Performance of glucose, sucrose and cellulose as carbonaceous precursors for the synthesis of B4C powders

  • Seyed Faridaddin Feiz 1
  • Leila Nikzad 1
  • Hudsa Majidian 1
  • Esmaeil Salahi 1
  • 1 Ceramics Department, Materials and Energy Research Center (MERC), Karaj, Iran

Abstract

Boron carbide is the third hardest material in the world after diamond and cubic boron nitride, which is one of the most strategic engineering ceramics in various industrial applications. The aim of this research is to synthesize B4C by reacting boric acid as boron source with polymers from the saccharide family as carbon sources, and to determine the best saccharide as precursor. For this purpose, glucose (monosaccharide), sucrose (disaccharide), and cellulose (polysaccharide) were used and examined. The samples were prepared by appropriate mixing of the starting materials, pyrolysis at 700 °C, and synthesis at 1500 °C. The results of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD) showed that among the studied saccharide polymers, glucose is the best carbon source candidate for the synthesis of B4C. To describe precisely, the specimen prepared with glucose and boric acid had more boron carbide and less hydrocarbon.

Downloads

Download data is not yet available.
Keywords: Synthesis, Boron carbide, Saccharide, Boric acid, Glucose, Precursor

References

[1] W. Zhang, S. Yamashita, H. Kita, Progress in pressureless sintering of boron carbide ceramics – a review, Adv. Appl. Ceram. 118 (2019) 222–239. https://doi.org/10.1080/17436753.2019.1574285.
[2] S. Avcıoğlu, M. Buldu, F. Kaya, C.B. Üstündağ, E. Kam, et al., Processing and properties of boron carbide (B4C) reinforced LDPE composites for radiation shielding, Ceram. Int. 46 (2020) 343–352. https://doi.org/10.1016/j.ceramint.2019.08.268.
[3] B. Matović, J. Maletaškić, T. Prikhna, V. Urbanovich, V. Girman, et al., Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering, J. Eur. Ceram. Soc. 41 (2021) 4755–4760. https://doi.org/10.1016/j.jeurceramsoc.2021.03.047.
[4] X. Yue, G. Guo, M. Huo, Z. Qin, H. Ru, J. Wang, Microstructure and mechanical properties of bilayer B4C/Si-B4C composite, Mater. Today Commun. 26 (2021) 102124. https://doi.org/10.1016/j.mtcomm.2021.102124.
[5] N. Kumar, A. Gautam, R.S. Singh, M.K. Manoj, Study of B4C/Al–Mg–Si composites as highly hard and corrosion-resistant materials for industrial applications, Trans. Indian Inst. Met. 72 (2019) 2495–2501. https://doi.org/10.1007/s12666-019-01717-w.
[6] M. Nagaral, S. Kalgudi, V. Auradi, S.A. Kori, Mechanical characterization of ceramic nano B4C-Al2618 alloy composites synthesized by semi solid state processing, Trans. Indian Ceram. Soc. 77 (2018) 146–149. https://doi.org/10.1080/0371750X.2018.1506363.
[7] E.A. Weaver, B.T. Stegman, R.W. Trice, J.P. Youngblood, Mechanical properties of room-temperature injection molded, pressurelessly sintered boron carbide, Ceram. Int. 48 (2022) 11588–11596. https://doi.org/10.1016/j.ceramint.2022.01.015.
[8] R. Kuliiev, N. Orlovskaya, H. Hyer, Y. Sohn, M. Lugovy, et al., L. Conti, T. Graule, J. Kuebler, G. Blugan, Spark plasma sintered B4C—structural, thermal, electrical and mechanical properties, Materials (Basel). 13 (2020) 1612. https://doi.org/10.3390/ma13071612.
[9] X. Li, S. Wei, Q. Yang, Y. Gao, Z. Zhong, Tribological performance of self-matching pairs of B4C/hBN composite ceramics under different frictional loads, Ceram. Int. 46 (2020) 996–1001. https://doi.org/10.1016/j.ceramint.2019.09.063.
[10] L. Chkhartishvili, A. Mikeladze, R. Chedia, O. Tsagareishvili, N. Barbakadze, et al., Synthesizing fine-grained powders of complex compositions B4C–TiB2–WC–Co, Solid State Sci. 108 (2020) 106439. https://doi.org/10.1016/j.solidstatesciences.2020.106439.
[11] X. Li, M. Lei, S. Gao, D. Nie, K. Liu, et al., Thermodynamic investigation and reaction mechanism of B4C synthesis based on carbothermal reduction, Int. J. Appl. Ceram. Technol. 17 (2020) 1079–1087. https://doi.org/10.1111/ijac.13290.
[12] X. Li, S. Wang, D. Nie, K. Liu, S. Yan, P. Xing, Effect and corresponding mechanism of NaCl additive on boron carbide powder synthesis via carbothermal reduction, Diam. Relat. Mater. 97 (2019) 107458. https://doi.org/10.1016/j.diamond.2019.107458.
[13] A. Chakraborti, N. Vast, Y. Le Godec, Synthesis of boron carbide from its elements at high pressures and high temperatures, Solid State Sci. 104 (2020) 106265. https://doi.org/10.1016/j.solidstatesciences.2020.106265.
[14] A. Chakraborti, N. Guignot, N. Vast, Y. Le Godec, Synthesis of boron carbide from its elements up to 13 GPa, J. Phys. Chem. Solids. 159 (2021) 110253. https://doi.org/10.1016/j.jpcs.2021.110253.
[15] P. Asgarian, A. Nourbakhsh, P. Amin, R. Ebrahimi-Kahrizsangi, K.J.D. MacKenzie, The effect of different sources of porous carbon on the synthesis of nanostructured boron carbide by magnesiothermic reduction, Ceram. Int. 40 (2014) 16399–16408. https://doi.org/10.1016/j.ceramint.2014.07.147.
[16] F. Farzaneh, F. Golestanifard, M.S. Sheikhaleslami, A.A. Nourbakhsh, New route for preparing nanosized boron carbide powder via magnesiothermic reduction using mesoporous carbon, Ceram. Int. 41 (2015) 13658–13662. https://doi.org/10.1016/j.ceramint.2015.07.163.
[17] M. Ishimaru, R. Nakamura, Y. Zhang, W.J. Weber, G.G. Peterson, et al., Electron diffraction radial distribution function analysis of amorphous boron carbide synthesized by ion beam irradiation and chemical vapor deposition, J. Eur. Ceram. Soc. 42 (2022) 376–382. https://doi.org/10.1016/j.jeurceramsoc.2021.10.020.
[18] V.A. Shestakov, V.I. Kosyakov, M.L. Kosinova, Chemical vapor deposition of boron-containing films using B(OAlk)3 as precursors: thermodynamic modeling, Russ. Chem. Bull. 68 (2019) 1983–1990. https://doi.org/10.1007/s11172-019-2656-3.
[19] R. Tu, X. Hu, J. Li, M. Yang, Q. Li, et al., Fabrication of (a-nc) boron carbide thin films via chemical vapor deposition using ortho-carborane, J. Asian Ceram. Soc. 8 (2020) 327–335. https://doi.org/10.1080/21870764.2020.1743415.
[20] S. Wang, Y. Li, X. Xing, X. Jing, Low-temperature synthesis of high-purity boron carbide via an aromatic polymer precursor, J. Mater. Res. 33 (2018) 1659–1670. https://doi.org/10.1557/jmr.2018.97.
[21] O. Karaahmet, Use of partially hydrolyzed PVA for boron carbide synthesis from polymeric precursor, Ceram. - Silik. 64 (2020) 434–446. https://doi.org/10.13168/cs.2020.0031.
[22] D. Yan, J. Chen, Y. Zhang, Y. Gou, Synthesis and characterization of a carborane-containing precursor for B4C ceramics, Sci. Discov. 9 (2021) 138. https://doi.org/10.11648/j.sd.20210903.18.
[23] A.K. Suri, C. Subramanian, J.K. Sonber, T.S.R.C. Murthy, Synthesis and consolidation of boron carbide: a review, Int. Mater. Rev. 55 (2010) 4–40. https://doi.org/10.1179/095066009X12506721665211.
[24] K. Koumoto, T. Seki, C.H. Pai, H. Yanagida, CVD synthesis and thermoelectric properties of boron carbide, J. Ceram. Soc. Jpn. 100 (1992) 853–857. https://doi.org/10.2109/jcersj.100.853.
[25] Ö.D. Eroğlu, N.A. Sezgi, H. ö. Özbelge, H.H. Durmazuçar, Synthesis and characterization of boron carbide films by plasma-enhanced chemical vapor deposition, Chem. Eng. Commun. 190 (2003) 360–372. https://doi.org/10.1080/00986440302136.
[26] M. Bakhshi, A. Souri, M.K. Amini, Carbothermic synthesis of boron carbide with low free carbon using catalytic amount of magnesium chloride, J. Iran. Chem. Soc. 16 (2019) 1265–1272. https://doi.org/10.1007/s13738-019-01602-9.
[27] M. Kakiage, T. Kobayashi, Fabrication of boron carbide fibers consisting of connected particles by carbothermal reduction via electrospinning, Mater. Lett. 254 (2019) 158–161. https://doi.org/10.1016/j.matlet.2019.07.028.
[28] E.M. Sharifi, F. Karimzadeh, M.H. Enayati, Mechanochemical assisted synthesis of B4C nanoparticles, Adv. Powder Technol. 22 (2011) 354–358. https://doi.org/https://doi.org/10.1016/j.apt.2010.05.002.
[29] A. Shamsipoor, B. Mousavi, M.S. Shakeri, Synthesis and sintering of Fe-32Mn-6Si shape memory alloys prepared by mechanical alloying, Synth. Sinter. 2 (2022) 1–8. https://doi.org/10.53063/synsint.2022.2185.
[30] S.K. Vijay, R.K. Prabhu, D. Annie, V. Chandramouli, S. Anthonysamy, A. Jain, Microwave-assisted preparation of precursor for the synthesis of nanocrystalline boron carbide powder, Trans. Indian Ceram. Soc. 79 (2020) 244–250. https://doi.org/10.1080/0371750X.2020.1832581.
[31] H. Roghani, S.A. Tayebifard, K. Kasraee, M. Shahedi Asl, Volume combustion synthesis of B4C–SiC nanocomposites in tubular and spark plasma furnaces, Ceram. Int. 46 (2020) 28922–28932. https://doi.org/10.1016/j.ceramint.2020.08.060.
[32] H. Roghani, S.A. Tayebifard, A. Kazemzadeh, L. Nikzad, Effect of Mg/B2O3 molar ratio and furnace temperature on the phase evaluation and morphology of SiC–B4C nanocomposite prepared by MASHS method, Mater. Chem. Phys. 161 (2015) 162–169. https://doi.org/https://doi.org/10.1016/j.matchemphys.2015.05.031.
[33] H. Roghani, S.A. Tayebifard, A. Kazemzadeh, L. Nikzad, Phase and morphology studies of B4C–SiC nanocomposite powder synthesized by MASHS method in B2O3, Mg, C and Si system, Adv. Powder Technol. 26 (2015) 1116–1122. https://doi.org/https://doi.org/10.1016/j.apt.2015.05.007.
[34] A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, H.R. Baharvandi, Production of boron carbide powder by carbothermic reduction from boron oxide and petroleum coke or carbon active, Adv. Appl. Ceram. 105 (2006) 291–296. https://doi.org/10.1179/174367606X146685.
[35] D. Kozień, P. Jeleń, M. Sitarz, M. Bućko, Synthesis of boron carbide powders from mono- and polysaccharides, Int. J. Refract. Met. Hard Mater. 86 (2020) 105099. https://doi.org/10.1016/j.ijrmhm.2019.105099.
[36] C.-H. Jung, M.-J. Lee, C.-J. Kim, Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process, Mater. Lett. 58 (2004) 609–614. https://doi.org/https://doi.org/10.1016/S0167-577X(03)00579-2.
[37] M. Kakiage, N. Tahara, I. Yanase, H. Kobayashi, Low-temperature synthesis of boron carbide powder from condensed boric acid–glycerin product, Mater. Lett. 65 (2011) 1839–1841. https://doi.org/10.1016/j.matlet.2011.03.046.
[38] N. Tahara, M. Kakiage, I. Yanase, H. Kobayashi, Effect of addition of tartaric acid on synthesis of boron carbide powder from condensed boric acid–glycerin product, J. Alloys Compd. 573 (2013) 58–64. https://doi.org/10.1016/j.jallcom.2013.03.255.
[39] I. Yanase, R. Ogawara, H. Kobayashi, Synthesis of boron carbide powder from polyvinyl borate precursor, Mater. Lett. 63 (2009) 91–93. https://doi.org/10.1016/j.matlet.2008.09.012.
[40] T.R. Pilladi, K. Ananthansivan, S. Anthonysamy, Synthesis of boron carbide from boric oxide-sucrose gel precursor, Powder Technol. 246 (2013) 247–251. https://doi.org/10.1016/j.powtec.2013.04.055.
[41] A. Najafi, F. Golestani-Fard, H.R. Rezaie, N. Ehsani, A novel route to obtain B4C nano powder via sol–gel method, Ceram. Int. 38 (2012) 3583–3589. https://doi.org/10.1016/j.ceramint.2011.12.074.
[42] T.R. Pilladi, K. Ananthasivan, S. Anthonysamy, V. Ganesan, Synthesis of nanocrystalline boron carbide from boric acid–sucrose gel precursor, J. Mater. Sci. 47 (2012) 1710–1718. https://doi.org/10.1007/s10853-011-5950-5.
[43] R.V. Krishnarao, J. Subrahmanyam, Formation of carbon free B4C through carbothermal reduction of B2O3, Trans. Indian Ceram. Soc. 68 (2009) 19–22. https://doi.org/10.1080/0371750X.2009.11082157.
[44] M. Åkerholm, B. Hinterstoisser, L. Salmén, Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy, Carbohydr. Res. 339 (2004) 569–578. https://doi.org/10.1016/j.carres.2003.11.012.
[45] M.L. Nelson, R.T. O’Connor, Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose, J. Appl. Polym. Sci. 8 (1964) 1311–1324. https://doi.org/10.1002/app.1964.070080322.
[46] J. Wang, M.M. Kliks, S. Jun, M. Jackson, Q.X. Li, Rapid Analysis of Glucose, Fructose, Sucrose, and Maltose in Honeys from Different Geographic Regions using Fourier Transform Infrared Spectroscopy and Multivariate Analysis, J. Food Sci. 75 (2010) C208–C214. https://doi.org/10.1111/j.1750-3841.2009.01504.x.
[47] J.-J. Max, C. Chapados, Sucrose hydrates in aqueous solution by IR spectroscopy, J. Phys. Chem. A. 105 (2001) 10681–10688. https://doi.org/10.1021/jp012809j.
[48] A.B. Brizuela, L.C. Bichara, E. Romano, A. Yurquina, S. Locatelli, S.A. Brandán, A complete characterization of the vibrational spectra of sucrose, Carbohydr. Res. 361 (2012) 212–218. https://doi.org/10.1016/j.carres.2012.07.009.
[49] M. Ibrahim, M. Alaam, H. El-Haes, A. Jalbout, A. Leon, Analysis of the structure and vibrational spectra of glucose and fructose, Eclet. Quim. (2006) 15–21. https://doi.org/10.1590/S0100-46702006000300002.
[50] H.B. Davis, C.J.B. Mott, Interaction of boric acid and borates with carbohydrates and related substances, J. Chem. Soc. Faraday Trans. 76 (1980) 1991. https://doi.org/10.1039/f19807601991.
[51] H. Deuel, H. Neukom, F. Weber, Reaction of boric acid with polysaccharides, Nature. 161 (1948) 96–97. https://doi.org/10.1038/161096b0.
[52] A. Sudoh, H. Konno, H. Habazaki, H. Kiyono, Synthesis of boron carbide microcrystals from saccharides and boric acid, TANSO. 2007 (2007) 8–12. https://doi.org/10.7209/tanso.2007.8.

Cited By

Crossref Google Scholar
Performance of glucose, sucrose and cellulose as carbonaceous precursors for the synthesis of B4C powders
Submitted
2022-03-02
Available online
2022-03-25
How to Cite
Feiz, S. F., Nikzad, L., Majidian, H., & Salahi, E. (2022). Performance of glucose, sucrose and cellulose as carbonaceous precursors for the synthesis of B4C powders. Synthesis and Sintering, 2(1), 26-30. https://doi.org/10.53063/synsint.2022.21108