Effects of glucose pretreatment and boric acid content on the synthesizability of B4C ceramics

  • Seyed Faridaddin Feiz 1
  • Leila Nikzad 1
  • Hudsa Majidian 1
  • Esmaeil Salahi 1
  • 1 Ceramics Department, Materials and Energy Research Center (MERC), Karaj, Iran

Abstract

Synthesis of boron carbide (B4C) as one of the hardest materials on planet Earth is of particular importance due to its wide range of industrial and engineering applications. For this purpose, boric acid and polymers can be used as the boron and carbon sources, respectively. From the family of saccharides in polymeric materials, glucose has shown the best performance for the synthesis of B4C. In this research, untreated and pretreated (caramelized by heating) glucose precursors were selected and mixed with boric acid for subsequent pyrolysis and synthesis processes. X-ray diffractometry and Fourier transform infrared spectroscopy confirmed that heat-treated glucose is a better carbon precursor for B4C synthesis. In order to evaluate the effect of the amount of boric acid, more than its stoichiometric ratio, additional amounts of boric acid (10–40%) were also examined and the excess amount of 30% was determined as the optimal value.

Downloads

Download data is not yet available.
Keywords: B4C, Synthesis, Glucose, Boric acid, Pretreatment

References

[1] W. Zhang, S. Yamashita, H. Kita, Progress in pressureless sintering of boron carbide ceramics – a review, Adv. Appl. Ceram. 118 (2019) 222–239. https://doi.org/10.1080/17436753.2019.1574285.
[2] S. Avcıoğlu, M. Buldu, F. Kaya, C.B. Üstündağ, E. Kam, et al., Processing and properties of boron carbide (B4C) reinforced LDPE composites for radiation shielding, Ceram. Int. 46 (2020) 343–352. https://doi.org/10.1016/j.ceramint.2019.08.268.
[3] X. Yue, G. Guo, M. Huo, Z. Qin, H. Ru, J. Wang, Microstructure and mechanical properties of bilayer B4C/Si-B4C composite, Mater. Today Commun. 26 (2021) 102124. https://doi.org/10.1016/j.mtcomm.2021.102124.
[4] N. Kumar, A. Gautam, R.S. Singh, M.K. Manoj, Study of B4C/Al–Mg–Si composites as highly hard and corrosion-resistant materials for industrial applications, Trans. Indian Inst. Met. 72 (2019) 2495–2501. https://doi.org/10.1007/s12666-019-01717-w.
[5] M. Nagaral, S. Kalgudi, V. Auradi, S.A. Kori, Mechanical characterization of ceramic nano B4C-Al2618 alloy composites synthesized by semi solid state processing, Trans. Indian Ceram. Soc. 77 (2018) 146–149. https://doi.org/10.1080/0371750X.2018.1506363.
[6] E.A. Weaver, B.T. Stegman, R.W. Trice, J.P. Youngblood, Mechanical properties of room-temperature injection molded, pressurelessly sintered boron carbide, Ceram. Int. 48 (2022) 11588–11596. https://doi.org/10.1016/j.ceramint.2022.01.015.
[7] A. Chakraborti, N. Vast, Y. Le Godec, Synthesis of boron carbide from its elements at high pressures and high temperatures, Solid State Sci. 104 (2020) 106265. https://doi.org/10.1016/j.solidstatesciences.2020.106265.
[8] A. Chakraborti, N. Guignot, N. Vast, Y. Le Godec, Synthesis of boron carbide from its elements up to 13 GPa, J. Phys. Chem. Solids. 159 (2021) 110253. https://doi.org/10.1016/j.jpcs.2021.110253.
[9] S. Wang, Y. Li, X. Xing, X. Jing, Low-temperature synthesis of high-purity boron carbide via an aromatic polymer precursor, J. Mater. Res. 33 (2018) 1659–1670. https://doi.org/10.1557/jmr.2018.97.
[10] O. Karaahmet, Use of partially hydrolyzed PVA for boron carbide synthesis from polymeric precursor, Ceram. - Silik. 64 (2020) 434–446. https://doi.org/10.13168/cs.2020.0031.
[11] D. Yan, J. Chen, Y. Zhang, Y. Gou, Synthesis and characterization of a carborane-containing precursor for B4C ceramics, Sci. Discov. 9 (2021) 138. https://doi.org/10.11648/j.sd.20210903.18.
[12] P. Asgarian, A. Nourbakhsh, P. Amin, R. Ebrahimi-Kahrizsangi, K.J.D. MacKenzie, The effect of different sources of porous carbon on the synthesis of nanostructured boron carbide by magnesiothermic reduction, Ceram. Int. 40 (2014) 16399–16408. https://doi.org/10.1016/j.ceramint.2014.07.147.
[13] F. Farzaneh, F. Golestanifard, M.S. Sheikhaleslami, A.A. Nourbakhsh, New route for preparing nanosized boron carbide powder via magnesiothermic reduction using mesoporous carbon, Ceram. Int. 41 (2015) 13658–13662. https://doi.org/10.1016/j.ceramint.2015.07.163.
[14] X. Li, M. Lei, S. Gao, D. Nie, K. Liu, et al., Thermodynamic investigation and reaction mechanism of B4C synthesis based on carbothermal reduction, Int. J. Appl. Ceram. Technol. 17 (2020) 1079–1087. https://doi.org/10.1111/ijac.13290.
[15] X. Li, S. Wang, D. Nie, K. Liu, S. Yan, P. Xing, Effect and corresponding mechanism of NaCl additive on boron carbide powder synthesis via carbothermal reduction, Diam. Relat. Mater. 97 (2019) 107458. https://doi.org/10.1016/j.diamond.2019.107458.
[16] M. Ishimaru, R. Nakamura, Y. Zhang, W.J. Weber, G.G. Peterson, et al., Electron diffraction radial distribution function analysis of amorphous boron carbide synthesized by ion beam irradiation and chemical vapor deposition, J. Eur. Ceram. Soc. 42 (2022) 376–382. https://doi.org/10.1016/j.jeurceramsoc.2021.10.020.
[17] V.A. Shestakov, V.I. Kosyakov, M.L. Kosinova, Chemical vapor deposition of boron-containing films using B(OAlk)3 as precursors: thermodynamic modeling, Russ. Chem. Bull. 68 (2019) 1983–1990. https://doi.org/10.1007/s11172-019-2656-3.
[18] R. Tu, X. Hu, J. Li, M. Yang, Q. Li, et al., Fabrication of (a-nc) boron carbide thin films via chemical vapor deposition using ortho-carborane, J. Asian Ceram. Soc. 8 (2020) 327–335. https://doi.org/10.1080/21870764.2020.1743415.
[19] D. Kozień, P. Jeleń, J. Stępień, Z. Olejniczak, M. Sitarz, Z. Pędzich, Surface properties and morphology of boron carbide nanopowders obtained by lyophilization of saccharide precursors, Materials (Basel). 14 (2021) 3419. https://doi.org/10.3390/ma14123419.
[20] A. Najafi, F. Golestani-Fard, H.R. Rezaie, N. Ehsani, Effect of APC addition on precursors properties during synthesis of B4C nano powder by a sol–gel process, J. Alloys Compd. 509 (2011) 9164–9170. https://doi.org/10.1016/j.jallcom.2011.06.103.
[21] S. Avcıoğlu, Z.N. Ateş, E. Kam, C. Kaya, F. Kaya, The influence of polyelectrolyte on the synthesis of B4C/BN nanocomposite powders via sol-gel method, Ceram. Int. 48 (2022) 15355–15363. https://doi.org/10.1016/j.ceramint.2022.02.069.
[22] S. Avcıoğlu, F. Kaya, C. Kaya, Morphological evolution of boron carbide particles: Sol-gel synthesis of nano/micro B4C fibers, Ceram. Int. 47 (2021) 26651–26667. https://doi.org/10.1016/j.ceramint.2021.06.073.
[23] R.V. Krishnarao, J. Subrahmanyam, Formation of carbon free B4C through carbothermal reduction of B2O3, Trans. Indian Ceram. Soc. 68 (2009) 19–22. https://doi.org/10.1080/0371750X.2009.11082157.
[24] C.-H. Jung, M.-J. Lee, C.-J. Kim, Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process, Mater. Lett. 58 (2004) 609–614. https://doi.org/10.1016/S0167-577X(03)00579-2.
[25] Y. Gao, A. Etzold, T. Munhollon, W. Rafaniello, R. Haber, Processing factors influencing the free carbon contents in boron carbide powder by rapid carbothermal reduction, Diam. Relat. Mater. 61 (2016) 14–20. https://doi.org/10.1016/j.diamond.2015.11.005.
[26] N. Shawgi, S. Li, S. Wang, A Novel method of synthesis of high purity nano plated boron carbide powder by a solid-state reaction of poly (vinyl alcohol) and boric acid, Ceram. Int. 43 (2017) 10554–10558. https://doi.org/10.1016/j.ceramint.2017.05.120.
[27] S.K. Vijay, R. Krishnaprabhu, V. Chandramouli, S. Anthonysamy, Synthesis of nanocrystalline boron carbide by sucrose precursor method-optimization of process conditions, Ceram. Int. 44 (2018) 4676–4684. https://doi.org/10.1016/j.ceramint.2017.12.047.
[28] A. Sudoh, H. Konno, H. Habazaki, H. Kiyono, Synthesis of boron carbide microcrystals from saccharides and boric acid, TANSO. 2007 (2007) 8–12. https://doi.org/10.7209/tanso.2007.8.
[29] M. Maqbool, Rafi-Ud-Din, G.H. Zahid, E. Ahmad, Z. Asghar, T. Subhani, M. Shahzad, I. Kaleem, Effect of saccharides as carbon source on the synthesis and morphology of B4C fine particles from carbothermal synthesis precursors, Mater. Express. 5 (2015) 390–400. https://doi.org/10.1166/mex.2015.1257.
[30] Rafi-ud-din, G.H. Zahid, Z. Asghar, M. Maqbool, E. Ahmad, et al., Ethylene glycol assisted low-temperature synthesis of boron carbide powder from borate citrate precursors, J. Asian Ceram. Soc. 2 (2014) 268–274. https://doi.org/10.1016/j.jascer.2014.05.011.
[31] Y. Sheng, G. Li, H. Meng, Y. Han, Y. Xu, et al., An improved carbothermal process for the synthesis of fine-grained boron carbide microparticles and their photoelectrocatalytic activity, Ceram. Int. 44 (2018) 1052–1058. https://doi.org/10.1016/j.ceramint.2017.10.047.
[32] X.W. Chen, S.M. Dong, Y.M. Kan, H.J. Zhou, J.B. Hu, Y.S. Ding, Effect of glycerine addition on the synthesis of boron carbide from condensed boric acid–polyvinyl alcohol precursor, RSC Adv. 6 (2016) 9338–9343. https://doi.org/10.1039/C5RA23303H.
[33] S.K. Vijay, R.K. Prabhu, D. Annie, V. Chandramouli, S. Anthonysamy, A. Jain, Microwave-assisted preparation of precursor for the synthesis of nanocrystalline boron carbide powder, Trans. Indian Ceram. Soc. 79 (2020) 244–250. https://doi.org/10.1080/0371750X.2020.1832581.
[34] A.S. Parlakyigit, C. Ergun, In situ synthesis of B4C–SiC, B4C–TiB2, and B4C–ZrB2 composites from organic–inorganic hybrid precursor via a simple bottom-up approach, J. Sol-Gel Sci. Technol. 92 (2019) 745–759. https://doi.org/10.1007/s10971-019-05143-8.
[35] S.F. Feiz, L. Nikzad, H. Majidian, E. Salahi, Performance of glucose, sucrose and cellulose as carbonaceous precursors for the synthesis of B4C powders, Synth. Sinter. 2 (2022) 26–30. https://doi.org/10.53063/synsint.2022.21108.
[36] M. Darder, E. Ruiz-Hitzky, Caramel–clay nanocomposites, J. Mater. Chem. 15 (2005) 3913–3918. https://doi.org/10.1039/b505958e.
[37] E. Suárez-Pereira, E.M. Rubio, S. Pilard, C. Ortiz Mellet, J.M. García Fernández, Di-D-fructose dianhydride-enriched products by acid ion-exchange resin-promoted caramelization of D-fructose: chemical analyses, J. Agric. Food Chem. 58 (2010) 1777–1787. https://doi.org/10.1021/jf903354y.
[38] P. Tomasik, M. Pałasiński, S. Wiejak, The Thermal Decomposition of Carbohydrates. Part I. The Decomposition of Mono-, Di-, and Oligo-Saccharides, Adv. Carbohydr. Chem. Biochem. 47 (1989) 203–278. https://doi.org/10.1016/S0065-2318(08)60415-1.
[39] H.F. Stich, W. Stich, M.P. Rosin, W.D. Powrie, Clastogenic activity of caramel and caramelized sugars, Mutat. Res. Lett. 91 (1981) 129–136. https://doi.org/10.1016/0165-7992(81)90086-5.
[40] L.A. Shah, Thermodynamic prediction and synthesis of a titanium diboride powder by reduction of titanium dioxide with boron carbide in argon atmosphere, Arab. J. Sci. Eng. 47 (2022) 7551–7558. https://doi.org/10.1007/s13369-021-06213-2.
[41] A.N. Pivkina, N.V. Muravyev, K.A. Monogarov, D.B. Meerov, I.V. Fomenkov, et al., Comparative analysis of boron powders obtained by various methods. I. microstructure and oxidation parameters during heating, Combust. Explos. Shock Waves. 54 (2018) 450–460. https://doi.org/10.1134/S0010508218040093.
[42] F. Thévenot, Boron carbide—A comprehensive review, J. Eur. Ceram. Soc. 6 (1990) 205–225. https://doi.org/10.1016/0955-2219(90)90048-K.

Cited By

Crossref Google Scholar
Effects of glucose pretreatment and boric acid content on the synthesizability of B4C ceramics
Submitted
2022-05-17
Available online
2022-06-27
How to Cite
Feiz, S. F., Nikzad, L., Majidian, H., & Salahi, E. (2022). Effects of glucose pretreatment and boric acid content on the synthesizability of B4C ceramics. Synthesis and Sintering, 2(2), 78-83. https://doi.org/10.53063/synsint.2022.22115