. Han, Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction, Chem. Eng. J. 446 (2022) 137129. https://doi.org/10.1016/j.cej.2022.137129.
[155] F. Mei, K. Dai, J. Zhang, L. Li, C. Liang, Ultrathin indium vanadate/cadmium selenide-amine step-scheme heterojunction with interfacial chemical bonding for promotion of visible-light-driven carbon dioxide reduction, J. Colloid Interface Sci. 608 (2022) 1846–1856. https://doi.org/10.1016/j.jcis.2021.10.034.
[156] L. Wang, D. Chen, S. Miao, F. Chen, C. Guo, et al., Nitric acid-assisted growth of InVO4 nanobelts on protonated ultrathin C3N4 nanosheets as an S-scheme photocatalyst with tunable oxygen vacancies for boosting CO2 conversion, Chem. Eng. J. 434 (2022) 133867. https://doi.org/10.1016/j.cej.2021.133867.
[157] S. Gong, X. Teng, Y. Niu, X. Liu, M. Xu, et al., Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction, Appl. Catal. B. 298 (2021) 120521. https://doi.org/10.1016/j.apcatb.2021.120521.
[158] A. Akhoondi, M. Mirzaei, M.Y. Nassar, Z. Sabaghian, F. Hatami, M. Yusuf, New strategies in the preparation of binary g-C3N4/MXene composites for visible-light-driven photocatalytic applications, Synth. Sinter. 2 (2022) 151–169. https://doi.org/10.53063/synsint.2022.24121.
[159] M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23 (2013) 2185–2192. https://doi.org/10.1002/adfm.201202502.
[160] L. Li, Y. Yang, L. Yang, X. Wang, Y. Zhou, Z. Zou, 3D hydrangea-like InVO4/Ti3C2Tx hierarchical heterosystem collaborating with 2D/2D interface interaction for enhanced photocatalytic CO2 reduction, Chem. Nano. Mat. 7 (2021) 815–823. https://doi.org/10.1002/cnma.202100100.
[161] A. Bafaqeer, M. Tahir, N.A.S. Amin, N. Al-Bastaki, A. Hamood, H.A. Thabit, Performance analysis of externally reflected photoreactor for CO2 conversion to methanol using f-C3N4/ZnV2O6 S-scheme photocatalyst, Environ. Technol. Innov. 30 (2023) 103032. https://doi.org/10.1016/j.eti.2023.103032.
[162] L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-Scheme Photocatalyst, Adv. Mater. 34 (2022) 2107668. https://doi.org/10.1002/adma.202107668.
[163] S. Li, N. Hasan, H. Ma, G. Zhu, L. Pan, et al., Hierarchical V2O5/ZnV2O6 nanosheets photocatalyst for CO2 reduction to solar fuels, Chem. Eng. J. 430 (2022) 132863. https://doi.org/10.1016/j.cej.2021.132863.

Cited By

Crossref Google Scholar
New updates on vanadate compounds synthesis and visible-light-driven photocatalytic applications
Submitted
2022-12-04
Published
2023-03-30
How to Cite
Mirzaei, M., Akhoondi, A., Hamd, W., Díaz de León, J. N., & Selvaraj, R. (2023). New updates on vanadate compounds synthesis and visible-light-driven photocatalytic applications. Synthesis and Sintering, 3(1), 28-45. https://doi.org/10.53063/synsint.2023.31132

Most read articles by the same author(s)