Recent advances in synthesis of MXene-based electrodes for flexible all-solid-state supercapacitors

  • Asieh Akhoondi 1
  • Mostafa Y. Nassar 2
  • Brian Yuliarto 3
  • Hicham Meskher 4
  • 1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 2 Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt
  • 3 Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • 4 Division of Process Engineering, College of Science and Technology, Chadli Bendjedid University, 36000, Algeria

Abstract

Various energy storage sources have been developed so far, among which supercapacitors are more important for the forthcoming generations due to their small size and portability. Supercapacitors as good alternatives to batteries have recently attracted more attention because they have higher power and excellent charging-discharging rate which is considered as a challenging issue that limits the use of batteries. Supercapacitors also have other advantages over batteries, including higher reversibility and cycle life, lower maintenance costs, and safer electrode materials. MXenes have emerged as a new class of 2D composites in electrode materials for supercapacitors as low-cost and environment-friendly carbides and nitrides. MXenes are suitable inorganic compounds with excellent electrochemical properties and mechanical integrity to improve supercapacitor energy density at a new interval. This review presents new synthesis strategies to prevent the self-accumulation of MXene layers. First, the fundamental working theories of different supercapacitors are outlined. Next, an overview of the electrode material based on MXenes is outlined, and the latest solutions for increasing the active sites and improving the ion transfer rate have been collected. Hybridization and doping of MXenes change the properties of the composite, leading to a transformation in the structure and an increase in the capacitance. Furthermore, the utilization of double-transition metal MXenes solves challenges such as structural destruction and short life spans in multiple charge-discharge cycles. Then evaluation of the new MXene-based electrode materials in all-solid-state supercapacitors has been summarized. Finally, an overview of the latest developments in the creation of all-solid-state flexible supercapacitors as well as our predictions for future lines of inquiry is provided.

Downloads

Download data is not yet available.
Keywords: Supercapacitors, Electrode, Synthesis, MXene, Energy storage

References

[1] M. Farghali, A.I. Osman, Z. Chen, A. Abdelhaleem, I. Ihara, et al., Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review, Environ. Chem. Lett. 21 (2023) 1381–1418. https://doi.org/10.1007/s10311-023-01587-1.
[2] H. Frei, Photocatalytic fuel production, Curr. Opin. Electrochem. 2 (2017) 128–135. https://doi.org/10.1016/j.coelec.2017.03.009.
[3] N.A. Salleh, S. Kheawhom, N.A.A. Hamid, W. Rahiman, A.A. Mohamad, Electrode polymer binders for supercapacitor applications: A review, J. Mater. Res. Technol. 23 (2023) 3470–3491. https://doi.org/10.1016/j.jmrt.2023.02.013.
[4] S. Huang, X. Zhu, S. Sarkar, Y. Zhao, Challenges and opportunities for supercapacitors, APL Mater. 7 (2019) 100901. https://doi.org/10.1063/1.5116146.
[5] A. Riaz, M.R. Sarker, M.H.M. Saad, R. Mohamed, Review on Comparison of Different Energy Storage Technologies Used in Micro-Energy Harvesting, WSNs, Low-Cost Microelectronic Devices: Challenges and Recommendations, Sensors. 21 (2021) 5041. https://doi.org/10.3390/s21155041.
[6] S. Sharma, P. Chand, Supercapacitor and electrochemical techniques: A brief review, Results Chem. 5 (2023) 100885. https://doi.org/10.1016/j.rechem.2023.100885.
[7] B. Arumugam, M. Gopiraman, S. Manickavasagam, S.C. Kim, R. Vanaraj, An Overview of Active Electrode Materials for the Efficient High-Performance Supercapacitor Application, Crystals. 13 (2023) 1118. https://doi.org/10.3390/cryst13071118.
[8] M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, et al., Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review, Environ. Chem. Lett. 19 (2021) 375–439. https://doi.org/10.1007/s10311-020-01075-w.
[9] D. Gao, Z. Luo, C. Liu, S. Fan, A survey of hybrid energy devices based on supercapacitors, Green Energy Environ. 8 (2023) 972–988. https://doi.org/10.1016/j.gee.2022.02.002.
[10] P.T. Nonjola, N. Mutangwa, H. Luo, Membrane Separators for Electrochemical Energy Storage Technologies, Nanomaterials in Advanced Batteries and Supercapacitors, Springer, Cham. (2016) 417–462. https://doi.org/10.1007/978-3-319-26082-2_12.
[11] A. Abdisattar, M. Yeleuov, C. Daulbayev, K. Askaruly, A. Tolynbekov, et al., Recent advances and challenges of current collectors for supercapacitors, Electrochem. Commun. 142 (2022) 107373. https://doi.org/10.1016/j.elecom.2022.107373.
[12] E. Taer, A. Agustino, R. Farma, R. Taslim, Awitdrus, et al., The relationship of surface area to cell capacitance for monolith carbon electrode from biomass materials for supercapacitor aplication, J. Phys.: Conf. Ser. 1116 (2018) 032040. https://doi.org/10.1088/1742-6596/1116/3/032040.
[13] M. Shahedi Asl, R. Hadi, L. Salehghadimi, A.G. Tabrizi, S. Farhoudian, et al., Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: Recent progress and future perspectives, J. Energy Storage. 50 (2022) 104223. https://doi.org/10.1016/j.est.2022.104223.
[14] Y. Yang, T. Zhu, L. Shen, Y. Liu, D. Zhang, et al., Recent progress in the all-solid-state flexible supercapacitors, SmartMat. 3 (2022) 349–383. https://doi.org/10.1002/smm2.1103.
[15] S.A. Delbari, L.S. Ghadimi, R. Hadi, S. Farhoudian, M. Nedaei, et al., Transition metal oxide-based electrode materials for flexible supercapacitors: A review, J. Alloys Compd. 857 (2021) 158281. https://doi.org/10.1016/j.jallcom.2020.158281.
[16] Z. Yan, S. Luo, Q. Li, Z. Wu, S. Liu, Recent Advances in Flexible Wearable Supercapacitors: Properties, Fabrication, and Applications, Adv. Sci. 11 (2023) 2302172. https://doi.org/10.1002/advs.202302172.
[17] J. Xu, J. You, L. Wang, Z. Wang, H. Zhang, MXenes serving aqueous supercapacitors: Preparation, energy storage mechanism and electrochemical performance enhancement, sustain. Mater. Technol. 33 (2022) e00490. https://doi.org/10.1016/j.susmat.2022.e00490.
[18] K. Wasnik, M.D. Pawar, L.R. Raphael, A. Pullanchiyodan, M.V. Shelke, P. Raghavan, MXenes: Advances in the synthesis and application in supercapacitors and batteries, J. Mater. Res. 37 (2022) 3865–3889. https://doi.org/10.1557/s43578-022-00770-4.
[19] S. Venkateshalu, A.N. Grace, MXenes—A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond, Appl. Mater. Today. 18 (2020) 100509. https://doi.org/10.1016/j.apmt.2019.100509.
[20] R. Ibragimova, P. Rinke, H.-P. Komsa, Native Vacancy Defects in MXenes at Etching Conditions, Chem. Mater. 34 (2022) 2896–2906. https://doi.org/10.1021/acs.chemmater.1c03179.
[21] K. Liu, Q. Xia, L. Si, Y. Kong, N. Shinde, et al., Defect engineered Ti3C2Tx MXene electrodes by phosphorus doping with enhanced kinetics for supercapacitors, Electrochim. Acta. 435 (2022) 141372. https://doi.org/10.1016/j.electacta.2022.141372.
[22] Z. Dai, C. Peng, J.H. Chae, K.C. Ng, G.Z. Chen, Cell voltage versus electrode potential range in aqueous supercapacitors, Sci. Rep. 5 (2015) 9854. https://doi.org/10.1038/srep09854.
[23] Z. Stevic, I. Radovanovic, Supercapacitors: The Innovation of Energy Storage, In Updates on Supercapacitors, IntechOpen. (2022). https://doi.org/10.5772/intechopen.106705.
[24] J.H. Lee, Y.-M. Kang, K.C. Roh, Enhancing gravimetric and volumetric capacitance in supercapacitors with nanostructured partially graphitic activated carbon, Electrochem. Commun. 154 (2023) 107560. https://doi.org/10.1016/j.elecom.2023.107560.
[25] J. Zhang, M. Gu, X. Chen, Supercapacitors for renewable energy applications: A review, Micro Nano Eng. 21 (2023) 100229. https://doi.org/10.1016/j.mne.2023.100229.
[26] K.C. Seetha Lakshmi, B. Vedhanarayanan, High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices, Batteries. 9 (2023) 202. https://doi.org/10.3390/batteries9040202.
[27] L. Zhang, J.-Y. Song, J.-Y. Zou, N. Wang, High Voltage Super-Capacitors for Energy Storage Devices Applications, 14th Symposium on Electromagnetic Launch Technology, IEEE. (2008). https://doi.org/10.1109/ELT.2008.102.
[28] B. Yang, W. Zhang, W. Zheng, Unlocking the full energy densities of carbon-based supercapacitors, Mater. Res. Lett. 11 (2023) 517–546. https://doi.org/10.1080/21663831.2023.2183783.
[29] Y. Wu, C. Cao, The way to improve the energy density of supercapacitors: Progress and perspective, Sci. China Mater. 61 (2018) 1517–1526. https://doi.org/10.1007/s40843-018-9290-y.
[30] N.I. Jalal, R.I. Ibrahim, M.K. Oudah, A review on Supercapacitors: types and components, J. Phys.: Conf. Ser. 1973 (2021) 012015. https://doi.org/10.1088/1742-6596/1973/1/012015.
[31] M.V. Kiamahalleh, S.H.S. Zein, G. Najafpour, S.A. Sata, S. Buniran, Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials, Nano. 7 (2012) 1230002. https://doi.org/10.1142/S1793292012300022.
[32] D.C.U. Sirimanne, N. Kularatna, N. Arawwawala, Electrical Performance of Current Commercial Supercapacitors and Their Future Applications, Electronics. 12 (2023) 2465. https://doi.org/10.3390/electronics12112465.
[33] F. Cheng, W. Qiu, X. Yang, X. Gu, W. Hou, W. Lu, Ultrahigh-power supercapacitors from commercial activated carbon enabled by compositing with carbon nanomaterials, Electrochim. Acta. 403 (2022) 139728. https://doi.org/10.1016/j.electacta.2021.139728.
[34] M.S. Halper, J.C. Ellenbogen, Supercapacitors: A brief overview, The MITRE Corporation, McLean, Virginia, USA. (2006) 1–34.
[35] M.E. Abdelhamid, G.A. Snook, Conducting Polymers and Their Application in Supercapacitor Devices, Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Ltd. (2018). https://doi.org/10.1002/0471440264.pst666.
[36] D. Su, Z.A. Liu, L.L. Jiang, J. Hao, Z.P. Zhang, J. Ma, Conducting polymers in supercapacitor application, IOP Conf. Ser.: Earth Environ. Sci. 267 (2019) 042048. https://doi.org/10.1088/1755-1315/267/4/042048.
[37] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources. 196 (2011) 1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084.
[38] A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sust. Energ. Rev. 101 (2019) 123–145. https://doi.org/10.1016/j.rser.2018.10.026.
[39] D.P. Chatterjee, A.K. Nandi, A review on the recent advances in hybrid supercapacitors, J. Mater. Chem. A. 9 (2021) 15880–15918. https://doi.org/10.1039/D1TA02505H.
[40] Z.S. Iro, C. Subramani, S.S. Dash, A Brief Review on Electrode Materials for Supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628–10643. https://doi.org/10.20964/2016.12.50.
[41] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: Properties and applications, J. Energy Storage. 17 (2018) 224–227. https://doi.org/10.1016/j.est.2018.03.012.
[42] L. Weinstein, R. Dash, Supercapacitor carbons, Mater. Today. 16 (2013) 356–357. https://doi.org/10.1016/j.mattod.2013.09.005.
[43] A. Velasco, Y.K. Ryu, A. Boscá, A. Ladrón-de-Guevara, E. Hunt, et al., Recent trends in graphene supercapacitors: from large area to microsupercapacitors, Sustain. Energy Fuels. 5 (2021) 1235–1254. https://doi.org/10.1039/D0SE01849J.
[44] B. Thomas, G. George, A. Landström, I. Concina, S. Geng, et al., Electrochemical properties of biobased carbon aerogels decorated with graphene dots synthesized from biochar, ACS Appl. Electron. Mater. 3 (2021) 4699–4710. https://doi.org/10.1021/acsaelm.1c00487.
[45] B.G. Choi, J. Hong, W.H. Hong, P.T. Hammond, H. Park, Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors, ACS Nano. 5 (2011) 7205–7213. https://doi.org/10.1021/nn202020w.
[46] Y. Qu, X. Zhang, W. Lü, N. Yang, X. Jiang, All-solid-state flexible supercapacitor using graphene/g-C3N4 composite capacitor electrodes, J. Mater. Sci. 55 (2020) 16334–16346. https://doi.org/10.1007/s10853-020-05156-7.
[47] Z. Zhai, L. Zhang, T. Du, B. Ren, Y. Xu, et al., A review of carbon materials for supercapacitors, Mater. Design. 221 (2022) 111017. https://doi.org/10.1016/j.matdes.2022.111017.
[48] J.M. Black, H.A. Andreas, Pore Shape Affects Spontaneous Charge Redistribution in Small Pores, J. Phys. Chem. C. 114 (2010) 12030–12038. https://doi.org/10.1021/jp103766q.
[49] A. Akhoondi, M. Aghaziarati, N. Khandan, Production of highly pure iron disulfide nanoparticles using hydrothermal synthesis method, Appl. Nanosci. 3 (2013) 417–422. https://doi.org/10.1007/s13204-012-0153-1.
[50] M. Pathak, C.S. Rout, Flexible All-Solid-State Asymmetric Supercapacitor Based on In Situ-Grown Bimetallic Metal Sulfides/Ti3C2Tx MXene Nanocomposite on Carbon Cloth Via a Facile Hydrothermal Method, J. Electron. Mater. 52 (2023) 1668–1680. https://doi.org/10.1007/s11664-022-10076-0.
[51] A. Amiri, A. Bruno, A.A. Polycarpou, Configuration-dependent stretchable all-solid-state supercapacitors and hybrid supercapacitors, Carbon Energy. 5 (2023) e320. https://doi.org/10.1002/cey2.320.
[52] X. Yang, M. Zhang, C. Wang, M. Bi, J. Xie, et al., S, N co-doped rGO/fluorine-free Ti3C2Tx aerogels for high performance all-solid-state supercapacitors, J. Energy Storage. 71 (2023) 108140. https://doi.org/10.1016/j.est.2023.108140.
[53] L. Li, B. Zeng, C. Xiang, W. Liu, Novel design strategies of three-dimensional MXene structures and their applications in metal-ion hybrid capacitors, Aust. J. Chem. 76 (2023) 746–759. https://doi.org/10.1071/CH23090.
[54] X. Liu, Z. Lu, X. Huang, J. Bai, C. Li, et al., Self-assembled S,N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors, J. Power Sources. 516 (2021) 230682. https://doi.org/10.1016/j.jpowsour.2021.230682.
[55] Z. Li, Y. Wu, 2D early transition metal carbides (MXenes) for catalysis, Small. 15 (2019) 1804736. https://doi.org/10.1002/smll.201804736.
[56] Z. Zheng, W. Wu, T. Yang, E. Wang, Z. Du, et al., In Situ Reduced MXene/AuNPs Composite Toward Enhanced Charging/discharging and Specific Capacitance, J. Adv. Ceram. (2021) 1–19. https://doi.org/10.21203/rs.3.rs-210990/v1.
[57] M.P. Bilibana, Electrochemical properties of MXenes and applications, ASEM. 2 (2023) 100080. https://doi.org/10.1016/j.asems.2023.100080.
[58] L. Li, N. Zhang, M. Zhang, L. Wu, X. Zhang, Z. Zhang, Ag-Nanoparticle-Decorated 2D Titanium Carbide (MXene) with Superior Electrochemical Performance for Supercapacitors, ACS Sustain. Chem. Eng. 6 (2018) 7442–7450. https://doi.org/10.1021/acssuschemeng.8b00047.
[59] H. Hwang, S. Yang, S. Yuk, K.-S. Lee, S. Byun, D. Lee, Ti3C2Tx MXene as a growth template for amorphous RuOx in carbon nanofiber-based flexible electrodes for enhanced pseudocapacitive energy storage, NPG Asia Mater. 15 (2023) 29. https://doi.org/10.1038/s41427-023-00476-x.
[60] A. Akhoondi, M. Ziarati, N. Khandan, Hydrothermal Production of Highly Pure Nano Pyrite in a Stirred Reactor, Iran. J. Chem. Chem. Eng. 33 (2014) 15–19. https://doi.org/10.30492/IJCCE.2014.7189.
[61] J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Amorphous nanostructured FeOOH and Co–Ni double hydroxides for high-performance aqueous asymmetric supercapacitors, Nano Energy. 21 (2016) 145–153. https://doi.org/10.1016/j.nanoen.2015.12.029.
[62] W. Luo, Y. Sun, Z. Lin, X. Li, Y. Han, et al., Flexible Ti3C2Tx MXene/V2O5 composite films for high-performance all-solid supercapacitors, J. Energy Storage. 62 (2023) 106807. https://doi.org/10.1016/j.est.2023.106807.
[63] W. Wu, D. Wei, J. Zhu, D. Niu, F. Wang, et al., Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials, Ceram. Int. 45 (2019) 7328–7337. https://doi.org/10.1016/j.ceramint.2019.01.016.
[64] A. Qian, Y. Pang, G. Wang, Y. Hao, Y. Liu, et al., Pseudocapacitive Charge Storage in MXene–V2O5 for Asymmetric Flexible Energy Storage Devices, ACS Appl. Mater. Interfaces. 12 (2020) 54791–54797. https://doi.org/10.1021/acsami.0c16959.
[65] S. Pavasupree, Y. Suzuki, A. Kitiyanan, S. Pivsa-Art, S. Yoshikawa, Synthesis and characterization of vanadium oxides nanorods, J. Solid State Chem. 178 (2005) 2152–2158. https://doi.org/10.1016/j.jssc.2005.03.034.
[66] X. Li, Y. Ma, Y. Yue, G. Li, C. Zhang, et al., A flexible Zn-ion hybrid micro-supercapacitor based on MXene anode and V2O5 cathode with high capacitance, Chem. Eng. J. 428 (2022) 130965. https://doi.org/10.1016/j.cej.2021.130965.
[67] S. Surnev, M.G Ramsey, F.P Netzer, Vanadium oxide surface studies, Prog. Surf. Sci. 73 (2003) 117–165. https://doi.org/10.1016/j.progsurf.2003.09.001.
[68] Y. Cui, Z. Cao, Y. Zhang, H. Chen, J. Gu, Single-Atom Sites on MXenes for Energy Conversion and Storage, Small Sci. 1 (2021) 2100017. https://doi.org/10.1002/smsc.202100017.
[69] R. Gronheid, P. Nealey, Directed Self-assembly of Block Co-polymers for Nano-manufacturing,Woodhead Publishing. (2015). https://doi.org/10.1016/C2014-0-03748-3.
[70] A. Akhoondi, M. Mirzaei, M.Y. Nassar, Z. Sabaghian, F. Hatami, M. Yusuf, New strategies in the preparation of binary g-C3N4/MXene composites for visible-light-driven photocatalytic applications, Synth. Sinter. 2 (2022) 151–169. https://doi.org/10.53063/synsint.2022.24121.
[71] C. Li, C. Kan, X. Meng, M. Liu, Q. Shang, et al., Self-Assembly 2D Ti3C2/g-C3N4 MXene Heterojunction for Highly Efficient Photocatalytic Degradation of Tetracycline in Visible Wavelength Range, Nanomaterials. 12 (2022) 1405. https://doi.org/10.3390/nano12224015.
[72] S. Zhang, Y. Huang, X. Han, J. Wang, X. Sun, Ti3C2Tx/g-C3N4/CNTs Ternary Hybrid Film for All-solid Flexible Supercapacitors and Superb Bandwidth Electromagnetic Wave Absorber, ChemNanoMat. 9 (2023) e202200511. https://doi.org/10.1002/cnma.202200511.
[73] M.W. Losey, J.J. Kelly, N.D. Badgayan, S.K. Sahu, P.S. Rama Sreekanth, Electrodeposition, Reference Module in Materials Science and Materials Engineering, Elsevier. (2017). https://doi.org/10.1016/B978-0-12-803581-8.10137-7.
[74] X. Jian, M. He, L. Chen, M. Zhang, R. Li, et al., Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage, Electrochim. Acta. 318 (2019) 820–827. https://doi.org/10.1016/j.electacta.2019.06.045.
[75] P. Baruah, B.K. Das, D. Kashyap, D. Mahanta, Polyaniline coated sugar derived soft carbon sphere as electrode material in all-solid state symmetric supercapacitor with enhanced cyclic stability, Mater. Today Commun. 35 (2023) 105736. https://doi.org/10.1016/j.mtcomm.2023.105736.
[76] H. Xie, Z. Guo, M. Wang, S. Ma, Z. Kong, Z. He, Facile fabrication of PANI/g-C3N4/MXene composites as electrode materials for supercapacitors, New J. Chem. 47 (2023) 8670–8678. https://doi.org/10.1039/D3NJ00943B.
[77] Z. Lin, X. Li, S. Li, B. Li, J. Ding, et al., Highly flexible, foldable carbon cloth/MXene/polyaniline/CoNi layered double hydroxide electrode for high-performance all solid-state supercapacitors, J. Energy Storage. 64 (2023) 107116. https://doi.org/10.1016/j.est.2023.107116.
[78] X. Wu, G. Zhang, X. Zhao, R. Liu, Z. Liu, et al., Polyaniline/Small-Sized MXene/Carbon Cloth Electrodes with 3D Hierarchical Porous Structure for All-Solid-State Flexible Supercapacitors, Energy Technol. 10 (2022) 2200145. https://doi.org/10.1002/ente.202200145.
[79] X. Bi, M. Li, G. Zhou, C. Liu, R. Huang, et al., High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode, Nano Res. 16 (2023) 7696–7709. https://doi.org/10.1007/s12274-023-5586-1.
[80] S. Nahirniak, A. Ray, B. Saruhan, Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications, Batteries. 9 (2023) 126. https://doi.org/10.3390/batteries9020126.
[81] A. Akhoondi, M. Ebrahimi Nejad, M. Yusuf, T.M. Aminabhavi, K.M. Batoo, S. Rtimi, Synthesis and applications of double metal MXenes: A review, Synth. Sinter. 3 (2023) 107–123. https://doi.org/10.53063/synsint.2023.32150.
[82] J. Xiao, P. Yu, K. Zhao, H. Gao, Two-dimensional transition metal carbide (Ti0.5V0.5)3C2Tx MXene as high performance electrode for flexible supercapacitor, J. Colloid Interface Sci. 639 (2023) 233–240. https://doi.org/10.1016/j.jcis.2023.02.068.
[83] Q. Wang, X. Zhang, Z. Chen, Y. Zhao, W. Yao, J. Xu Ti3−yNbyC2Tx MXenes as high-rate and ultra-stable electrode materials for supercapacitors, J. Alloys Compd. 954 (2023) 170128. https://doi.org/10.1016/j.jallcom.2023.170128.
[84] L. Wang, M. Han, C.E. Shuck, X. Wang, Y. Gogotsi, Adjustable electrochemical properties of solid-solution MXenes, Nano Energy. 88 (2021) 106308. https://doi.org/10.1016/j.nanoen.2021.106308.
[85] E. Ali, M. Yousaf, I.H. Sajid, M.W. Hakim, S. Rizwan, Reticulation of 1D/2D Mo2TiC2 MXene for excellent supercapacitor performance, Mater. Today Chem. 34 (2023) 101766. https://doi.org/10.1016/j.mtchem.2023.101766.
[86] A. Hermawan, F. Destyorini, A. Hardiansyah, V.N. Alviani, W. Mayangsari, et al., High energy density asymmetric supercapacitors enabled by La-induced defective MnO2 and biomass-derived activated carbon, Mater. Lett. 351 (2023) 135031. https://doi.org/10.1016/j.matlet.2023.135031.
[87] W. Ma, Z. Qiu, M. Wang, C. Tan, L. Hu, et al., A novel high-entropy MXene Ti1.1V1.2Cr0.8Nb1.0Mo0.9C4Tx for high-performance supercapacitor, Scr. Mater. 235 (2023) 115596. https://doi.org/10.1016/j.scriptamat.2023.115596.
[88] F. Abdul Latif, N. Akemal, M. Zailani, Z. Saif, M. Al Shukaili, et al., Review of poly (methyl methacrylate) based polymer electrolytes in solid-state supercapacitors, Int. J. Electrochem. Sci. 17 (2022) 22013. https://doi.org/10.20964/2022.01.44.
[89] S. Wustoni, D. Ohayon, A. Hermawan, A. Nuruddin, S. Inal, et al., Material Design and Characterization of Conducting Polymer-Based Supercapacitors, Polym. Rev. 64 (2023) 1–59. https://doi.org/10.1080/15583724.2023.2220131.
[90] S. Sharma, G. Kaur, A. Dalvi, Improving Interfaces in All-Solid-State Supercapacitors Using Polymer-Added Activated Carbon Electrodes, Batteries. 9 (2023) 81. https://doi.org/10.3390/batteries9020081.
[91] J. Li, A. Levitt, N. Kurra, K. Juan, N. Noriega, et al., MXene-conducting polymer electrochromic microsupercapacitors, Energy Storage Mater. 20 (2019) 455–461. https://doi.org/10.1016/j.ensm.2019.04.028.
[92] J. Gurusiddappa, W. Madhuri, R. Padma Suvarna, K.P. Dasan, Studies on the morphology and conductivity of PEO/LiClO4, Mater. Today: Proc. 3 (2016) 1451–1459. https://doi.org/10.1016/j.matpr.2016.04.028.
[93] J.-H. Lee, S.-Y. Lee, S.-J. Park, Highly Porous Carbon Aerogels for High-Performance Supercapacitor Electrodes, Nanomaterials. 13 (2023) 817. https://doi.org/10.3390/nano13050817.
[94] A. Chen, C. Wang, O.A. Abu, S.F. Mahmoud, Y. Shi, et al., MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications, Compos. A: Appl. Sci. Manuf. 163 (2022) 107174. https://doi.org/10.1016/j.compositesa.2022.107174.
[95] J. Sun, J. Zhang, M. Shang, M. Zhang, X. Zhao, et al., N, O co-doped carbon aerogel derived from sodium alginate/melamine composite for all-solid-state supercapacitor, Appl. Surf. Sci. 608 (2023) 155109. https://doi.org/10.1016/j.apsusc.2022.155109.
[96] H. Zhou, Y. Su, J. Zhang, H. Li, L. Zhou, H. Huang, A novel embedded all-solid-state composite structural supercapacitor based on activated carbon fiber electrode and carbon fiber reinforced polymer matrix, Chem. Eng. J. 454 (2023) 140222. https://doi.org/10.1016/j.cej.2022.140222.
[97] S. Li, J. Fan, G. Xiao, S. Gao, K. Cui, Z. Chao, Multifunctional Co3O4/Ti3C2Tx MXene nanocomposites for integrated all solid-state asymmetric supercapacitors and energy-saving electrochemical systems of H2 production by urea and alcohols electrolysis, Int. J. Hydrog. Energy. 47 (2022) 22663–22679. https://doi.org/10.1016/j.ijhydene.2022.05.101.
[98] H. Tang, R. Chen, Q. Huang, W. Ge, X. Zhang, et al., Scalable manufacturing of leaf-like MXene/Ag NWs/cellulose composite paper electrode for all-solid-state supercapacitor, EcoMat. 4 (2022) e12247. https://doi.org/10.1002/eom2.12247.
[99] Y. Wang, N. Chen, Y. Liu, X. Zhou, B. Pu, et al., MXene/Graphdiyne nanotube composite films for Free-Standing and flexible Solid-State supercapacitor, Chem. Eng. J. 450 (2022) 138398. https://doi.org/10.1016/j.cej.2022.138398.
[100] X. Shi, F. Guo, K. Hou, G. Guan, L. Lu, et al., Highly Flexible All-Solid-State Supercapacitors Based on MXene/CNT Composites, Energy Fuels. 37 (2023) 9704–9712. https://doi.org/10.1021/acs.energyfuels.3c01420.
[101] Y. Luo, Y. Tang, X. Bin, C. Xia, W. Que, 3D Porous Compact 1D/2D Fe2O3/MXene Composite Aerogel Film Electrodes for All-Solid-State Supercapacitors, Small. 18 (2022) 2204917. https://doi.org/10.1002/smll.202204917.
[102] T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang, et al., ltralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor, Adv. Compos. Hybrid Mater. 6 (2023) 108. https://doi.org/10.1007/s42114-023-00675-8.
[103] A.M. Patil, N. Kitiphatpiboon, X. An, X. Hao, S. Li, et al., Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti3C2Tx-MXene and Battery-Type Reduced Graphene Oxide/Nickel–Cobalt Bimetal Oxide Electrode Materials, ACS Appl. Mater. Interfaces. 12 (2020) 52749–52762. https://doi.org/10.1021/acsami.0c16221.
[104] M. Cai, X. Wei, H. Huang, F. Yuan, C. Li, et al., Nitrogen-doped Ti3C2Tx MXene prepared by thermal decomposition of ammonium salts and its application in flexible quasi-solid-state supercapacitor, Chem. Eng. J. 458 (2023) 141338. https://doi.org/10.1016/j.cej.2023.141338.
[105] X. Liu, Y. Liu, S. Dong, X. Zhang, L. Lv, S. He, Room-temperature prepared MXene foam via chemical foaming methods for high-capacity supercapacitors, J. Alloys Compd. 945 (2023) 169279. https://doi.org/10.1016/j.jallcom.2023.169279.
[106] A. Patra, P. Mane, S.R. Polaki, B. Chakraborty, C.S. Rout, Enhanced charge storage performance of MXene based all-solid-state supercapacitor with vertical graphene arrays as the current collector, J. Energy Storage. 54 (2022) 105355. https://doi.org/10.1016/j.est.2022.105355.
[107] D. Kasprzak, C.C. Mayorga-Martinez, O. Alduhaish, M. Pumera, Wearable and Flexible All-Solid-State Supercapacitor Based on MXene and Chitin, Energy Technol. 11 (2023) 2201103. https://doi.org/10.1002/ente.202201103.
[108] M. Yuan, L. Wang, X. Liu, X. Du, G. Zhang, et al., 3D printing quasi-solid-state micro-supercapacitors with ultrahigh areal energy density based on high concentration MXene sediment, Chem. Eng. J. 451 (2023) 138686. https://doi.org/10.1016/j.cej.2022.138686.
[109] W. Luo, Y. Wei, Z. Zhuang, Z. Lin, X. Li, et al., Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors, Electrochim. Acta. 406 (2022) 139871. https://doi.org/10.1016/j.electacta.2022.139871.
[110] J. Zhou, B. Liu, L. Zhang, Q. Li, C. Xu, H. Liu, MXene-driven in situ construction of hollow core-shelled Co3V2O8@Ti3C2Tx nanospheres for high-performance all-solid-state asymmetric supercapacitors, J. Mater. Chem. A. 10 (2022) 24896–24904. https://doi.org/10.1039/D2TA06579G.
[111] W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, et al., Recent advancements in supercapacitor technology, Nano Energy. 52 (2018) 441–473. https://doi.org/10.1016/j.nanoen.2018.08.013.
[112] G. Nikiforidis, S. Wustoni, D. Ohayon, V. Druet, S. Inal, A Self-standing Organic Supercapacitor to Power Bioelectronic Devices, ACS Appl. Energy Mater. 3 (2020) 7896–7907. https://doi.org/10.1021/acsaem.0c01299.
[113] A. Kumar, S. Ibraheem, R.K. Gupta, T.A. Nguyen, G. Yasin, Battery-supercapacitor hybrid systems: an introduction, Nanotechnology in the automotive industry, Elsevier. (2022). https://doi.org/10.1016/B978-0-323-90524-4.00021-9.
[114] P. Sharma, V. Kumar, Current Technology of Supercapacitors: A Review, J. Electron. Mater. 49 (2020) 3520–3532. https://doi.org/10.1007/s11664-020-07992-4.
[115] Z. Végvári, Supercapacitors and their military applicability, Hungarian Def. Rev. 147 (2020) 38–49. https://doi.org/10.35926/HDR.2019.1-2.3.
[116] J. Huang, K. Dai, Y. Yin, Z. Chen, X. Wang, Z. You, Generalized modeling and experimental research on the transient response of supercapacitors under compressive mechanical loads, Nano Res. 16 (2023) 6859–6869. https://doi.org/10.1007/s12274-023-5404-9.
[117] D, Jayananda, N. Kularatna, D.A. Steyn‐Ross, Supercapacitor-assisted LED (SCALED) technique for renewable energy systems: a very low frequency design approach with short-term DC-UPS capability eliminating battery banks, IET Renew. Power Gener. 14 (2020) 1559–1570. https://doi.org/10.1049/iet-rpg.2019.1307.

Cited By

Crossref Google Scholar
Recent advances in synthesis of MXene-based electrodes for flexible all-solid-state supercapacitors
Submitted
2023-06-30
Published
2023-09-27
How to Cite
Akhoondi, A., Nassar, M. Y., Yuliarto, B., & Meskher, H. (2023). Recent advances in synthesis of MXene-based electrodes for flexible all-solid-state supercapacitors. Synthesis and Sintering, 3(3), 200-212. https://doi.org/10.53063/synsint.2023.33163

Most read articles by the same author(s)