Synthesis and applications of double metal MXenes: A review

  • Asieh Akhoondi 1
  • Mitra Ebrahimi Nejad 2
  • Mohammad Yusuf 3
  • Tejraj M. Aminabhavi 4
  • Khalid Mujasam Batoo 5
  • Sami Rtimi 6
  • 1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 2 Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
  • 3 Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
  • 4 School of Advanced Sciences, KLE Technological University, Hubballi 580031, India
  • 5 King Abdullah Institute For Nanotechnology, King Saud University, Riyadh-11451, Saudi Arabia
  • 6 Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Abstract

MXenes are known as a new type of two-dimensional layered materials that are composed of carbide, nitride, or carbonitride of transition metals. In the recent discovery of a new class of MXenes, two transition metals occupy the metal site, called double transition metal MXenes (DTM). These multilayer composites are of interest due to their attractive features such as high ion transport, extensive surface area, and biocompatibility. Some computational methods are used to predict the properties and performance of bimetallic carbonitrides. The most important feature of this category of materials is the stability and amount of formation energy, which directly affects the choice of material in various applications. Density functional theory (DFT) calculations are very beneficial to estimate the thermodynamic stability of DTM MXenes. Of course, proper surface modification with stable terminals is needed to overcome the limitations of DTM MXenes. In this review, the electrochemical, metallic, and magnetic properties of DTM MXene have been presented first. In the following, preparation methods are summarized according to the latest published findings. Then, various applications including hydrogen evolution reactions, anode materials in lithium and sodium batteries, nanomagnetic materials, and special applications have been investigated. Finally, more challenges, prospects, and suggestions for the development of two-dimensional DTM MXenes have been presented.

Downloads

Download data is not yet available.
Keywords: MXene, Double-transition metal, Synthesis, Two-dimensional nanomaterials

References

[1] S. Kanungo, G. Ahmad, P. Sahatiya, A. Mukhopadhyay, S. Chattopadhyay, 2D materials-based nanoscale tunneling field effect transistors: current developments and future prospects, npj 2D Mater. Appl. 6 (2022) 83. https://doi.org/10.1038/s41699-022-00352-2.
[2] D. Er, K. Ghatak, Atomistic modeling by density functional theory of two-dimensional materials, Micro and Nano Technologies, Elseviear. (2020) 113–123. https://doi.org/10.1016/B978-0-12-818475-2.00006-4.
[3] V. Shanmugam, R.A. Mensah, K. Babu, S. Gawusu, A. Chanda, et al., A Review of the Synthesis, Properties, and Applications of 2D Materials, Part. Part. Syst. Charact. 39 (2022) 2200031. https://doi.org/10.1002/ppsc.202200031.
[4] Z. Xiong, L. Zhong, H. Wang, X. Li, Structural Defects, Mechanical Behaviors, and Properties of Two-Dimensional Materials, Materials. 45 (2021) 1192. https://doi.org/10.3390/ma14051192.
[5] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, et al., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Adv. Matter. 23 (2011) 4248–4253. https://doi.org/10.1002/adma.201102306.
[6] M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides, MRS Commun. 2 (2012) 133–137. https://doi.org/10.1557/mrc.2012.25.
[7] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, MXenes: a new family of two-dimensional materials, Adv. Mater. 26 (2014) 992–1005. https://doi.org/10.1002/adma.201304138.
[8] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, et al., Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes), ACS Nano. 9 (2015) 9507–9516. https://doi.org/10.1021/acsnano.5b03591.
[9] M. Tawalbeh, S. Mohammed, A. Al-Othman, M. Yusuf, M. Mofijur, H. Kamyab, MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review, Environ. Res. 228 (2023) 115919. https://doi.org/10.1016/j.envres.2023.115919.
[10] Y. Cheng, J. Dai, Y. Zhang, Y. Song, Two-Dimensional, Ordered, Double Transition Metal Carbides (MXenes): A New Family of Promising Catalysts for the Hydrogen Evolution Reaction, J. Phys. Chem. C. 122 (2018) 28113–28122. https://doi.org/10.1021/acs.jpcc.8b08914.
[11] M. Zhu, C. Lu, L. Liu, Progress and challenges of emerging MXene based materials for thermoelectric applications, iScience. 26 (2023) 106718. https://doi.org/10.1016/j.isci.2023.106718.
[12] C. Zhang, Y. Zhang, X. Gu, C. Ma, Y. Wang, et al., Radiation synthesis of MXene/Ag nanoparticle hybrids for efficient photothermal conversion of polyurethane films, RSC Adv. 13 (2023) 15157–15164. https://doi.org/10.1039/d3ra02799f.
[13] A. Akhoondi, M. Mirzaei, M.Y. Nassar, Z. Sabaghian, F. Hatami, M. Yusuf, New strategies in the preparation of binary g-C3N4/MXene composites for visible-light-driven photocatalytic applications, Synth. Sinter. 2 (2022) 151–169. https://doi.org/10.53063/synsint.2022.24121.
[14] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, et al., New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 15966–15969. https://doi.org/10.1021/ja405735d.
[15] M. Feng, W. Wang, Z. Hu, C. Fan, X. Zhao, et al., Engineering chemical-bonded Ti3C2 MXene@carbon composite films with 3D transportation channels for promoting lithium-ion storage in hybrid capacitors, Sci. China Mater. 66 (2023) 944–954. https://doi.org/10.1007/s40843-022-2268-9.
[16] A. Akhoondi, H. Ghaebi, L. Karuppasamy, M.M. Rahman, P. Sathishkumar, Recent advances in hydrogen production using MXenes-based metal sulfide photocatalysts, Synth. Sinter. 2 (2022) 37–54. https://doi.org/10.53063/synsint.2022.21106.
[17] L. Chen, X. Dai, W. Feng, Y. Chen, Biomedical Applications of MXenes: From Nanomedicine to Biomaterials, Acc. Mater. Res. 3 (2022) 785–798. https://doi.org/10.1021/accountsmr.2c00025.
[18] H. Bark, G. Thangavel, R.J. Liu, D.H.C. Chua, P.S. Lee, Effective Surface Modification of 2D MXene toward Thermal Energy Conversion and Management, Small Methods. 7 (2023) 2300077. https://doi.org/10.1002/smtd.202300077.
[19] W. Hong, B.C. Wyatt, S.K. Nemani, B. Anasori, Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides, MRS Bull. 45 (2020) 850–861. https://doi.org/10.1557/mrs.2020.251.
[20] Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, et al., Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution, ACS Energy Lett. 1 (2016) 589–594. https://doi.org/10.1021/acsenergylett.6b00247.
[21] M.G. Moreno-Armenta, J. Guerrero-Sánchez, S.J. Gutiérrez-Ojeda, H.N. Fernández-Escamilla, D.M. Hoat, R. Ponce-Pérez, Theoretical investigation of the MXene precursors MoxV4-xAlC3 (0 ≤ x ≤ 4), Sci. Rep. 13 (2023) 3271. https://doi.org/10.1038/s41598-023-30443-z.
[22] A.P. Umanskii, V.A. Lavrenko, S.S. Chuprov, V.P. Konoval, High-temperature oxidation of composites based on titanium carbonitride and double titanium-chromium carbide, Refract. Ind. Ceram. 47 (2006) 246–250. https://doi.org/10.1007/s11148-006-0099-5.
[23] S. Venkateshalu, G.M. Tomboc, B. Kim, J. Li, K. Lee, Ordered Double Transition Metal MXenes, ChemNanoMat. 8 (2022) e202200320. https://doi.org/10.1002/cnma.202200320.
[24] E. Omugbe, O.E. Osafile, O.N. Nenuwe, E.A. Enaibe, E.E. Elemike, Thermal and electrical transport conductivities of novel ordered double two-dimensional MXenes via density functional theory, Can. J. Chem. 101 (2023) 316–325. https://doi.org/10.1139/cjc-2022-0070.
[25] W.-L. Chang, Z.-Q. Sun, Z.-M. Zhang, X.-P. Wei, X. Tao, Thermoelectric properties of two-dimensional double transition metal MXenes: ScYCT2 (T=F, OH), J. Phys. Chem. Solids. 176 (2023) 111210. https://doi.org/10.1016/j.jpcs.2022.111210.
[26] N.M. Caffrey, Prediction of Optimal Synthesis Conditions for the Formation of Ordered Double-Transition-Metal MXenes (o-MXenes), J. Phys. Chem. C. 124 (2020) 18797–18804. https://doi.org/10.1021/acs.jpcc.0c05348.
[27] E. Bolen, E. Deligoz, Computational study of mechanical stability and phonon properties of MXenes Mo2ScC2T2 (T = O and F): 2D materials, J. Appl. Phys. 130 (2021) 065102. https://doi.org/10.1063/5.0055701.
[28] K.D. Dihingia, S. Saikia, N. Yedukondalu, S. Saha, S.G. Narahari, 2D-Double transition metal MXenes for spintronics applications: surface functionalization induced ferromagnetic half-metallic complexes, J. Mater. Chem. C. 10 (2022) 17886–17898. https://doi.org/10.1039/D2TC03067E.
[29] E.M.D. Siriwardane, P. Karki, Y.L. Loh, D. Çakır, Engineering magnetic anisotropy and exchange couplings in double transition metal MXenes via surface defects, J. Phys: Condens. Matter. 33 (2021) 035801. https://doi.org/10.1088/1361-648X/abba8e.
[30] Y. Zhang, C. Zhou, B. Sa, N. Miao, J. Zhou, Z. Sun, Computational design of double transition metal MXenes with intrinsic magnetic properties, Nanoscale Horiz. 7 (2022) 276–287. https://doi.org/10.1039/D1NH00621E.
[31] X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren, et al., Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications, Phys. Rep. 848 (2020) 1–58. https://doi.org/10.1016/j.physrep.2019.12.006.
[32] J. Geng, R. Wu, H. Bai, I.-N. Chan, K.W. Ng, et al., Design of functionalized double-metal MXenes (M2M’C2T2: M = Cr, Mo, M’ = Ti, V) for magnetic and catalytic applications, Int. J. Hydrog. Energy. 47 (2022) 18725–18737. https://doi.org/10.1016/j.ijhydene.2022.04.058.
[33] D.R. Kumar, R. Karthik, M. Hasan, M.S. Sayed, J.-J. Shim, Mo-MXene-filled gel polymer electrolyte for high-performance quasi-solid-state zinc metal batteries, Chem. Eng. J. 473 (2023) 145207. https://doi.org/10.1016/j.cej.2023.145207.
[34] B.C. Wyatt, A. Thakur, K. Nykiel, Z.D. Hood, S.P. Adhikari, et al., Design of Atomic Ordering in Mo2Nb2C3Tx MXenes for Hydrogen Evolution Electrocatalysis, Nano Lett. 23 (2023) 931–938. https://doi.org/10.1021/acs.nanolett.2c04287.
[35] K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi, Z. W. Seh, Fundamentals of MXene synthesis, Nat. Synth. 1 (2022) 601–614. https://doi.org/10.1038/s44160-022-00104-6.
[36] Y. Gogotsi, B. Anasori, The Rise of MXenes, ACS Nano. 13 (2019) 8491–8494. https://doi.org/10.1021/acsnano.9b06394.
[37] S.A. Zahra, M.W. Hakim, M.A. Mansoor, S. Rizwan, Two-dimensional double transition metal carbides as superior bifunctional electrocatalysts for overall water splitting, Electrochim. Acta. 434 (2022) 141257. https://doi.org/10.1016/j.electacta.2022.141257.
[38] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Charact. Mater. 53 (2007) 117–166. https://doi.org/10.1016/j.pcrysgrow.2007.04.001.
[39] A. Akhoondi, M. Aghaziarati, N. Khandan, Production of highly pure iron disulfide nanoparticles using hydrothermal synthesis method, Appl. Nanosci. 3 (2013) 417–422. https://doi.org/10.1007/s13204-012-0153-1.
[40] Q. Ma, Z. Zhang, P. Kou, D. Wang, Z. Wang, et al., In-situ synthesis of niobium-doped TiO2 nanosheet arrays on double transition metal MXene (TiNbCTx) as stable anode material for lithium-ion batteries, J. Colloid Interface Sci. 617 (2022) 147–155. https://doi.org/10.1016/j.jcis.2022.03.007.
[41] K. Byrappa, N. Keerthiraj, S.M. Byrappa, Hydrothermal Growth of Crystals—Design and Processing, Handbook of Crystal Growth (Second Edition), Elsevier. (2015) 535–575. https://doi.org/10.1016/B978-0-444-63303-3.00014-6.
[42] S. Husmann, M. Besch, B. Ying, A. Tabassum, M. Naguib, V. Presser, Nb Carbides (MXene) as Anode Materials for Li-Ion Batteries, ACS Appl. Energy Mater. 5 (2022) 8132–8142. https://doi.org/10.1021/acsaem.2c00676.
[43] A. Akhoondi, Z. Mahmoud, Khandan Nahid, Hydrothermal Production of Highly Pure Nano Pyrite in a Stirred Reactor, Iran. J. Chem. Chem. Eng. 33 (2014) 15–19. https://doi.org/10.30492/IJCCE.2014.7189.
[44] Y.-T. Liu, P. Zhang, N. Sun, B. Anasori, Q. Zhu, et al., Self-Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage, Adv. Mater. 30 (2018) 1707334. https://doi.org/10.1002/adma.201707334.
[45] C. Zhang, S.J. Kim, M. Ghidiu, M.Q. Zhao, M.W. Barsoum, et al., Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries, Adv. Funct. Mater. 26 (2016) 4143–4151. https://doi.org/10.1002/adfm.201600682.
[46] M. Fides, P. Hvizdoš, R. Bystrický, A. Kovalčíková, R. Sedlák, et al., Microstructure, fracture, electrical properties and machinability of SiC-TiNbC composites, J. Eur. Ceram. Soc. 37 (2017) 4315–4322. https://doi.org/10.1016/j.jeurceramsoc.2017.05.004.
[47] M.A. Andrade, T. Averianov, C.E. Shuck, K. Shevchuk, Y. Gogotsi, E. Pomerantseva, Synthesis of 2D Solid-Solution (NbyV2–y)CTx MXenes and Their Transformation into Oxides for Energy Storage, ACS Appl. Nano Mater. 6 (2023) 16168–16178. https://doi.org/10.1021/acsanm.3c02004.
[48] J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction, Nat. Catal. 1 (2018) 985–992. https://doi.org/10.1038/s41929-018-0195-1.
[49] A. Akhoondi, A. Sharma, D. Pathak, M. Yusuf, T.B. Demissie, et al., Hydrogen evolution via noble metals based photocatalysts: A review. Synth. Sinter. 1 (2021) 223–241. https://doi.org/10.53063/synsint.2021.1468.
[50] L. Tian, Z. Li, M. Song, J. Li, Recent progress in water-splitting electrocatalysis mediated by 2D noble metal materials, Nanoscale. 13 (2021) 12088–12101. https://doi.org/10.1039/D1NR02232F.
[51] M. Mirzaei, A. Akhoondi, W. Hamd, J.N. Díaz de León, R. Selvaraj, New updates on vanadate compounds synthesis and visible-light-driven photocatalytic applications, Synth. Sinter. 3 (2023) 28–45. https://doi.org/10.53063/synsint.2023.31132.
[52] N. Li, Z. Zeng, Y. Zhang, X. Chen, Z. Kong, et al., Double Transition Metal Carbides MXenes (D-MXenes) as Promising Electrocatalysts for Hydrogen Reduction Reaction: Ab Initio Calculations, ACS Omega. 6 (2021) 23676–23682. https://doi.org/10.1021/acsomega.1c00870.
[53] Z. Zeng, X. Chen, K. Weng, Y. Wu, P. Zhang, et al., Computational screening study of double transition metal carbonitrides M′2M″CNO2-MXene as catalysts for hydrogen evolution reaction, npj Comput. Mater. 7 (2021) 80. https://doi.org/10.1038/s41524-021-00550-4.
[54] A. Kahn, Fermi level, work function and vacuum level, Mater Horiz. 3 (2016) 7–10. https://doi.org/10.1039/C5MH00160A.
[55] W. Sun, Y. Xie, P. Kent, Double transition metal MXenes with wide band gaps and novel magnetic properties, Nanoscale. 10 (2018) 11962–11968. https://doi.org/10.1039/C8NR00513C.
[56] R. Jayan, A. Vashisth, M.M. Islam, First-principles investigation of elastic and electronic properties of double transition metal carbide MXenes, J. Am. Ceram. Soc. 105 (2022) 4400–4413. https://doi.org/10.1111/jace.18394.
[57] D. Jin, P. Hou, Y. Tian, X. Liu, Y. Xie, et al., Single transition metal atom stabilized on double metal carbide MXenes for hydrogen evolution reaction: a density functional theory study, J. Phys. D: Appl. Phys. 55 (2022) 444002. https://doi.org/10.1088/1361-6463/ac8a5a.
[58] L.-H. Zheng, C.-K. Tang, Q.-F. Lü, J. Wu, MoS2/Mo2TiC2Tx supported Pd nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media, Int. J. Hydrog. Energy. 47 (2022) 11739–11749. https://doi.org/10.1016/j.ijhydene.2022.01.201.
[59] J. Li, C. Chen, Z. Lv, W. Ma, M. Wang, et al., Constructing heterostructures of ZIF-67 derived C, N doped Co2P and Ti2VC2Tx MXene for enhanced OER, J. Mater. Sci. Technol. 145 (2023) 74–82. https://doi.org/10.1016/j.jmst.2022.10.048.
[60] D. Jin, L.R. Johnson, A.S. Raman, X. Ming, Y. Gao, et al., Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction, J. Phys. Chem. C. 124 (2020) 10584–10592. https://doi.org/10.1021/acs.jpcc.0c01460.
[61] O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, et al., Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4 (2013) 1716. https://doi.org/10.1038/ncomms2664.
[62] X. Song, H. Wang, S. Jin, M. Lv, Y. Zhang, et al., Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage, Nano Res. 13 (2020) 1659–1667. https://doi.org/10.1007/s12274-020-2789-6.
[63] K. Kannan, K.K. Sadasivuni, A.M. Abdullah, B. Kumar, Current Trends in MXene-Based Nanomaterials for Energy Storage and Conversion System: A Mini Review, Catalysts. 10 (2020) 495. https://doi.org/10.3390/catal10050495.
[64] M. Zhou, Y. Shen, J.J. Liu, L.L. Lv, Y. Zhang, et al., Excellent double metal MXenes MoWC anode: The synergistic effect of molybdenum and tungsten transition metal, Vacuum. 213 (2023) 112152. https://doi.org/10.1016/j.vacuum.2023.112152.
[65] A. Samad, A. Shafique, H.J. Kim, Y.-H. Shin, Superionic and electronic conductivity in monolayer W2C: ab initio predictions, J. Mater. Chem. A. 5 (2017) 11094–11099. https://doi.org/10.1039/C7TA01177F.
[66] V. Mehta, H.S. Saini, S. Srivastava, M.K. Kashyap, K. Tankeshwar, Ultralow diffusion barrier of double transition metal MoWC monolayer as Li-ion battery anode, J. Mater. Sci. 57 (2022) 10702–10713. https://doi.org/10.1007/s10853-022-07237-1.
[67] Q. Sun, Y. Dai, Y. Ma, T. Jing, W. Wei, B. Huang, Ab Initio Prediction and Characterization of Mo2C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries, J. Phys. Chem. Lett. 7 (2016) 937–943. https://doi.org/10.1021/acs.jpclett.6b00171.
[68] M. Zhou, Y. Shen, J.J. Liu, L.L. Lv, X. Gao, et al., Superionic conductivity and large capacitance behaviors of two-metal MXenes WCrC in sodium ion battery, Vacuum. 200 (2022) 111054. https://doi.org/10.1016/j.vacuum.2022.111054.
[69] Y.-M. Li, W.-G. Chen, Y.-L. Guo, Z.-Y. Jiao, Theoretical investigations of TiNbC MXenes as anode materials for Li-ion batteries, J. Alloys Compd. 778 (2019) 53–60. https://doi.org/10.1016/j.jallcom.2018.11.140.
[70] S. Zhao, W. Kang, J. Xue, Role of Strain and Concentration on the Li Adsorption and Diffusion Properties on Ti2C Layer, J. Phys. Chem. C. 118 (2014) 14983–14990. https://doi.org/10.1021/jp504493a.
[71] J. Hu, B. Xu, C. Ouyang, Y. Zhang, S.A. Yang, Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations, RSC Adv. 6 (2016) 27467–27474. https://doi.org/10.1039/C5RA25028E.
[72] X. Li, Y. Pang, M. Wang, X. Zhang, Z. Lu, Z. Yang, The synergistic effect of Ti and Nb in TiNbC leads to enhanced anode performance for Na-ion batteries - first-principles calculations, Phys. Scr. 98 (2023) 025710. https://doi.org/10.1088/1402-4896/acb46a.
[73] W. Liu, J. Cao, F. Song, D.-D. Zhang, M. Okhawilai, et al., A double transition metal Ti2NbC2Tx MXene for enhanced lithium-ion storage, Rare. Met. 42 (2023) 100–110. https://doi.org/10.1007/s12598-022-02120-z.
[74] X. Guo, X. Xie, S.J. Choi, Y. Zhao, H. Líu, et al., Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries, J. Mater. Chem. A. 5 (2017) 12445–12452. https://doi.org/10.1039/C7TA02689G.
[75] Z. Dai, J. Cao, F. Song, D. Zhang, J. Qin, X. Zhang, Architecting Nb-TiO2−x/(Ti0.9Nb0.1)3C2Tx MXene Nanohybrid Anode for High-Performance Lithium-Ion Batteries, Adv. Mater. Interfaces. 9 (2022) 2101658. https://doi.org/10.1002/admi.202101658.
[76] C. Xu, K. Feng, X. Yang, Y. Cheng, X. Zhao, et al., In-situ construction of metallic oxide (VNbO5) on VNbCTx MXene for enhanced Li-ion batteries performance, J. Energy Storage. 69 (2023) 107888. https://doi.org/10.1016/j.est.2023.107888.
[77] Y. Cheng, L. Yang, S. Yin, Synthesis and lithium ion storage performance of novel two dimensional vanadium niobium carbide (VNbCTx) MXene, Compos. Commun. 40 (2023) 101588. https://doi.org/10.1016/j.coco.2023.101588.
[78] Y. Li, L. Li, R. Huang, Y. Zhang, Y. Wen, Computational screening of pristine and functionalized ordered TiVC MXenes as highly efficient anode materials for lithium-ion batteries, Nanoscale. 13 (2021) 2995–3001. https://doi.org/10.1039/D0NR08271F.
[79] S.-P. Huang, J. Zhang, Y.-R. Ren, W.-K. Chen, Investigating the potentials of TiVC MXenes as anode materials for Li-ion batteries by DFT calculations, Appl. Surf. Sci. 569 (2021) 151002. https://doi.org/10.1016/j.apsusc.2021.151002.
[80] K. Feng, Y. Li, C. Xu, M. Zhang, X. Yang, et al., In-situ partial oxidation of TiVCTx derived TiO2 and V2O5 nanocrystals functionalized TiVCTx MXene as anode for lithium-ion batteries, Electrochim. Acta. 444 (2023) 142022. https://doi.org/10.1016/j.electacta.2023.142022.
[81] Y. Li, J. Zhang, Y. Cheng, K. Feng, J. Li, et al., Stable TiVCTx/poly-o-phenylenediamine composites with three-dimensional tremella-like architecture for supercapacitor and Li-ion battery applications, Chem. Eng. J. 433 (2022) 134578. https://doi.org/10.1016/j.cej.2022.134578.
[82] Y. Cheng, Y. Li, L. Yang, S. Yin, Poly(o-phenylenediamine)-Decorated V4C3Tx MXene/Poly(o-phenylenediamine) Blends as Electrode Materials to Boost Storage Capacity for Supercapacitors and Lithium-Ion Batteries, ACS Appl. Nano Mater. 6 (2023) 9186–9196. https://doi.org/10.1021/acsanm.3c00624.
[83] K. Chen, Y. Guan, L. Tan, H. Zhu, Q. Zhang, et al., Atomically selective oxidation of (Ti,V) MXene to construct TiO2@TiVCTx heterojunction for high-performance Li-ion batteries, Appl. Surf. Sci. 617 (2023) 156575. https://doi.org/10.1016/j.apsusc.2023.156575.
[84] T.L. Tan, H.M. Jin, M.B. Sullivan, B. Anasori, Y. Gogotsi, High-Throughput Survey of Ordering Configurations in MXene Alloys Across Compositions and Temperatures, ACS Nano. 23 (2017) 4407–4418. https://doi.org/10.1021/acsnano.6b08227.
[85] S.-P. Huang, J.-F. Gu, Y.-R. Ren, K.-N. Ding, Y. Li, et al., Investigation of Ordered TiMC and TiMCT2 (M = Cr and Mo; T = O and S) MXenes as High-Performance Anode Materials for Lithium-Ion Batteries, J. Phys. Chem. C. 126 (2022) 5283–5291. https://doi.org/10.1021/acs.jpcc.1c10638.
[86] H. Wang, Z. Jing, H. Liu, X. Feng, G. Meng, et al., A high-throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs, Nanoscale. 12 (2020) 24510–24526. https://doi.org/10.1039/D0NR05828A.
[87] M. Zhou, Y. Shen, J.J. Liu, L.L. Lv, Y. Zhang, et al., Collaborative activation mechanism in double transition metal MXenes anode: An effective method to improve the capacitance of sodium ion battery, Vacuum. 213 (2023) 112150. https://doi.org/10.1016/j.vacuum.2023.112150.
[88] J. Hu, B. Xu, C. Ouyang, S.A. Yang, Y. Yao, Investigations on V2C and V2CX2 (X = F, OH) Monolayer as a Promising Anode Material for Li Ion Batteries from First-Principles Calculations, J. Phys. Chem. C. 118 (2014) 24274–24281. https://doi.org/10.1021/jp507336x.
[89] V. Mehta, H.S. Saini, S. Srivastava, M.K. Kashyap, K. Tankeshwar, N-based single and double transition metal V2N/CrVN monolayers as high capacity anode materials for Li-ion batteries, Mater. Chem. Phys. 290 (2022) 126531. https://doi.org/10.1016/j.matchemphys.2022.126531.
[90] R. Syamsai, J.R. Rodriguez, V.G. Pol, Q.V. Le, K.M. Batoo, et al., Double transition metal MXene (TixTa4−xC3) 2D materials as anodes for Li-ion batteries, Sci. Rep. 11 (2021) 688. https://doi.org/10.1038/s41598-020-79991-8.
[91] M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, et al., MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun. 16 (2021) 61–64. https://doi.org/10.1016/j.elecom.2012.01.002.
[92] Y.-C. Lin, R. Torsi, R. Younas, C.L. Hinkle, A.F. Rigosi, et al., Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications, ACS Nano. 17 (2023) 9694–9747. https://doi.org/10.1021/acsnano.2c12759.
[93] J.P. Singh, R. Bhardwaj, A. Sharma, B. Kaur, S.O. Won, et al., Fabrication of Magnetic Tunnel Junctions, Advanced Applications in Manufacturing Enginering, Woodhead Publishing. (2019) 53–77. https://doi.org/10.1016/B978-0-08-102414-0.00002-1.
[94] S. Peng, Y. Zhang, M.X. Wang, Y.G. Zhang, W. Zhao, Magnetic Tunnel Junctions for Spintronics: Principles and Applications, Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Ltd. (2014). https://doi.org/10.1002/047134608X.W8231.
[95] Z. Cui, Y. Zhang, R. Xiong, C. Wen, J. Zhou, et al., Giant tunneling magnetoresistance in two-dimensional magnetic tunnel junctions based on double transition metal MXene ScCr2C2F2, Nanoscale Adv. 4 (2022) 5144–5153. https://doi.org/10.1039/D2NA00623E.
[96] J. Neugebauer, T. Hickel, Density functional theory in materials science, WIREs Comput. Mol. Sci. 3 (2013) 438–448. https://doi.org/10.1002/wcms.1125.
[97] L. Dong, H. Kumar, B. Anasori, Y. Gogotsi, V.B. Shenoy, Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes, J. Phys. Chem. Lett. 8 (2017) 422–428. https://doi.org/10.1021/acs.jpclett.6b02751.
[98] K. Hantanasirisakul, B. Anasori, S. Nemsak, J.L. Hart, J. Wu, et al., Evidence of a magnetic transition in atomically thin Cr2TiC2Tx MXene, Nanoscale Horiz. 5 (2020) 1557–1565. https://doi.org/10.1039/D0NH00343C.
[99] I. Borge-Durán, A. Paul, I. Grinberg, From Non-Magnetic to Magnetic: A First-Principles Study of the Emergence of Magnetism in 2D (Nb1–xTix)4C3 MXenes, Chem. Mater. 35 (2023) 7442–7449. https://doi.org/10.1021/acs.chemmater.3c00367.
[100] Q. Wang, L. Cao, S.-J. Liang, W. Wu, G. Wang, et al., Efficient Ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers, npj 2D Mater. Appl. 5 (2021) 71. https://doi.org/10.1038/s41699-021-00251-y.
[101] Q. Wu, L. Cao, Y.S. Ang, L.K. Ang, Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field Scilightfeatured, Appl. Phys. Lett. 118 (2021) 113102. https://doi.org/10.1063/5.0044431.
[102] A. Kelly, Composites in context, Compos. Sci. Technol. 23 (1985) 171–199. https://doi.org/10.1016/0266-3538(85)90017-X.
[103] H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou, et al., Recent development and prospects of surface modification and biomedical applications of MXenes, Nanoscale. 12 (2020) 1325–1338. https://doi.org/10.1039/C9NR07616F.
[104] J. Xi, X. Liu, L. Zhang, Z. Zhang, J. Zhuo, et al., Engineering of Schottky heterojunction in Ru@Bi2S3/Nb2C MXene based on work function with enhanced carrier separation for promoted sterilization, Chem. Eng. J. 473 (2023) 145169. https://doi.org/10.1016/j.cej.2023.145169.
[105] H. Frei, Photocatalytic fuel production, Curr. Opin. Electrochem. 2 (2017) 128–135. https://doi.org/10.1016/j.coelec.2017.03.009.
[106] Z. Qin, T. Su, H. Ji, MXene-Based Photocatalysts Fabrication and Applications, CRC Press., Boca Raton. (2022). https://doi.org/10.1201/9781003156963.
[107] P.M. Patterson, T.K. Das, B.H. Davis, Carbon monoxide hydrogenation over molybdenum and tungsten carbides, Appl. Catal. A. 251 (2003) 449–455. https://doi.org/10.1016/S0926-860X(03)00371-5.
[108] A.B. Vidal, L. Feria, J. Evans, Y. Takahashi, P. Liu, et al., CO2 Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts, J. Phys. Chem. Lett. 3 (2013) 2275–2280. https://doi.org/10.1021/jz300989e.
[109] Y. Cheng, X. Xu, Y. Li, Y. Zhang, Y. Song, CO2 reduction mechanism on the Nb2CO2 MXene surface: Effect of nonmetal and metal modification, Comput. Mater. Sci. 202 (2022) 110971. https://doi.org/10.1016/j.commatsci.2021.110971.
[110] H. Zhou, Z. Chen, E. Kountoupi, A. Tsoukalou, P.M. Abdala, et al., Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation, Nat. Commun. 12 (2021) 5510. https://doi.org/10.1038/s41467-021-25784-0.
[111] Z. Wu, J. Shen, C. Li, C. Zhang, K. Feng, et al., Mo2TiC2 MXene-Supported Ru Clusters for Efficient Photothermal Reverse Water–Gas Shift, ACS Nano. 17 (2023) 1550–1559. https://doi.org/10.1021/acsnano.2c10707.
[112] N. Mwankemwa, H.-E. Wang, T. Zhu, Q. Fan, F. Zhang, et al., First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5-n/(MoSiGeN4)n in-plane heterostructures, Results Phys. 37 (2022) 105549. https://doi.org/10.1016/j.rinp.2022.105549.
[113] F. Wöhler, Ueber künstliche Bildung des Harnstoffs, Ann. Phys. Chem. 88 (1828) 253–256. https://doi.org/10.1002/andp.18280880206.
[114] Y. Yang, J. Peng, Z. Shi, P. Zhang, A. Arramel, N. Li, Unveiling the key intermediates in electrocatalytic synthesis of urea with CO2 and N2 coupling reactions on double transition-metal MXenes, J. Mater. Chem. A. 11 (2023) 6428–6439. https://doi.org/10.1039/D2TA09477K.
[115] S. Zhang, J. Geng, Z. Zhao, M. Jin, W. Li, et al., High-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst, EES. Catal. 1 (2023) 45–53. https://doi.org/10.1039/D2EY00038E.
[116] Z. Li, N.H. Attanayake, J.L. Blackburn, E.M. Miller, Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts, Energy Environ. Sci. 14 (2021) 6242–6286. https://doi.org/10.1039/D1EE03211A.
[117] L. Li, X. Wang, H. Guo, G. Yao, H. Yu, et al., Theoretical Screening of Single Transition Metal Atoms Embedded in MXene Defects as Superior Electrocatalyst of Nitrogen Reduction Reaction, Small Methods. 3 (2019) 1900337. https://doi.org/10.1002/smtd.201900337.
[118] R. Zhao, Y. Chen, H. Xiang, Y. Guan, C. Yang, et al.,Two-Dimensional Ordered Double-Transition Metal Carbides for the Electrochemical Nitrogen Reduction Reaction, ACS Appl. Mater. Interfaces. 15 (2023) 6797–6806. https://doi.org/10.1021/acsami.2c19911.
[119] Q.-J. Fang, W. Zhang, Q.-j. Zhang, J.-h. Wang, S.-t. Zhao, et al., Rational design of bimetallic MXene solid solution with High-Performance electrocatalytic N2 reduction, J. Colloid Interface Sci. 640 (2023) 67–77. https://doi.org/10.1016/j.jcis.2023.02.094.
[120] R. Khan, S. Andreescu, MXenes-Based Bioanalytical Sensors: Design, Characterization, and Applications, Sensors. 20 (2020) 5434. https://doi.org/10.3390/s20185434.
[121] S. Alwarappan, N. Nesakumar, D. Sun, T. Y. Hu, C.-Z. Li, 2D metal carbides and nitrides (MXenes) for sensors and biosensors, Biosens. Bioelectron. 205 (2022) 113943. https://doi.org/10.1016/j.bios.2021.113943.
[122] A. Bafekry, M. Faraji, M.M. Fadlallah, A. Abdolahzadeh Ziabari, A. Bagheri Khatibani, et al., Adsorption of habitat and industry-relevant molecules on the MoSi2N4 monolayer, Appl. Surf. Sci. 564 (2021) 150326. https://doi.org/10.1016/j.apsusc.2021.150326.
[123] H. Vovusha, R.G. Amorim, H. Bae, S. Lee, T. Hussain, H. Lee, Sensing of sulfur containing toxic gases with double transition metal carbide MXenes, Mater. Today Chem. 30 (2023) 101543. https://doi.org/10.1016/j.mtchem.2023.101543.
[124] . J. Xu, Y. Sun, J. Zeng, F. Zhang, W. Zhang, The electronic and optical properties, gas sensor and NO removal application investigations of noble metal-adsorbed MoSi2N4, Results Phys. 49 (2023) 106481. https://doi.org/10.1016/j.rinp.2023.106481.
[125] Y. Linghu, T. Tong, C. Wu, Cu-Doped MoSi2N4 Monolayer as a Potential NH3 Sensor, ChemPhysChem. 24 (2023) e202200712. https://doi.org/10.1002/cphc.202200712.
[126] M. Li, Z. Li, P. Wang, Q. Ma, A novel bimetallic MXene derivative QD-based ECL sensor for miRNA-27a-3p detection, Biosens. Bioelectron. 228 (2023) 115225. https://doi.org/10.1016/j.bios.2023.115225.
[127] G. Li, B. Zhou, P. Wang, M. He, Z. Fang, et al., High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Oxidized Mo2TiC2 MXene, Catalysts. 12 (2022) 850. https://doi.org/10.3390/catal12080850.
[128] Y. Gao, L. Pan, Q. Wu, X. Zhuang, G. Tan, Q. Man, Honeycomb-like SnS2/graphene oxide composites for enhanced microwave absorption, J. Alloys Compd. 915 (2022) 165405. https://doi.org/10.1016/j.jallcom.2022.165405.
[129] Y. Bao, Y. Liu, Z. Zhang, J. Pan, X. Li, et al., Constructing 2D/2D ultrathin Ti3C2/SnS2 Schottky heterojunctions toward efficient tetracycline degradation, Chemosphere. 307 (2022) 136118. https://doi.org/10.1016/j.chemosphere.2022.136118.

Cited By

Crossref Google Scholar
Synthesis and applications of double metal MXenes: A review
Submitted
2023-05-27
Available online
2023-06-28
How to Cite
Akhoondi, A., Ebrahimi Nejad, M., Yusuf, M., Aminabhavi, T. M., Batoo, K. M., & Rtimi, S. (2023). Synthesis and applications of double metal MXenes: A review. Synthesis and Sintering, 3(2), 107-123. https://doi.org/10.53063/synsint.2023.32150

Most read articles by the same author(s)