Recent advances in the synthesis of ZnO-based electrochemical sensors

  • Asieh Akhoondi 1
  • Mashkoor Ahmad 2
  • Muhammad Nawaz Sharif 3
  • Shahid Aziz 4
  • Hadi Davardoost 5
  • Qamar Wali 6
  • Faiza Jan Iftikhar 7
  • 1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 2 Nanomaterials Research Group, Physics Division PINSTECH, Islamabad 44000, Pakistan
  • 3 Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
  • 4 Materials Laboratory, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, (AJK), Pakistan
  • 5 Department of System Analysis and Management, Faculty of Economics, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia
  • 6 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, P. R. China
  • 7 Department of Computer Engineering, National University of Technology, Islamabad, 44000, Pakistan

Abstract

Until now, various composites based on zinc oxide (ZnO) have been investigated in electrochemical sensors. The physical and electrochemical properties of ZnO and its structure can improve the selectivity, sensitivity, and adaptability of nanocomposites. Therefore, the focus on the fabrication of cheap ZnO-based electrodes with affordable and easy transportability has increased. In addition, the electrochemical behavior is affected by the structure and morphology of the ZnO-based composite in detecting pollutants such as volatile organic compounds, heavy metals, and toxins. Furthermore, ZnO-based nanostructures are efficient in the fabrication of electrochemical sensors in the food industry, pharmaceutical analysis, and medical diagnostics. In this review, various techniques in the synthesis of ZnO-based electrodes and their effect on the particle size, shape, and morphology of compounds have been collected. Since the performance of chemical sensors has a direct relationship with the structure of the composite used in its electrode, it is necessary to discuss the new production methods, new concepts, strategies, and challenges. Additionally, new gains highlight recent developments and sensing of various analytes in the monitoring systems. These sensors have demonstrated a strong growth acceleration which could lead to the development of recent technologies. At last, an optimistic outlook is provided on the future of ZnO-based sensors and their challenges.

Downloads

Download data is not yet available.
Keywords: Electrochemical sensor, Synthesis, ZnO-based composite, Semiconductor

References

[1] G. Shanmugam, Fossil fuels, climate change, and the vital role of CO2 to people and plants on planet Earth, Bull. Min. Res. Exp. 170 (2023) 1–1. https://doi.org/10.19111/bulletinofmre.1349959.
[2] F. Perera, Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist, Int. J. Environ. Res. Public. Health. 15 (2018) 16. https://doi.org/10.3390/ijerph15010016.
[3] S. Khan, J. Ali, Chemical analysis of air and water, Bioassays, Elsevier. (2018) 21–39. https://doi.org/10.1016/B978-0-12-811861-0.00002-4.
[4] M.M. Rahman, Recommendations on the measurement techniques of atmospheric pollutants from in situ and satellite observations: a review, Arab. J. Geosci. 16 (2023) 326. https://doi.org/10.1007/s12517-023-11410-4.
[5] W. Li, Z. Zhu, Q. Chen, J. Li, M. Tu, Device fabrication and sensing mechanism in metal-organic framework-based chemical sensors, Cell Rep. Phys. Sci. 4 (2023) 101679. https://doi.org/10.1016/j.xcrp.2023.101679.
[6] H. Rostamzad, Active and intelligent biodegradable films and polymers, In Woodhead Publishing Series in Composites Science and Engineering, Biodegradable Polymers, Blends and Composites, Woodhead Publishing.(2022) 415–430. https://doi.org/10.1016/B978-0-12-823791-5.00023-5.
[7] J. Baranwal, B. Barse, G. Gatto, G. Broncova, A. Kumar, Electrochemical Sensors and Their Applications: A Review, Chemosensors. 10 (2022) 363. https://doi.org/10.3390/chemosensors10090363.
[8] J.R. Stetter, J. Li, Amperometric gas sensors a review, Chem. Rev. 108 (2008) 352–366. https://doi.org/10.1021/cr0681039.
[9] A. Harper, M.R. Anderson, Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction, Sensors. 10 (2010) 8248–8274. https://doi.org/10.3390/s100908248.
[10] S.S. SebtAhmadi, B. Raissi, M.S. Yaghmaee, R. Riahifar, S. Rahimisheikh, Effect of electrode pores on the performance of CO electrochemical gas sensor, experimental and modeling, Electrochim. Acta. 389 (2021) 138611. https://doi.org/10.1016/j.electacta.2021.138611.
[11] N. Janudin, N.A.M. Kasim, V.F. Knight, N.A. Halim, S.A.M. Noor, et al., Sensing Techniques on Determination of Chlorine Gas and Free Chlorine in Water, J. Sens. 2022 (2022) 1898417. https://doi.org/10.1155/2022/1898417.
[12] S.P. Lee, Electrodes for Semiconductor Gas Sensors, Sensors. 17 (2017) 683. https://doi.org/10.3390/s17040683.
[13] M. Tomić, M. Šetka, L. Vojkůvka, S. Vallejos, VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials, Nanomaterials. 11 (2021) 552. https://doi.org/10.3390/nano11020552.
[14] P. Dariyal, S. Sharma, G. Singh Chauhan, B. Pratap Singh, S.R. Dhakate, Recent trends in gas sensing via carbon nanomaterials: outlook and challenges, Nanoscale Adv. 3 (2021) 6514–6544. https://doi.org/10.1039/D1NA00707F.
[15] M. Mirzaei, A. Akhoondi, W. Hamd, J.N. Díaz de León, R. Selvaraj, New updates on vanadate compounds synthesis and visible-light-driven photocatalytic applications, Synth. Sinter. 3 (2023) 28–45. https://doi.org/10.53063/synsint.2023.31132.
[16] C. Kong, G. Wang, Development of ZnO@C/GCE sensor for electrochemical determination of terbutaline in blood serum samples, Int. J. Electrochem. Sci. 18 (2023) 100214. https://doi.org/10.1016/j.ijoes.2023.100214.
[17] J. Xue, S. Ma, Y. Zhou, Z. Zhang, Facile synthesis of ZnO–C nanocomposites with enhanced photocatalytic activity, New J. Chem. 39 (2015) 1852–1857. https://doi.org/10.1039/C4NJ02004A.
[18] R. Savari, J. Rouhi, O. Fakhar, S. Kakooei, D. Pourzadeh, et al., Development of photo-anodes based on strontium doped zinc oxide-reduced graphene oxide nanocomposites for improving performance of dye-sensitized solar cells, Ceram. Int. 47 (2021) 31927–31939. https://doi.org/10.1016/j.ceramint.2021.08.079.
[19] D. Dhinasekaran, P. Soundharraj, M. Jagannathan, A.R. Rajendran, S. Rajendran, Hybrid ZnO nanostructures modified graphite electrode as an efficient urea sensor for environmental pollution monitoring, Chemosphere. 296 (2022) 133918. https://doi.org/10.1016/j.chemosphere.2022.133918.
[20] M. Sajjad, I. Ullah, M.I. Khan, J. Khan, M.Y. Khan, M.T. Qureshi, Structural and optical properties of pure and copper doped zinc oxide nanoparticles, Results Phys. 9 (2018) 1301–1309. https://doi.org/10.1016/j.rinp.2018.04.010.
[21] T. Srinivasulu, K. Saritha, K.T.R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis, Mod. Electron. Mater. 3 (2017) 76–85. https://doi.org/10.1016/j.moem.2017.07.001.
[22] M.M. Rahman, M.M. Alam, A.M. Asiri, S. Chowdhury, R.S. Alruwais, Sensitive detection of citric acid in real samples based on Nafion/ZnO–CuO nanocomposites modified glassy carbon electrode by electrochemical approach, Mater. Chem. Phys. 293 (2023) 126975. https://doi.org/10.1016/j.matchemphys.2022.126975.
[23] M.M. Rahman, A.M. Asiri, Development of selective and sensitive bicarbonate chemical sensor based on wet-chemically prepared CuO-ZnO nanorods, Sens. Actuators B: Chem. 214 (2015) 82–91. https://doi.org/10.1016/j.snb.2015.02.113.
[24] S.B. Arpitha, B.E. Kumara Swamy, J.K. Shashikumara, An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol, Inorg. Chem. Commun. 152 (2023) 110656. https://doi.org/10.1016/j.inoche.2023.110656.
[25] H.-Y. Liu, L.-L. Zhu, Z.-H. Huang, Y.-B. Qiu, H.-X. Xu, et al., Simultaneous Detection of Hydroquinone, Catechol and Resorcinol by an Electrochemical Sensor Based on Ammoniated-Phosphate Buffer Solution Activated Glassy Carbon Electrode, Chin. J. Anal. Chem. 47 (2019) e19113–e19120. https://doi.org/10.1016/S1872-2040(19)61183-7.
[26] M. Kumar, K. Swamy, S. Reddy, T.V. Sathisha, J. Manjanna, Synthesis of ZnO and its surfactant based electrode for the simultaneous detection of dopamine and ascorbic acid, Anal. Methods. 5 (2013) 735–740. https://doi.org/10.1039/C2AY26124C.
[27] P. Zanello, Inorganic Electrochemistry: Theory, Practice and Application, The Royal Society of Chemistry, Cambridge. (2003).
[28] A. Akhoondi, M. Ziarati, N. Khandan, Hydrothermal Production of Highly Pure Nano Pyrite in a Stirred Reactor, Iran. J. Chem. Chem. Eng. 33 (2014) 15–19. https://doi.org/10.30492/IJCCE.2014.7189.
[29] J. Ganesamurthi, R. Shanmugam, T.-W. Chen, S.-M. Chen, M. Balamurugan, et al., NiO/ZnO binary metal oxide based electrochemical sensor for the evaluation of hazardous flavonoid in biological and vegetable samples, Colloids Surf. A: Physicochem. Eng. Asp. 647 (2022) 129077. https://doi.org/10.1016/j.colsurfa.2022.129077.
[30] W. Si, W. Du, F. Wang, L. Wu, J. Liu, et al., One-pot hydrothermal synthesis of nano-sheet assembled NiO/ZnO microspheres for efficient sulfur dioxide detection, Ceram. Int. 46 (2020) 7279–7287. https://doi.org/10.1016/j.ceramint.2019.11.222.
[31] A. Akhoondi, M. Aghaziarati, N. Khandan, Production of highly pure iron disulfide nanoparticles using hydrothermal synthesis method, Appl. Nanosci. 3 (2013) 417–422. https://doi.org/10.1007/s13204-012-0153-1.
[32] K.S. Babu, A. Padmanaban, V. Narayanan, Surface tuned Au-ZnO nanorods for enhanced electrochemical sensing ability towards the detection of gallic acid, Inorg. Chem. Commun. 139 (2022) 109400. https://doi.org/10.1016/j.inoche.2022.109400.
[33] S.-L. Yang, G. Li, J. Feng, P.-Y. Wang, L.-B. Qu, Synthesis of core/satellite donut-shaped ZnO–Au nanoparticles incorporated with reduced graphene oxide for electrochemical sensing of rutin, Electrochim. Acta. 412 (2022) 140157. https://doi.org/10.1016/j.electacta.2022.140157.
[34] Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal Synthesis of Nanomaterials, J. Nanomater. 2020 (2020) 8917013. https://doi.org/10.1155/2020/8917013.
[35] W. Kang, X. Jimeng, W. Xitao, The effects of ZnO morphology on photocatalytic efficiency of znO/rgo nanocomposites, Appl. Surf. Sci. 360 (2016) 270–275. https://doi.org/10.1016/j.apsusc.2015.10.190.
[36] H. Xu, Z. Wei, F. Verpoort, J. Hu, S. Zhuiykov, Nanoscale Au-ZnO Heterostructure Developed by Atomic Layer Deposition Towards Amperometric H2O2 Detection, Nanoscale Res. Lett. 15 (2020) 41. https://doi.org/10.1186/s11671-020-3273-7.
[37] T. Kokulnathan, T.-J. Wang, T. Murugesan, A.J. Anthuvan, R.R. Kumar, et al., Structural growth of zinc oxide nanograins on carbon cloth as flexible electrochemical platform for hydroxychloroquine detection, Chemosphere. 312 (2023) 137186. https://doi.org/10.1016/j.chemosphere.2022.137186.
[38] M.S Saag, Misguided Use of Hydroxychloroquine for COVID-19: The Infusion of Politics Into Science, JAMA. 324 (2020) 2161–2162. https://doi.org/10.1001/jama.2020.22389.
[39] S. Madhu, A.J. Anthuuvan, S. Ramasamy, P. Manickam, S. Bhansali, et al., ZnO Nanorod Integrated Flexible Carbon Fibers for Sweat Cortisol Detection, ACS Appl. Electron. Mater. 2 (2020) 499–509. https://doi.org/10.1021/acsaelm.9b00730.
[40] L. Liu, Controllable ZnO nanorod arrays@carbon fibers composites: Towards advanced CO2 photocatalytic reduction catalysts, Ceram. Int. 42 (2016) 12516–12520. https://doi.org/10.1016/j.ceramint.2016.04.136.
[41] S. Sakka, Handbook of Sol-gel Science and Technology: Sol-gel processing, Kluwer Academic Publishers. (2005).
[42] F.K. Arabbani, D. Vasu, S. Sakthinathan, T. Chiu, M. Liu, A High Efficient Electrocatalytic Activity of Metal-organic Frameworks ZnO/Ag/ZIF-8 Nanocomposite for Electrochemical Detection of Toxic Heavy Metal Ions, Elecrtoanalysis. 35 (2023) e202200284. https://doi.org/10.1002/elan.202200284.
[43] P. Chowdhury, C. Bikkina, D. Meister, F. Dreisbach, S. Gumma, Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes, Microporous Mesoporous Mater. 117 (2009) 406–413. https://doi.org/10.1016/j.micromeso.2008.07.029.
[44] X. Yang, L. Qiu, X. Luo, ZIF-8 derived Ag-doped ZnO photocatalyst with enhanced photocatalytic activity, RSC Adv. 8 (2018) 4890–4894. https://doi.org/10.1039/C7RA13351K.
[45] A. El Golli, M. Echabaane, C. Dridi, Development of an electrochemical nanoplatform for non-enzymatic glucose sensing based on Cu/ZnO nanocomposite, Mater. Chem. Phys. 280 (2022) 125844. https://doi.org/10.1016/j.matchemphys.2022.125844.
[46] K. Omri, A. Bettaibi, K. Khirouni, L.M. Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles, Phys. B: Condens. Matter. 537 (2018) 167–175. https://doi.org/10.1016/j.physb.2018.02.025.
[47] S. Jebril, R. Khanfir Ben Jenana, C. Dridi, Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: in vitro and in vivo, Mater. Chem. Phys. 248 (2020) 122898. https://doi.org/10.1016/j.matchemphys.2020.122898.
[48] A.A. Othman, M.A. Ali, E.M.M. Ibrahim, M.S. Osman, Influence of Cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method, J. Alloys Compd. 683 (2016) 399–411. https://doi.org/10.1016/j.jallcom.2016.05.131.
[49] A. Ashour, M.A. Kaid, N.Z. El-Sayed, A.A. Ibrahim, Physical properties of ZnO thin films deposited by spray pyrolysis technique, Appl. Surf. Sci. 252 (2006) 7844–7848. https://doi.org/10.1016/j.apsusc.2005.09.048.
[50] W. Belaid, A. Houimi, S.E. Zaki, M.A. Basyooni, Sol-Gel Production of Semiconductor Metal Oxides for Gas Sensor Applications, Sol-Gel Method - Recent Advances, IntechOpen. (2023). https://doi.org/10.5772/intechopen.111844.
[51] F. del Carmen Gómez, J.L.C. López, A.S.L. Rodríguez, P.S. Gallardo, E.R. Morales, et al., Sol–gel/hydrothermal synthesis of well-aligned ZnO nanorods, Bol. Soc. Esp. Ceram. Vidr. 62 (2023) 348–356. https://doi.org/10.1016/j.bsecv.2022.05.004.
[52] C.-L. Yeh, Combustion Synthesis: Principles and Applications, Reference Module in Materials Science and Materials Engineering, Elsevier. (2016). https://doi.org/10.1016/B978-0-12-803581-8.03743-7.
[53] Y.R. Parauha, V. Sahu, S.J. Dhoble, Prospective of combustion method for preparation of nanomaterials: A challenge, Mater. Sci. Eng. B. 267 (2021) 115054. https://doi.org/10.1016/j.mseb.2021.115054.
[54] M. Mylarappa, N. Raghavendra, N.R. Bhumika, C.H. Chaithra, B.N. Nagalaxmi, K.N. Shravana Kumara, Study of ZnO nanoparticle-supported clay minerals for electrochemical sensors, photocatalysis, and antioxidant applications, ChemPhysMater. 3 (2023) 83–93. https://doi.org/10.1016/j.chphma.2023.07.002.
[55] N. Raghavendra, H.N. Narasimha Murthy, K.R.V. Mahesh, R. Sridhar, M. Krishna, Organomodification of Indian bentonite clay and its influence on fire behavior of nanoclay/vinylester composites, J. Nanomater. Nanoeng. Nanosys. 229 (2015) 55–65. https://doi.org/10.1177/1740349914520819.
[56] K. Rudresha, A. Zahir Hussain, C.R. Ravikumar, W.A. Mir, M.A.S. Amulya, et al., Structural, electrochemical sensor and photocatalytic activity of combustion synthesized of novel ZnO doped CuO NPs, Mater. Res. Express. 10 (2023) 075005. https://doi.org/10.1088/2053-1591/ace879.
[57] N. Basavaraju, S.C. Prashantha, H. Nagabhushana, A. Naveen Kumar, M. Chandrasekhar, et al., Luminescent and thermal properties of novel orange–red emitting MgNb2O6:Sm3+ phosphors for displays, photo catalytic and sensor applications, SN Appl. Sci. 3 (2021) 54. https://doi.org/10.1007/s42452-020-04095-x.
[58] K. Manjunath, K. Lingaraju, D. Kumar, H. Nagabhushan, D. Samrat, et al., Electrochemical Sensing of Dopamine and Antibacterial Properties of ZnO Nanoparticles Synthesized from Solution Combustion Method, Int. J. Nanosci. 14 (2015) 1550005. https://doi.org/10.1142/S0219581X15500052.
[59] S. Pitiphattharabun, K. Meesombad, G. Panomsuwan, O. Jongprateep, MWCNT/Ti-doped ZnO nanocomposite as electrochemical sensor for detecting glutamate and ascorbic acid, Int. J. Appl. Ceram. Technol. 19 (2022) 467–479. https://doi.org/10.1111/ijac.13879.
[60] X. Zou, X. Yan, G. Li, Y. Tian, M. Zhang, L. Liang, Solution combustion synthesis and enhanced gas sensing properties of porous In2O3/ZnO heterostructures, RSC Adv. 7 (2017) 34482–34487. https://doi.org/10.1039/C7RA04852A.
[61] X. Chi, C. Liu, Y. Li, H. Li, L. Liu, et al., Synthesis of pristine In2O3/ZnO–In2O3 composited nanotubes and investigate the enhancement of their acetone sensing properties, Mater. Sci. Semicond. Process. 27 (2014) 494–499. https://doi.org/10.1016/j.mssp.2014.07.032.
[62] M. Dinamani, B.S. Surendra, H.C. Ananda Murthy, N. Basavaraju, V.V. Shanbhag, Green engineered synthesis of PbxZn1-xO NPs: An efficient electrochemical sensor and UV light-driven photocatalytic applications, Environ. Nanotechnol. Monit. Manag. 20 (2023) 100822. https://doi.org/10.1016/j.enmm.2023.100822.
[63] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, et al., A Comprehensive Review of ZnO Materials and Devices, J. Appl. Phys. 98 (2005) 041301. https://doi.org/10.1063/1.1992666.
[64] S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles, Int. Nano Lett. 3 (2013) 100822. https://doi.org/10.1186/2228-5326-3-30.
[65] H.R. Ghaffarian, M.A. Sayyadnejad, A.M. Rashidi, Synthesis of ZnO Nanoparticles by Spray Pyrolysis Method, Iran. J. Chem. Chem. Eng. 30 (2011) 1–6. https://doi.org/10.30492/IJCCE.2011.6250.
[66] A. Salehabadi, M. Enhessari, M. Idayu Ahmad, N. Ismail, B.D. Gupta, Fabrication of sensors, in: Metal Chalcogenide Biosensors, Fundamentals and Applications, Elsevier. (2023) 143–174. https://doi.org/10.1016/B978-0-323-85381-1.00008-8.
[67] P. Dhamodharan, J. Chen, C. Manoharan, Fabrication of dye-sensitized solar cells with ZnO nanorods as photoanode and natural dye extract as sensitizer, J. Mater. Sci: Mater. Electron. 32 (2021) 13418–13429. https://doi.org/10.1007/s10854-021-05920-8.
[68] P. Dhamodharan, C. Manoharan, S. Dhanapandian, P. Venkatachalam, Dye-sensitized solar cell using sprayed ZnO nanocrystalline thin films on ITO as photoanode, Spectrochim. Acta A. Mol. Biomol. Spectros. 136 (2015) 1671–1678. https://doi.org/10.1016/j.saa.2014.10.063.
[69] M. Kumar, B. Singh, P. Yadav, V. Bhatt, M. Kumar, et al., Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique, Ceram. Int. 43 (2017) 3562–3568. https://doi.org/10.1016/j.ceramint.2016.11.191.
[70] M. Hjiri, L. El Mir, S. Leonardi, N. Donato, G. Neri, CO and NO2 Selective Monitoring by ZnO-Based Sensors, Nanomaterials (Basel). 3 (2013) 357–369. https://doi.org/10.3390/nano3030357.
[71] M. Merciales, Zinc oxide on Silicon Wafer / Glass Slide Electrode Deposited via Spray Pyrolysis for Glucose Sensing Application, JSAP-Optica Joint Symposia. (2022) 21a_C302_9.
[72] T.V. Krishna Karthik, L. Olvera, A. Maldonado, R.R. Biswal, H. Gómez-Pozos, Undoped and Nickel-Doped Zinc Oxide Thin Films Deposited by Dip Coating and Ultrasonic Spray Pyrolysis Methods for Propane and Carbon Monoxide Sensing Applications, Sensors. 20 (2020) 6879. https://doi.org/10.3390/s20236879.
[73] K. Sinkó, G. Szabó, M. Zrínyi, Liquid-Phase Synthesis of Cobalt Oxide Nanoparticles, J. Nanosci. Nanotechnol. 11 (2011) 4127–4135. https://doi.org/10.1166/jnn.2011.3875.
[74] Q. Sun, J. Luo, Z. Xie, J. Wang, X. Su, Synthesis of monodisperse WO3·2H2O nanospheres by microwave hydrothermal process with l (+) tartaric acid as a protective agent, Mater. Lett. 62 (2008) 2992–2994. https://doi.org/10.1016/j.matlet.2008.01.093.
[75] D. Li, H. Haneda, Morphologies of zinc oxide particles and their effects on photocatalysis, Chemosphere. 51 (2003) 129–137. https://doi.org/10.1016/S0045-6535(02)00787-7.
[76] P. Senthil Kumar, G. Padmalaya, N. Elavarasan, B.S. Sreeja, GO/ZnO nanocomposite - as transducer platform for electrochemical sensing towards environmental applications, Chemosphere. 313 (2023) 137345. https://doi.org/10.1016/j.chemosphere.2022.137345.
[77] N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility, Environ. Sci. Technol. 41 (2007) 8484–8490. https://doi.org/10.1021/es071445r.
[78] A.N. Ech-Chergui, A.S. Kadari, M.M. Khan, A. Popad, Y. Khane, et al., Spray pyrolysis-assisted fabrication of Eu-doped ZnO thin films for antibacterial activities under visible light irradiation, Chem. Pap. 77 (2023) 1047–1058. https://doi.org/10.1007/s11696-022-02543-z.
[79] V. Vinitha, M. Preeyanghaa, V. Vasanthakumar, R. Dhanalakshmi, B. Neppolian, V. Sivamurugan, Two is better than one: catalytic, sensing and optical applications of doped zinc oxide nanostructures, Emerg Mater. 4 (2021) 1093–1124. https://doi.org/10.1007/s42247-021-00262-x.
[80] A. Ani, P Poornesh, A. Antony, S. Chattopadhyay, Synergism of spray-pyrolyzed aliovalent Ga (iii) ions and ZnO nanostructures for selective sensing of hazardous CO gas towards low ppm levels, Sens. Actuators B: Chem. 399 (2024) 134827. https://doi.org/10.1016/j.snb.2023.134827.
[81] H. Gupta, J. Singh, R.N. Dutt, S. Ojha, S. Kar, et al., Defect-induced photoluminescence from gallium-doped zinc oxide thin films: influence of doping and energetic ion irradiation, Phys. Chem. Chem. Phys. 21 (2019) 15019–15029. https://doi.org/10.1039/C9CP02148E.
[82] Y. Zhu, Y. Wu, F. Cao, X. Ji, Ga-concentration-dependent optical and electrical properties of Ga-doped ZnO thin films prepared by low-temperature atomic layer deposition, J. Mater. Sci: Mater. Electron. 33 (2022) 5696–5706. https://doi.org/10.1007/s10854-022-07756-2.
[83] A. Amala Rani, S. Ernest, Structural, morphological, optical and compositional characterization of spray deposited Ga doped ZnO thin film for Dye-Sensitized Solar Cell application, Superlattices Microstruct.75 (2014) 398–408. https://doi.org/10.1016/j.spmi.2014.07.048.
[84] J.J. Hinman, K.S. Suslick, Nanostructured Materials Synthesis Using Ultrasound, Top Curr. Chem. 12 (2017) 375. https://doi.org/10.1007/s41061-016-0100-9.
[85] K.S. Suslick, D.J. Flannigan, Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation, Annu. Rev. Phys. Chem. 59 (2008) 659–683. https://doi.org/10.1146/annurev.physchem.59.032607.093739.
[86] Z. Li, Q. Li, R. Jiang, Y. Qin, Y. Luo, et al., An electrochemical sensor based on a MOF/ZnO composite for the highly sensitive detection of Cu(ii) in river water samples, RSC Adv. 12 (2022) 5062–5071. https://doi.org/10.1039/D1RA08376G.
[87] J. Zou, W. Qian, Y. Li, Q. Yu, Y. Yu, et al., Multilayer activated biochar/UiO-66-NH2 film as intelligent sensing platform for ultra-sensitive electrochemical detection of Pb2+ and Hg2+, Appl. Surf. Sci. 569 (2021) 150006. https://doi.org/10.1016/j.apsusc.2021.151006.
[88] D. Balram, K.-Y. Lian, N. Sebastian, Ultrasound-assisted synthesis of 3D flower-like zinc oxide decorated fMWCNTs for sensitive detection of toxic environmental pollutant 4-nitrophenol, Ultrason. Sonochem. 60 (2020) 104798. https://doi.org/10.1016/j.ultsonch.2019.104798.
[89] H. Beitollahi, M. Mazloum-Ardakani, B. Ganjipour, H. Naeimi, Novel 2,2'-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid, Biosens. Bioelectron. 24 (2008) 362–368. https://doi.org/10.1016/j.bios.2008.04.009.
[90] N. Sebastian, W.-C. Yu, Y.-C. Hu, D. Balram, Y.-H. Yu, Sonochemical synthesis of iron-graphene oxide/honeycomb-like ZnO ternary nanohybrids for sensitive electrochemical detection of antipsychotic drug chlorpromazine, Ultrason. Sonochem. 59 (2019) 104696. https://doi.org/10.1016/j.ultsonch.2019.104696.
[91] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, et al., Improved Synthesis of Graphene Oxide, ACS Nano. 4 (2010) 4806–4814. https://doi.org/10.1021/nn1006368.
[92] A. Akhoondi, M.Y. Nassar, B. Yuliarto, H. Meskher, Recent advances in synthesis of MXene-based electrodes for flexible all-solid-state supercapacitors, Synth. Sinter. 3 (2023) 200–212. https://doi.org/10.53063/synsint.2023.33163.
[93] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials, Adv. Mater. 26 (2014) 992–1005. https://doi.org/10.1002/adma.201304138.
[94] A. Akhoondi, M. Ebrahimi Nejad, M. Yusuf, T.M. Aminabhavi, K.M. Batoo, S. Rtimi, Synthesis and applications of double metal MXenes: A review, Synth. Sinter. 3 (2023) 107–123. https://doi.org/10.53063/synsint.2023.32150.
[95] G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher, et al., Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic Layers of Transition Metals, ACS Nano. 14 (2020) 204–217. https://doi.org/10.1021/acsnano.9b07708.
[96] X. Zhu, Y. Zhang, M. Liu, Y. Liu, 2D titanium carbide MXenes as emerging optical biosensing platforms, Biosens. Bioelectron. 171 (2021) 112730. https://doi.org/10.1016/j.bios.2020.112730.
[97] X. Liu, L. He, P. Li, X. Li, P. Zhang, A Direct Electrochemical H2S Sensor Based on Ti3C2Tx MXene, ChemElectroChem. 8 (2021) 3658–3665. https://doi.org/10.1002/celc.202100964.
[98] M. Ni, J. Chen, C. Wang, Y. Wang, L. Huang, et al., A high-sensitive dopamine electrochemical sensor based on multilayer Ti3C2 MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres, Microchem. J. 178 (2022) 107410. https://doi.org/10.1016/j.microc.2022.107410.
[99] R. Long, Z. Yu, Q. Tan, X. Feng, X. Zhu, et al., Ti3C2 MXene/NH2-MIL-88B(Fe): Research on the adsorption kinetics and photocatalytic performance of an efficient integrated photocatalytic adsorbent, Appl. Surf. Sci. 570 (2021) 151244. https://doi.org/10.1016/j.apsusc.2021.151244.
[100] D. Qiao, Z.-H. Li, J. Duan, X. He, Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants, Chem. Eng. J. 400 (2020) 125952. https://doi.org/10.1016/j.cej.2020.125952.
[101] V. Myndrul, E. Coy, N. Babayevska, V. Zahorodna, V. Balitskyi, et al., MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor, Biosens. Bioelectron. 207 (2022) 114141. https://doi.org/10.1016/j.bios.2022.114141.
[102] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, et al., Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene), Chem. Mater. 29 (2017) 7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847.
[103] J.S. Tawale, K.K. Dey, R. Pasricha, K.N. Sood, A.K. Srivastava, Synthesis and characterization of ZnO tetrapods for optical and antibacterial applications, Thin Solid Films. 519 (2010) 1244–1247. https://doi.org/10.1016/j.tsf.2010.08.077.
[104] R. Liu, W. Li, High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) Composites, ACS Omega. 3 (2018) 2609–2617. https://doi.org/10.1021/acsomega.7b02001.
[105] F. Wang, M. Cao, Y. Qin, J. Zhu, L. Wang, Y. Tang, ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance, RSC Adv. 6 (2016) 88934–88942. https://doi.org/10.1039/C6RA15384D.
[106] J. Tierney, P. Lidström, Microwave Assisted Organic Synthesis, Wiley. (2009).
[107] U. Chakraborty, G. Bhanjana, Kannu, N. Kaur, R.K. Sharma, et al., Microwave-assisted assembly of Ag2O-ZnO composite nanocones for electrochemical detection of 4-Nitrophenol and assessment of their photocatalytic activity towards degradation of 4-Nitrophenol and Methylene blue dye, J. Hazard. Mater. 416 (2021) 125771. https://doi.org/10.1016/j.jhazmat.2021.125771.
[108] S. Ma, J. Xue, Y. Zhou, Z. Zhang, Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity, J. Mater. Chem. A. 2 (2014) 7272–7280. https://doi.org/10.1039/C4TA00464G.
[109] N. Ahmad, A. Umar, R. Kumar, M. Alam, Microwave-assisted synthesis of ZnO doped CeO2 nanoparticles as potential scaffold for highly sensitive nitroaniline chemical sensor, Ceram. Int. 42 (2016) 11562–11567. https://doi.org/10.1016/j.ceramint.2016.04.013.
[110] M. Nawaz, H. Shaikh, J.A. Buledi, A.R. Solangi, C. Karaman, et al., Fabrication of ZnO-doped reduce graphene oxide-based electrochemical sensor for the determination of 2,4,6-trichlorophenol from aqueous environment, Carbon Lett. 34 (2023) 201–214. https://doi.org/10.1007/s42823-023-00562-8.
[111] C. Karaman, Orange Peel Derived-Nitrogen and Sulfur Co-doped Carbon Dots: a Nano-booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks, Electroanalysis. 33 (2021) 1356–1369. https://doi.org/10.1002/elan.202100018.
[112] M. Sreejesh, S. Dhanush, F. Rossignol, H.S. Nagaraja, Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications, Ceram. Int. 43 (2017) 4895–4903. https://doi.org/10.1016/j.ceramint.2016.12.140.
[113] N. Le Nhat Trang, T. Nguyet, L.T. Tufa, V.T. Tran, T.-T. Hung, et al., Unveiling the effect of crystallinity and particle size of biogenic Ag/ZnO nanocomposites on the electrochemical sensing performance of carbaryl detection in agricultural products, RSC Adv. 13 (2023) 8753–8764. https://doi.org/10.1039/D3RA00399J.
[114] G. Kesavan, M. Pichumani, Influence of Crystalline, Structural, and Electrochemical Properties of Iron Vanadate Nanostructures on Flutamide Detection, ACS Appl. Nano Mater. 4 (2021) 5883–5894. https://doi.org/10.1021/acsanm.1c00802.
[115] A. de la Escosura-Muñiz, C. Parolo, F. Maran, A. Mekoçi, Size-dependent direct electrochemical detection of gold nanoparticles: application in magnetoimmunoassays, Nanoscale. 3 (2011) 3350–3356. https://doi.org/10.1039/C1NR10377F.
[116] Y. Yan, Q. Huang, C. Wei, S. Hu, H. Zhang, et al., Microwave-assisted synthesis of carbon dots–zinc oxide/multi-walled carbon nanotubes and their application in electrochemical sensors for the simultaneous determination of hydroquinone and catechol, RSC Adv. 6 (2016) 115317–115325. https://doi.org/10.1039/C6RA14363F.
[117] G.M. Whitesides, M. Boncheva, Beyond molecules: Self-assembly of mesoscopic and macroscopic components, Proc. Natl. Acad. Sci. 99 (2002) 4769–4774. https://doi.org/10.1073/pnas.082065899.
[118] M. Cao, S. Liu, S. Liu, Z. Tong, X. Wang, X. Xu, Preparation of ZnO/Ti3C2Tx/Nafion/Au electrode, Microchem. J. 175 (2022) 107068. https://doi.org/10.1016/j.microc.2021.107068.
[119] A. Akhoondi, H. Ghaebi, L. Karuppasamy, M.M. Rahman, P. Sathishkumar, Recent advances in hydrogen production using MXenes-based metal sulfide photocatalysts, Synth. Sinter. 2 (2022) 37–54. https://doi.org/10.53063/synsint.2022.21106.
[120] Y. Yang, L. Jiang, J. Wang, F. Liu, J. He, et al., Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application, Sens. Actuators B: Chem. 326 (2021) 128828. https://doi.org/10.1016/j.snb.2020.128828.
[121] C. Hou, H. Yu, ZnO/Ti3C2Tx monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells, Chem. Eng. J. 407 (2021) 127192. https://doi.org/10.1016/j.cej.2020.127192.
[122] C. Yang, B. Gu, C. Xu, X. Xu, Self-assembled ZnO quantum dot bioconjugates for direct electrochemical determination of allergen, J. Electroanal. Chem. 660 (2011) 97–100. https://doi.org/10.1016/j.jelechem.2011.06.011.
[123] D. Zhang, N. Yin, B. Xia, Y. Sun, Y. Liao, et al., Humidity-sensing properties of hierarchical ZnO/MWCNTs/ZnO nanocomposite film sensor based on electrostatic layer-by-layer self-assembly, J. Mater. Sci: Mater. Electron. 27 (2016) 2481–2487. https://doi.org/10.1007/s10854-015-4049-1.
[124] F. Barroso-Bujans, S. Cerveny, A. Alegría, J. Colmenero, Sorption and desorption behavior of water and organic solvents from graphite oxide, Carbon. 48 (2010) 3277–3286. https://doi.org/10.1016/j.carbon.2010.05.023.
[125] T. Fei, K. Jiang, F. Jiang, R. Mu, T. Zhang, Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films, J. Appl. Polym. Sci. 131 (2014) 39726. https://doi.org/10.1002/app.39726.
[126] M.B. Ali, A.M. Abdel-Raoof, A.M.H. Hendawy, W. Talaat, G.A. Omran, S. Morshedy, An Eco-Friendly Solid-State Electrode Modified With ZnO Nanoparticles Decorated With MWCNT as an Electrochemical Sensor for the Determination of Avanafil in Pure Form, Dosage Form and Human Plasma, J. Electrochem. Soc. 168 (2021) 087510. https://doi.org/10.1149/1945-7111/ac1d7d.
[127] J. Du, X. Huang, R. Zhao, J. Li, T. Asefa, Hierarchically Self-Assembled Star-Shaped ZnO Microparticles for Electrochemical Sensing of Amines, Chem. - Eur. J. 22 (2016) 8068–8073. https://doi.org/10.1002/chem.201601110.
[128] G.-H. Lee, Synthesis of pencil-shaped ZnO nanowires using sunlight, Matter. Lett. 73 (2012) 53–55. https://doi.org/10.1016/j.matlet.2011.12.120.
[129] M.K. Farhan, N.S. Ismail, M.H. Tamam, M.S. Abdel-Mottaleb, M. Saif, Exploiting ZnO nanoparticles as a modifier for carbon paste electrodes for determination of difloxacin HCl, J. Solid State Electrochem. 28 (2023) 33–48. https://doi.org/10.1007/s10008-023-05649-w.
[130] G.G. Mohamed, E.Y.Z. Frag, M.A. Zayed, M.M. Omar, S.E.A. Elashery, Fabrication of chemically and in situ modified carbon paste electrodes for the potentiometric determination of chlorpromazine HCl in pure pharmaceutical preparations, urine and serum, New J. Chem. 41 (2017) 15612–15624. https://doi.org/10.1039/C7NJ02780J.
[131] R. Eugster, T. Rosatzin, B. Rusterholz, B. Aebersold, U. Pedrazza, et al., Plasticizers for liquid polymeric membranes of ion-selective chemical sensors, Anal. Chim. Acta. 289 (1994) 1–13. https://doi.org/10.1016/0003-2670(94)80001-4.
[132] R. Naik, A.N. Kumar, V. Shanbhag, C.R. Ravikumar, V. Revathi, et al., Aloe barbadensis Mill leaf gel assisted combustion synthesized ZnO:Ni3+: Electrochemical sensor for ascorbic acid detection and photocatalysis, Inorg. Chem. Commun. 143 (2022) 109760. https://doi.org/10.1016/j.inoche.2022.109760.
[133] A. Ananda, T. Ramakrishnappa, T.N. Ravishankar, L.S. Reddy Yadav, B.K. Jayanna, RSM-BBD optimization approach for degradation and electrochemical sensing of Evan’s blue dye using green synthesized ZrO2–ZnO nanocomposite, Inorg. Nano-Met. Chem. (2023) 1–15. https://doi.org/10.1080/24701556.2023.2165685.
[134] A. Ani, P. Poornesh, K.K. Nagaraja, G. Hegde, E. Kolesnikov, et al., Evaluation of spray pyrolysed In:ZnO nanostructures for CO gas sensing at low concentration, J. Mater. Sci: Mater. Electron. 32 (2021) 22599–22616. https://doi.org/10.1007/s10854-021-06745-1.
[135] Q.T.H. Ta, D. Thakur, J.-S. Noh, Enhanced Gas Sensing Performance of ZnO/Ti3C2Tx MXene Nanocomposite, Micromachines (Basel). 13 (2022) 1710. https://doi.org/10.3390/mi13101710.
[136] Y. Zhu, Y. Ma, D. Wu, G. Jiang, Preparation and gas sensing properties of ZnO/MXene composite nanomaterials, Sens. Actuator A: Phys. 344 (2022) 113740. https://doi.org/10.1016/j.sna.2022.113740.
[137] D. Jiang, M. Wei, X. Du, M. Qin, X. Shan, Z. Chen, One-pot synthesis of ZnO quantum dots/N-doped Ti3C2 MXene: Tunable nitrogen-doping properties and efficient electrochemiluminescence sensing, Chem. Eng. J. 430 (2022) 132771. https://doi.org/10.1016/j.cej.2021.132771.
[138] X. Liu, H. Zhang, Y. Song, T. Shen, J. Sun, Facile solvothermal synthesis of ZnO/Ti3C2Tx MXene nanocomposites for NO2 detection at low working temperature, Sens. Actuator A: Phys. 367 (2022) 132025. https://doi.org/10.1016/j.snb.2022.132025.
[139] F. Beigmoradi, H. Beitollahi, MXene/La3+ Doped ZnO/Hb Nanocomposite Modified Glassy Carbon Electrode as Novel Voltammetric Sensor for Determination of Hydrogen Peroxide, Surf. Engin. Appl. Electrochem. 57 (2021) 708–714. https://doi.org/10.3103/S106837552106003X.
[140] Y. Seekaew, S. Kamlue, C. Wongchoosuk, Room-Temperature Ammonia Gas Sensor Based on Ti3C2Tx MXene/Graphene Oxide/CuO/ZnO Nanocomposite, ACS Appl. Nano Mater. 6 (2023) 9008–9020. https://doi.org/10.1021/acsanm.3c01637.
[141] S. Zhang, Y. Ding, Q. Wang, P. Song, MOFs-derived In2O3/ZnO/Ti3C2TX MXene ternary nanocomposites for ethanol gas sensing at room temperature, Sens. Actuator A: Phys. 393 (2023) 134122. https://doi.org/10.1016/j.snb.2023.134122.
[142] P. Shaikshavali, T.M. Reddy, T.V. Gopal, G. Venkataprasad, V.S. Kotakadi, et al., A simple sonochemical assisted synthesis of nanocomposite (ZnO/MWCNTs) for electrochemical sensing of Epinephrine in human serum and pharmaceutical formulation, Colloids Surf. A: Physicochem. Eng. Asp. 584 (2020) 124038. https://doi.org/10.1016/j.colsurfa.2019.124038.
[143] P. Traiwatcharanon, S. Velmurugan, M. Zacharias, C. Wongchoosuk, Sparked ZnO nanoparticles-based electrochemical sensor for onsite determination of glyphosate residues, Nanotechnology. 34 (2023) 415501. https://doi.org/10.1088/1361-6528/ace3cc.
[144] Y. Seekaew, A. Wisitsoraat, C. Wongchoosuk, ZnO quantum dots decorated carbon nanotubes-based sensors for methanol detection at room temperature, Diam. Relat. Mater. 132 (2023) 109630. https://doi.org/10.1016/j.diamond.2022.109630.
[145] A. Wahid, A.M. Asiri, M.M. Rahman, One-step facile synthesis of Nd2O3/ZnO nanostructures for an efficient selective 2,4-dinitrophenol sensor probe, Appl. Surf. Sci. 487 (2019) 1253–1261. https://doi.org/10.1016/j.apsusc.2019.05.107.
[146] M. Narayanan, L. Rose, S. Subramanian, P. Perumal, Rational construction of dairy flower-like zinc oxide-doped yttrium molybdate for the electrochemical detection of uric acid, Chem. Pap. 78 (2023) 1613–1624. https://doi.org/10.1007/s11696-023-03189-1.
[147] F. Ali, A. Zafar, A. Nisar, Y. Liu, S. Karim, et al., Development of MoS2-ZnO heterostructures: an efficient bifunctional catalyst for the detection of glucose and degradation of toxic organic dyes, New J. Chem. 47 (2023) 681–690. https://doi.org/10.1039/D2NJ04758F.
[148] K. Balamurugan, R. Karthik, S.-M. Chen, R. Sukanya, B.T. Subramanian, et al., Heterostructures of mixed metal oxides (ZnMnO3/ZnO) synthesized by a wet-chemical approach and their application for the electrochemical detection of the drug chlorpromazine, Compos. B: Eng. 236 (2022) 109822. https://doi.org/10.1016/j.compositesb.2022.109822.
[149] M.M. Alam, M.T. Uddin, A.M. Asiri, M.R. Awual, M.A. Fazal, et al., Fabrication of selective l-glutamic acid sensor in electrochemical technique from wet-chemically prepared RuO2 doped ZnO nanoparticles, Mater. Chem. Phys. 251 (2020) 123029. https://doi.org/10.1016/j.matchemphys.2020.123029.
[150] K.G. Manjunatha, B.E. Kumara Swamy, G.K. Jayaprakash, S.C. Sharma, P. Lalitha, K.A. Vishnumurthy, Electrochemical determination of paracetamol at Cu doped ZnO/Nanoparticle with TX-100-surfactant MCPE: A cyclic voltammetric technique, Inorg. Chem. Commun. 142 (2022) 109630. https://doi.org/10.1016/j.inoche.2022.109630.
[151] A. Anaraki Firooz, M. Ghalkhani, J.A. Faria Albanese, M. Ghanbari, High electrochemical detection of dopamine based on Cu doped single phase hexagonally ZnO plates, Matter. Today Commun. 26 (2021) 101716. https://doi.org/10.1016/j.mtcomm.2020.101716.
[152] M. Cao, L. Zheng, Y. Gu, Y. Wang, H. Zhang, X. Xu, Electrostatic self-assembly to fabricate ZnO nanoparticles/reduced graphene oxide composites for hypersensitivity detection of dopamine, Microchem. J. 159 (2020) 105465. https://doi.org/10.1016/j.microc.2020.105465.
[153] S. Zhang, S. Yu, X. Wang, Y. Zhang, Z. Yue, et al., An electrochemical sensor based on MnO2/ZnO composites for the detection of ciprofloxacin in honey, Microchem. J. 194 (2023) 109355. https://doi.org/10.1016/j.microc.2023.109355.
[154] V.N. Carvalho da Silva, E. Airton de O. Farias, A.R. Araújo, F.E.X. Magalhães, J.R.N. Fernandes, et al., Rapid and selective detection of dopamine in human serum using an electrochemical sensor based on zinc oxide nanoparticles, nickel phthalocyanines, and carbon nanotubes, Biosens. Bioelectron. 210 (2022) 114211. https://doi.org/10.1016/j.bios.2022.114211.
[155] B. Ramya, P. Gomathi Priya, Rapid phytochemical microwave-assisted synthesis of zinc oxide nano flakes with excellent electrocatalytic activity for non-enzymatic electrochemical sensing of uric acid, J. Mater. Sci: Mater. Electron. 32 (2021) 21406–21424. https://doi.org/10.1007/s10854-021-06644-5.
[156] T. Van Tran, M.J. Ahemad, D.-S. Kim, T. Duc Le, V. Dao, Y.-T. Yu, Ultra high response for hydrogen gas on Pd–Augr-alloy@ZnO core-shell nanoparticles with Pd–Au gradient composition alloy core, Mater. Today Nano. 21 (2023) 100292. https://doi.org/10.1016/j.mtnano.2022.100292.
[157] J. Zoubir, I. Bakas, S. Qourzal, M. Tamimi, A. Assabbane, Electrochemical sensor based on a ZnO-doped graphitized carbon for the electrocatalytic detection of the antibiotic hydroxychloroquine. Application: tap water and human urine, J. Appl. Electrochem. 53 (2023) 1279–1294. https://doi.org/10.1007/s10800-022-01835-2.
[158] T.N. Nguyen, N.H. Nguyen, X.-D. Ngo, K.V. Le, T.M. Le, et al., ZnO/ZnFe2O4 nanocomposite-based electrochemical nanosensors for the detection of furazolidone in pork and shrimp samples: exploring the role of crystallinity, phase ratio, and heterojunction formation, New J. Chem. 46 (2022) 7090–7102. https://doi.org/10.1039/D1NJ05837A.
[159] C. Manjunatha, V. Chirag, B. Wali Shivaraj, N. Srinivasa, S. Ashoka, One pot green synthesis of novel rGO@ZnO nanocomposite and fabrication of electrochemical sensor for ascorbic acid using screen-printed electrode, J. Nanostruct. 10 (2020) 531–539. https://doi.org/10.22052/JNS.2020.03.009.

Cited By

Crossref Google Scholar
Recent advances in the synthesis of ZnO-based electrochemical sensors
Submitted
2023-09-29
Available online
2023-12-29
How to Cite
Akhoondi, A., Ahmad, M., Nawaz Sharif, M., Aziz, S., Davardoost, H., Wali, Q., & Jan Iftikhar, F. (2023). Recent advances in the synthesis of ZnO-based electrochemical sensors. Synthesis and Sintering, 3(4), 259-274. https://doi.org/10.53063/synsint.2023.34176

Most read articles by the same author(s)