Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride

  • Farhad Sadegh Moghanlou 1
  • Mohammad Vajdi 1
  • Milad Sakkaki 1
  • Shahla Azizi 2
  • 1 Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
  • 2 Institute of Biomedical Engineering, University of New Brunswick, Fredericton, Canada

Abstract

The present work aims to investigate the geometrical parameters of the graphite die on energy consumption needed for sintering of a ZrB2 sample. The Maxwell and electrical charge conservation equations are solved to obtain the electrical potential and current of the system. The governing equations are discretized by the Galerkin method and solved using the finite element method. The electric current distribution is obtained at each geometry and the temperature contours are obtained. The results showed that the height of die has a direct effect on power consumption. This can be attributed to the increased electric resistance and consequent increased Joule heating. On the other hand, increasing the die height resulted in more uniform temperature distribution through the sintered sample.

Downloads

Download data is not yet available.
Keywords: Sintering, ZrB2, Energy consumption, Numerical method

References

[1] S.K. Yekani, E. Abdi Aghdam, F. Sadegh Moghanlo, Experimental study of The Performance and e xhaust gas emissions Response of A Spark Ignition Engine to Adding Natural Gas to Gasoline in CR=11, Int. J. Ind. Math. 11 (2019) 307–317.
[2] M. Namazizadeh, M. Talebian Gevari, M. Mojaddam, M. Vajdi, Optimization of the Splitter Blade Configuration and Geometry of a Centrifugal Pump Impeller using Design of Experiment, J. Appl. Fluid Mech. 13 (2020) 89–101. https://doi.org/10.29252/jafm.13.01.29856.
[3] T. Gholizadeh, M. Vajdi, H. Rostamzadeh, Freshwater and cooling production via integration of an ethane ejector expander transcritical refrigeration cycle and a humidification-dehumidification unit, Desalination. 477 (2020) 114259. https://doi.org/10.1016/j.desal.2019.114259.
[4] S. Noorzadeh, F. Sadegh Moghanlou, M. Vajdi, M. Ataei, Thermal conductivity, viscosity and heat transfer process in nanofluids: A critical review, J. Compos. Compd. 2 (2020) 175–192. https://doi.org/10.29252/jcc.2.4.3.
[5] M. Ataei, F. Sadegh Moghanlou, S. Noorzadeh, M. Vajdi, M. Shahedi Asl, Heat transfer and flow characteristics of hybrid Al2O3/TiO2–water nanofluid in a minichannel heat sink, Heat Mass Transf. 56 (2020) 2757–2767. https://doi.org/10.1007/s00231-020-02896-9.
[6] F. Sadegh Moghanlou, S. Noorzadeh, M. Ataei, M. Vajdi, M. Shahedi Asl, E. Esmaeilzadeh, Experimental investigation of heat transfer and pressure drop in a minichannel heat sink using Al2O3 and TiO2–water nanofluids, J. Brazilian Soc. Mech. Sci. Eng. 42 (2020) 315. https://doi.org/10.1007/s40430-020-02403-5.
[7] B. Basu, G.B. Raju, A.K. Suri, Processing and properties of monolithic TiB2 based materials, Int. Mater. Rev. 51 (2006) 352–374. https://doi.org/10.1179/174328006X102529.
[8] B.M. Moshtaghioun, D. Gómez-García, A. Domínguez-Rodríguez, Spark plasma sintering of titanium nitride in nitrogen: Does it affect the sinterability and the mechanical properties?, J. Eur. Ceram. Soc. 38 (2018) 1190. https://doi.org/10.1016/j.jeurceramsoc.2017.12.029.
[9] F. Sadegh Moghanlou, M. Vajdi, H. Jafarzadeh, Z. Ahmadi, A. Motallebzadeh, et al., Spark plasma sinterability and thermal diffusivity of TiN ceramics with graphene additive, Ceram. Int. 47 (2021) 10057–10062. https://doi.org/10.1016/j.ceramint.2020.12.152.
[10] C. Maniere, A. Pavia, L. Durand, G. Chevallier, V. Bley, et al., Pulse analysis and electric contact measurements in spark plasma sintering, Electr. Power Syst. Res. 127 (2015) 307–313. https://doi.org/10.1016/j.epsr.2015.06.009.
[11] E.A. Olevsky, W.L. Bradbury, C.D. Haines, D.G. Martin, D. Kapoor, Fundamental Aspects of Spark Plasma Sintering: I. Experimental Analysis of Scalability, J. Am. Ceram. Soc. 95 (2012) 2406–2413. https://doi.org/10.1111/j.1551-2916.2012.05203.x.
[12] U. Anselmi-Tamburini, S. Gennari, J.E. Garay, Z.A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process, Mater. Sci. Eng. A. 394 (2005) 139–148. https://doi.org/10.1016/j.msea.2004.11.019.
[13] B. Nili, G. Subhash, Influence of porosity and pellet dimensions on temperature and stress inhomogeneities during spark plasma sintering of ceramic fuel, Ceram. Int. 45 (2019) 7376–7384. https://doi.org/10.1016/j.ceramint.2019.01.022.
[14] G. Maizza, S. Grasso, Y. Sakka, T. Noda, O. Ohashi, Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder, Sci. Technol. Adv. Mater. 8 (2007) 644–654. https://doi.org/10.1016/j.stam.2007.09.002.
[15] I.G. Crouch, G.V. Franks, C. Tallon, S. Thomas, M. Naebe, Glasses and ceramics, The Science of Armour Materials, Woodhead Publishing. (2017) 331–393. https://doi.org/10.1016/B978-0-08-100704-4.00007-4.
[16] T. Dehghani, F. Sadegh Moghanlou, M. Vajdi, M. Shahedi Asl, M. Shokouhimehr, M. Mohammadi, Mixing enhancement through a micromixer using topology optimization, Chem. Eng. Res. Des. 161 (2020) 187–196. https://doi.org/10.1016/j.cherd.2020.07.008.
[17] Z.N. Meng, P. Zhang, Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM, Appl. Energy. 190 (2017) 524–539. https://doi.org/10.1016/j.apenergy.2016.12.163.
[18] Z. Hajati, F. Sadegh Moghanlou, M. Vajdi, E. Razavi, S. Matin, Fluid Structure Interaction of blood flow around a vein valve, BioImpacts. 10 (2020) 169–175. https://doi.org/10.34172/bi.2020.21.
[19] M. Fattahi, M.N. Ershadi, M. Vajdi, F. Sadegh Moghanlou, A.S. Namini, M. Shahedi Asl, On the simulation of spark plasma sintered TiB2 ultra high temperature ceramics: A numerical approach, Ceram. Int. 46 (2020) 14787–14795. https://doi.org/10.1016/j.ceramint.2020.03.003.
[20] M. Sakkaki, F. Sadegh Moghanlou, M. Vajdi, M. Shahedi Asl, M. Mohammadi, M. Shokouhimehr, Numerical simulation of heat transfer during spark plasma sintering of zirconium diboride, Ceram. Int. 46 (2020) 4998–5007. https://doi.org/10.1016/j.ceramint.2019.10.240.
[21] K. Vaferi, M. Vajdi, S. Nekahi, S. Nekahi, F. Sadegh Moghanlou, et al., Thermo-mechanical simulation of ultrahigh temperature ceramic composites as alternative materials for gas turbine stator blades, Ceram. Int. 47 (2020) 567–580. https://doi.org/10.1016/j.ceramint.2020.08.164.
[22] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R Reports. 63 (2009) 127–287. https://doi.org/10.1016/j.mser.2008.09.003.
[23] J.G. Santanach, A. Weibel, C. Estournès, Q. Yang, C. Laurent, A. Peigney, Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth, Acta Mater. 59 (2011) 1400–1408. https://doi.org/10.1016/j.actamat.2010.11.002.
[24] K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Vanderbiest, Modelling of the temperature distribution during field assisted sintering, Acta Mater. 53 (2005) 4379–4388. https://doi.org/10.1016/j.actamat.2005.05.042.
[25] M. Shahedi Asl, Z. Ahmadi, A.S. Namini, A. Babapoor, A. Motallebzadeh, Spark plasma sintering of TiC–SiCw ceramics, Ceram. Int. 45 (2019) 19808–19821. https://doi.org/10.1016/j.ceramint.2019.06.236.
[26] K. Sairam, J.K. Sonber, T.S.R.C. Murthy, C. Subramanian, R.K. Fotedar, et al., Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide, Int. J. Refract. Met. Hard Mater. 42 (2014) 185–192. https://doi.org/10.1016/j.ijrmhm.2013.09.004.
[27] S. Muñoz, U. Anselmi-Tamburini, Temperature and stress fields evolution during spark plasma sintering processes, J. Mater. Sci. 45 (2010) 6528–6539. https://doi.org/10.1007/s10853-010-4742-7.
[28] D.I. Yushin, A.V. Smirnov, P.Y. Peretyagin, R. Torrecillas, Cutting tools: finite element modeling of spark plasma sintering to improve their quality, Mech. Ind. 16 (2015) 713. https://doi.org/10.1051/meca/2015999.
[29] C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga, C. Estournès, Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process, J. Eur. Ceram. Soc. 36 (2016) 741–748. https://doi.org/10.1016/j.jeurceramsoc.2015.10.033.
[30] Y. Song, Y. Li, Z. Zhou, Y. Lai, Y. Ye, A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material, J. Mater. Sci. 46 (2011) 5645–5656. https://doi.org/10.1007/s10853-011-5515-7.
[31] A. Zavaliangos, J. Zhang, M. Krammer, J.R. Groza, Temperature evolution during field activated sintering, Mater. Sci. Eng. A. 379 (2004) 218–228. https://doi.org/10.1016/j.msea.2004.01.052.
[32] M. Mallik, A.J. Kailath, K.K. Ray, R. Mitra, Electrical and thermophysical properties of ZrB2 and HfB2 based composites, J. Eur. Ceram. Soc. 32 (2012) 2545–2555. https://doi.org/10.1016/j.jeurceramsoc.2012.02.013.
[33] M. Patel, V. Prasad, V. Jayaram, Heat conduction mechanisms in hot pressed ZrB2 and ZrB2–SiC composites, J. Eur. Ceram. Soc. 33 (2013) 1615. https://doi.org/10.1016/j.jeurceramsoc.2013.03.006.
[34] M. Shahedi Asl, B. Nayebi, Z. Ahmadi, M.J. Zamharir, M. Shokouhimehr, Effects of carbon additives on the properties of ZrB2–based composites: A review, Ceram. Int. 44 (2018) 7334–7348. https://doi.org/10.1016/j.ceramint.2018.01.214.
[35] Y. Achenani, M. Saâdaoui, A. Cheddadi, G. Bonnefont, G. Fantozzi, Finite element modeling of spark plasma sintering: Application to the reduction of temperature inhomogeneities, case of alumina, Mater. Des. 116 (2017) 504–514. https://doi.org/10.1016/j.matdes.2016.12.054.
[36] C. Wang, L. Cheng, Z. Zhao, FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation, Comput. Mater. Sci. 49 (2010) 351–362. https://doi.org/10.1016/j.commatsci.2010.05.021.
[37] A. Pavia, L. Durand, F. Ajustron, V. Bley, G. Chevallier, et al., Electro-thermal measurements and finite element method simulations of a spark plasma sintering device, J. Mater. Process. Technol. 213 (2013) 1327–1336. https://doi.org/10.1016/j.jmatprotec.2013.02.003.
[38] F. Nakamori, Y. Ohishi, H. Muta, K. Kurosaki, K. Fukumoto, S. Yamanaka, Mechanical and thermal properties of bulk ZrB2, J. Nucl. Mater. 467 (2015) 612–617. https://doi.org/10.1016/j.jnucmat.2015.10.024.
[39] E. Zapata-Solvas, D.D. Jayaseelan, H.T. Lin, P. Brown, W.E. Lee, Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering, J. Eur. Ceram. Soc. 33 (2013) 1373–1386. https://doi.org/10.1016/j.jeurceramsoc.2012.12.009.

Cited By

Crossref Google Scholar
Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride
Submitted
2021-03-01
Published
2021-04-25
How to Cite
Sadegh Moghanlou, F., Vajdi, M., Sakkaki, M., & Azizi, S. (2021). Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride . Synthesis and Sintering, 1(1), 54-61. https://doi.org/10.53063/synsint.2021.117

Most read articles by the same author(s)