Numerical investigation of solar collectors as a potential source for sintering of ZrB2

  • Mohammad Vajdi 1
  • Saeed Mohammad Bagheri 1
  • Farhad Sadegh Moghanlou 1
  • Amin Shams Khorrami 2
  • 1 Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
  • 2 Mechanical Engineering Department Alumni, York University, Toronto, ON, Canada

Abstract

Sintering of ceramics is an energy-consuming process that needs high temperatures, therefore, in the present work; solar energy is used to produce high temperatures for the sintering aim of different materials. Solar energy concentrators increase the intensity of incident energy to the receiver provides high temperatures. Ultrahigh-temperature ceramics (UHTCs) due to their high melting point can also be a good alternative for receiver materials. In the present work, ZrB2 is introduced as an alternative material for solar receivers which can withstand high temperatures of sintering. The governing equations, including heat radiation and conduction ones are solved numerically using the finite element method. Transient heat transfer in the concentrator-collector system is investigated to check the feasibility of high temperatures needs for sintering at the receiver. The highest temperature of 1680 °C was achieved after 15 minutes at the focal point of the concentrator when the solar heat flux of 6.86 W/mm2 used for the location of the city of Ardabil in Iran. The obtained temperature can be used to sintering of some groups of materials.

Downloads

Download data is not yet available.
Keywords: Sintering, Solar energy, ZrB2, Numerical method, Solar receiver

References

[1] T. Gholizadeh, M. Vajdi, F. Mohammadkhani, Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas, Energy Convers. Manag. 181 (2019) 463–475. https://doi.org/10.1016/j.enconman.2018.12.011.
[2] H. Azariyan, M. Vajdi, H. Rostamnejad Takleh, Assessment of a high-performance geothermal-based multigeneration system for production of power, cooling, and hydrogen: Thermodynamic and exergoeconomic evaluation, Energy Convers. Manag. 236 (2021) 113970. https://doi.org/10.1016/j.enconman.2021.113970.
[3] F. Sadegh Moghanlou, S. Noorzadeh, M. Ataei, M. Vajdi, M. Shahedi Asl, E. Esmaeilzadeh, Experimental investigation of heat transfer and pressure drop in a minichannel heat sink using Al2O3 and TiO2–water nanofluids, J. Braz. Soc. Mech. Sci. Eng. 42 (2020) 315. https://doi.org/10.1007/s40430-020-02403-5.
[4] M. Ataei, F. Sadegh Moghanlou, S. Noorzadeh, M. Vajdi, M. Shahedi Asl, Heat transfer and flow characteristics of hybrid Al2O3/TiO2–water nanofluid in a minichannel heat sink, Heat Mass Transf. 56 (2020) 2757–2767. https://doi.org/10.1007/s00231-020-02896-9.
[5] S. Noorzadeh, F. Sadegh Moghanlou, M. Vajdi, M. Ataei, Thermal conductivity, viscosity and heat transfer process in nanofluids: A critical review, J. Compos. Compd. 2 (2020) 175–192. https://doi.org/10.29252/jcc.2.4.3.
[6] M. Namazizadeh, R. Haghighi khoshkhoo, F. Joda, Effect of Air Gap on thermohydraulic performance of finned tube bundles, Therm. Sci. Eng. Prog. 20 (2020) 100687. https://doi.org/10.1016/j.tsep.2020.100687.
[7] K. Lovegrove, G. Burgess, J. Pye, A new 500m2 paraboloidal dish solar concentrator, Sol. Energy. 85 (2011) 620–626. https://doi.org/10.1016/j.solener.2010.01.009.
[8] W. Lipiński, J.H. Davidson, S. Haussener, J.F. Klausner, A.M. Mehdizadeh, et al., Review of Heat Transfer Research for Solar Thermochemical Applications, J. Therm. Sci. Eng. Appl. 5 (2013) 021005. https://doi.org/10.1115/1.4024088.
[9] Z. Şen, Solar energy in progress and future research trends, Prog. Energy Combust. Sci. 30 (2004) 367–416. https://doi.org/10.1016/j.pecs.2004.02.004.
[10] D.Y. Goswami, S. Vijayaraghavan, S. Lu, G. Tamm, New and emerging developments in solar energy, Sol. Energy. 76 (2004) 33–43. https://doi.org/10.1016/S0038-092X(03)00103-8.
[11] T. Tsoutsos, V. Gekas, K. Marketaki, Technical and economical evaluation of solar thermal power generation, Renew. Energy. 28 (2003) 873–886. https://doi.org/10.1016/S0960-1481(02)00152-0.
[12] S.A. Kalogirou, Solar thermal collectors and applications, Prog. Energy Combust. Sci. 30 (2004) 231–295. https://doi.org/10.1016/j.pecs.2004.02.001.
[13] J.C.G. Pereira, J. Rodríguez, J.C. Fernandes, L.G. Rosa, Homogeneous Flux Distribution in High-Flux Solar Furnaces, Energies. 13 (2020) 433. https://doi.org/10.3390/en13020433.
[14] D. Fernández-González, I. Ruiz-Bustinza, C. González-Gasca, J. Piñuela Noval, J. Mochón-Castaños, et al., Concentrated solar energy applications in materials science and metallurgy, Sol. Energy. 170 (2018) 520–540. https://doi.org/10.1016/j.solener.2018.05.065.
[15] F. Sadegh Moghanlou, M. Vajdi, M. Sakkaki, S. Azizi, Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride, Synth. Sinter. 1 (2021) 54–61. https://doi.org/10.53063/synsint.2021.117.
[16] F. Wang, R. Lin, B. Liu, H. Tan, Y. Shuai, Optical efficiency analysis of cylindrical cavity receiver with bottom surface convex, Sol. Energy. 90 (2013) 195–204. https://doi.org/10.1016/j.solener.2013.01.017.
[17] M. Wang, K. Siddiqui, The impact of geometrical parameters on the thermal performance of a solar receiver of dish-type concentrated solar energy system, Renew. Energy. 35 (2010) 2501–2513. https://doi.org/10.1016/j.renene.2010.03.021.
[18] Z.-D. Cheng, Y.-L. He, B.-C. Du, K. Wang, Q. Liang, Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm, Appl. Energy. 148 (2015) 282–293. https://doi.org/10.1016/j.apenergy.2015.03.079.
[19] C.-A. Asselineau, J. Zapata, J. Pye, Geometrical Shape Optimization of a Cavity Receiver Using Coupled Radiative and Hydrodynamic Modeling, Energy Procedia. 69 (2015) 279–288. https://doi.org/10.1016/j.egypro.2015.03.032.
[20] S. Li, G. Xu, X. Luo, Y. Quan, Y. Ge, Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver, Energy. 113 (2016) 95–107. https://doi.org/10.1016/j.energy.2016.06.143.
[21] X. Wei, Z. Lu, W. Yu, Z. Wang, A new code for the design and analysis of the heliostat field layout for power tower system, Sol. Energy. 84 (2010) 685–690. https://doi.org/10.1016/j.solener.2010.01.020.
[22] B.J. Hathaway, W. Lipiński, J.H. Davidson, Heat Transfer in a Solar Cavity Receiver: Design Considerations, Numer. Heat Transf. A: Appl. 62 (2012) 445–461. https://doi.org/10.1080/10407782.2012.703471.
[23] H. Li, W. Huang, F. Huang, P. Hu, Z. Chen, Optical analysis and optimization of parabolic dish solar concentrator with a cavity receiver, Sol. Energy. 92 (2013) 288–297. https://doi.org/10.1016/j.solener.2013.03.011.
[24] A. Sánchez-González, D. Santana, Solar flux distribution on central receivers: A projection method from analytic function, Renew. Energy. 74 (2015) 576–587. https://doi.org/10.1016/j.renene.2014.08.016.
[25] S. Skouri, A. Ben Haj Ali, S. Bouadila, S. Ben Nasrallah, Optical qualification of a solar parabolic concentrator using photogrammetry technique, Energy. 90 (2015) 403–416. https://doi.org/10.1016/j.energy.2015.07.047.
[26] D. Riveros-Rosas, J. Herrera-Vázquez, C.A. Pérez-Rábago, C.A. Arancibia-Bulnes, S. Vázquez-Montiel, et al., Optical design of a high radiative flux solar furnace for Mexico, Sol. Energy. 84 (2010) 792–800. https://doi.org/10.1016/j.solener.2010.02.002.
[27] R. Abbas, M.J. Montes, M. Piera, J.M. Martínez-Val, Solar radiation concentration features in Linear Fresnel Reflector arrays, Energy Convers. Manag. 54 (2012) 133–144. https://doi.org/10.1016/j.enconman.2011.10.010.
[28] Y. Qiu, Y.-L. He, Z.-D. Cheng, K. Wang, Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods, Appl. Energy. 146 (2015) 162–173. https://doi.org/10.1016/j.apenergy.2015.01.135.
[29] Q. Mao, Y. Shuai, Y. Yuan, Study on radiation flux of the receiver with a parabolic solar concentrator system, Energy Convers. Manag. 84 (2014) 1–6. https://doi.org/10.1016/j.enconman.2014.03.083.
[30] X. Chen, X. Xia, X. Dong, G. Dai, Integrated analysis on the volumetric absorption characteristics and optical performance for a porous media receiver, Energy Convers. Manag. 105 (2015) 562–569. https://doi.org/10.1016/j.enconman.2015.08.028.
[31] C.-A. Asselineau, J. Zapata, J. Pye, Integration of Monte-Carlo ray tracing with a stochastic optimisation method: application to the design of solar receiver geometry, Opt. Express. 23 (2015) A437. https://doi.org/10.1364/OE.23.00A437.
[32] N. León, H. Aguayo, H. García, A. Anaya, Computer Aided Optimization/Innovation of Passive Tracking Solar Concentration Fresnel Lens, Springer, Berlin, Heidelberg. 355 (2011) 57–70. https://doi.org/10.1007/978-3-642-22182-8_6.
[33] Y. Shuai, X.-L. Xia, H.-P. Tan, Radiation performance of dish solar concentrator/cavity receiver systems, Sol. Energy. 82 (2008) 13–21. https://doi.org/10.1016/j.solener.2007.06.005.
[34] W.T. Xie, Y.J. Dai, R.Z. Wang, Numerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens, Energy Convers. Manag. 52 (2011) 2417–2426. https://doi.org/10.1016/j.enconman.2010.12.048.
[35] C. Zou, Y. Zhang, H. Feng, Q. Falcoz, P. Neveu, et al., Effects of geometric parameters on thermal performance for a cylindrical solar receiver using a 3D numerical model, Energy Convers. Manag. 149 (2017) 293–302. https://doi.org/10.1016/j.enconman.2017.06.088.
[36] R.E. Hogan, R.B. Diver, W.B. Stine, Comparison of a Cavity Solar Receiver Numerical Model and Experimental Data, J. Sol. Energy Eng. 112 (1990) 183–190. https://doi.org/10.1115/1.2930478.
[37] W. Wang, H. Xu, B. Laumert, T. Strand, An inverse design method for a cavity receiver used in solar dish Brayton system, Sol. Energy. 110 (2014) 745–755. https://doi.org/10.1016/j.solener.2014.10.019.
[38] R. Beltran, N. Velazquez, A.C. Espericueta, D. Sauceda, G. Perez, Mathematical model for the study and design of a solar dish collector with cavity receiver for its application in Stirling engines, J. Mech. Sci. Technol. 26 (2012) 3311–3321. https://doi.org/10.1007/s12206-012-0801-0.
[39] W. Wang, B. Laumert, H. Xu, T. Strand, Conjugate heat transfer analysis of an impinging receiver design for a dish-Brayton system, Sol. Energy. 119 (2015) 298–309. https://doi.org/10.1016/j.solener.2015.07.013.
[40] G. Xu, Y. Wang, Y. Quan, H. Li, S. Li, et al., Design and characteristics of a novel tapered tube bundle receiver for high-temperature solar dish system, Appl. Therm. Eng. 91 (2015) 791–799. https://doi.org/10.1016/j.applthermaleng.2015.08.090.
[41] R. Senthil, M. Cheralathan, Effect of the phase change material in a solar receiver on thermal performance of parabolic dish collector, Therm. Sci. 21 (2017) 2803–2812. https://doi.org/10.2298/TSCI150730007S.
[42] E. Sani, S. Failla, D. Sciti, Dark alumina for novel solar receivers, Scr. Mater. 176 (2020) 58–62. https://doi.org/10.1016/j.scriptamat.2019.09.038.
[43] M. Vajdi, F. Sadegh Moghanlou, E. Ranjbarpour Niari, M. Shahedi Asl, M. Shokouhimehr, Heat transfer and pressure drop in a ZrB2 microchannel heat sink: A numerical approach, Ceram. Int. 46 (2020) 1730–1735. https://doi.org/10.1016/j.ceramint.2019.09.146.
[44] A. Sabahi Namini, A. Motallebzadeh, B. Nayebi, M. Shahedi Asl, M. Azadbeh, Microstructure–mechanical properties correlation in spark plasma sintered Ti–4.8 wt.% TiB2 composites, Mater. Chem. Phys. 223 (2019) 789–796. https://doi.org/10.1016/j.matchemphys.2018.11.057.
[45] Y. Zhou, H. Xiang, Z. Feng, Z. Li, General Trends in Electronic Structure, Stability, Chemical Bonding and Mechanical Properties of Ultrahigh Temperature Ceramics TMB2 (TM = transition metal), J. Mater. Sci. Technol. 31 (2015) 285–294. https://doi.org/10.1016/j.jmst.2014.09.014.
[46] R.G. Munro, Material properties of titanium diboride, J. Res. Natl. Inst. Stand. Technol. 105 (2000) 709. https://doi.org/10.6028/jres.105.057.
[47] B. Basu, G.B. Raju, A.K. Suri, Processing and properties of monolithic TiB2 based materials, Int. Mater. Rev. 51 (2006) 352–374. https://doi.org/10.1179/174328006X102529.
[48] S. Nekahi, K. Vaferi, M. Vajdi, F. Sadegh Moghanlou, M. Shahedi Asl, M. Shokouhimehr, A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2, Ceram. Int. 45 (2019) 24060–24069. https://doi.org/10.1016/j.ceramint.2019.08.112.
[49] F. Adibpur, S.A. Tayebifard, M. Zakeri, M. Shahedi Asl, Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites, Ceram. Int. 46 (2020) 156–164. https://doi.org/10.1016/j.ceramint.2019.08.243.
[50] M. Shahedi Asl, B. Nayebi, A. Motallebzadeh, M. Shokouhimehr, Nanoindentation and nanostructural characterization of ZrB2–SiC composite doped with graphite nano-flakes, Compos. B: Eng. 175 (2019) 107153. https://doi.org/10.1016/j.compositesb.2019.107153.
[51] Z. Ahmadi, M. Zakeri, A. Habibi-Yangjeh, M. Shahedi Asl, A novel ZrB2–C3N4 composite with improved mechanical properties, Ceram. Int. 45 (2019) 21512–21519. https://doi.org/10.1016/j.ceramint.2019.07.144.
[52] H. Kinoshita, S. Otani, S. Kamiyama, H. Amano, I. Akasaki, et al., Zirconium Diboride (0001) as an Electrically Conductive Lattice-Matched Substrate for Gallium Nitride, Jpn. J. Appl. Phys. 40 (2001) L1280. https://doi.org/10.1143/JJAP.40.L1280.
[53] F. Sadegh Moghanlou, M. Vajdi, J. Sha, A. Motallebzadeh, M. Shokouhimehr, M. Shahedi Asl, A numerical approach to the heat transfer in monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramic cutting tools, Ceram. Int. 45 (2019) 15892–15897. https://doi.org/10.1016/j.ceramint.2019.05.095.
[54] H. Xiang, J. Wang, Y. Zhou, Theoretical predictions on intrinsic lattice thermal conductivity of ZrB2, J. Eur. Ceram. Soc. 39 (2019) 2982–2988. https://doi.org/10.1016/j.jeurceramsoc.2019.04.011.
[55] M.A. Arie, A.H. Shooshtari, S.V. Dessiatoun, E. Al-Hajri, M.M. Ohadi, Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger, Int. J. Heat Mass Transf. 81 (2015) 478–489. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.022.
[56] Z. Hajati, F. Sadegh Moghanlou, M. Vajdi, E. Razavi, S. Matin, Fluid Structure Interaction of blood flow around a vein valve, Bioimpacts. 10 (2020) 169–175. https://doi.org/10.34172/bi.2020.21.
[57] M. Vajdi, F. Sadegh Moghanlou, F. Sharifianjazi, M. Shahedi Asl, M. Shokouhimehr, A review on the Comsol Multiphysics studies of heat transfer in advanced ceramics, J. Compos. Compd. 2 (2020) 35–43. https://doi.org/10.29252/jcc.2.1.5.
[58] J. Diatta, G. Antou, N. Pradeilles, A. Maître, Numerical modeling of spark plasma sintering—Discussion on densification mechanism identification and generated porosity gradients, J. Eur. Ceram. Soc. 37 (2017) 4849–4860. https://doi.org/10.1016/j.jeurceramsoc.2017.06.052.
[59] F. Sadegh Moghanlou, M. Vajdi, A. Motallebzadeh, J. Sha, M. Shokouhimehr, M. Shahedi Asl, Numerical analyses of heat transfer and thermal stress in a ZrB2 gas turbine stator blade, Ceram. Int. 45 (2019) 17742–17750. https://doi.org/10.1016/j.ceramint.2019.05.344.

Cited By

Crossref Google Scholar
Numerical investigation of solar collectors as a potential source for sintering of ZrB2
Submitted
2021-03-01
Available online
2021-05-08
How to Cite
Vajdi, M., Mohammad Bagheri, S., Sadegh Moghanlou, F., & Shams Khorrami, A. (2021). Numerical investigation of solar collectors as a potential source for sintering of ZrB2. Synthesis and Sintering, 1(2), 76-84. https://doi.org/10.53063/synsint.2021.128

Most read articles by the same author(s)