Challenges toward applying UHTC-based composite coating on graphite substrate by spark plasma sintering

  • Mehran Jaberi Zamharir 1
  • Mohammad Zakeri 1
  • Mansour Razavi 1
  • 1 Ceramics Department, Materials and Energy Research Center, Karaj, Iran

Abstract

In this study, the UHTC-based composite layers where applied on the graphite substrates using SPS method to protect them against ablation. The protective layers had some defects and problems such as crack, fracture, separation, melting, and weak adhesion to the substrate. Several factors such as the thickness of composite layer, the number of protective layers, the SPS conditions (temperature, applied pressure, soaking time and mold), the chemical composition of the layers, the type of the substrate and the mismatch between the thermal expansion coefficients of the substrate and the applied layer(s) affected the quality and connection of the protective layer to the graphite substrate. The amount of additive materials influenced the melting phenomenon in the composite layer; for example, further MoSi2 in the layer led to more melting. The mismatch between the thermal expansion coefficients of the graphite substrate and the composite layer caused stresses during the cooling step, which resulted in cracks in the applied layer. Hence, proximity in the thermal expansion coefficients seems to be necessary for the formation of an acceptable adhesion between the layer and the substrate.

Downloads

Download data is not yet available.
Keywords: Carbon materials, Spark plasma sintering, Ultrahigh temperature ceramics, Protective layer, Thermal expansion coefficient

References

[1] Z. Dong, B. Sun, H. Zhu, G. Yuan, B. Li, et al., A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management, New Carbon Mater. 36 (2021) 873–892. https://doi.org/10.1016/S1872-5805(21)60090-2.
[2] J.D. Webster, M.E. Westwood, F.H. Hayes, R.J. Day, R. Taylor, et al., Oxidation Protection Coatings for C/SiC based on Yttrium Silicate, J. Eur. Ceram. Soc. 18 (1998) 2345–2350. https://doi.org/10.1016/S0955-2219(98)00241-6.
[3] S.M. Gee, J.A. Little, Oxidation behaviour and protection of carbon/carbon composites, J. Mater. Sci. 26 (1991) 1093–1100. https://doi.org/10.1007/BF00576792.
[4] S. Chen, X. Qiu, B. Zhang, J. Xu, F. Zhong, et al., Advances in antioxidation coating materials for carbon/carbon composites, J. Alloys Compd. 886 (2021) 161143. https://doi.org/10.1016/j.jallcom.2021.161143.
[5] T. Cheng, Understanding the ultra-high-temperature mechanical behaviors of advanced two-dimensional carbon-carbon composites, Ceram. Int. 46 (2020) 21395–21401. https://doi.org/10.1016/j.ceramint.2020.05.237.
[6] J.H. Kim, A.Y. Jo, Y.J. Choi, K.B. Lee, J.S. Im, B.C. Bai, Improving the mechanical strength of carbon–carbon composites by oxidative stabilization, J. Mater. Res. Technol. 9 (2020) 16513–16521. https://doi.org/10.1016/j.jmrt.2020.11.064.
[7] J. Wang, X. Zhang, Z. Li, Y. Ma, L. Ma, Recent progress of biomass-derived carbon materials for supercapacitors, J. Power Sources. 451 (2020) 227794. https://doi.org/10.1016/j.jpowsour.2020.227794.
[8] E. Fitzer, L.M. Manocha, Carbon Reinforcements and Carbon/Carbon Composites, Springer Berlin Heidelberg, Berlin, Heidelberg. (1998). https://doi.org/10.1007/978-3-642-58745-0.
[9] B.D. Agarwal, L.J. Broutman, C.W. Bert, Analysis and Performance of Fiber Composites, J. Appl. Mech. 48 (1981) 213–213. https://doi.org/10.1115/1.3157582.
[10] D.E. Wittmer, M.Z. Temuri, Thermochemical Studies in Selected Metal-Carbon-Oxygen Systems, J. Am. Ceram. Soc. 74 (1991) 973–982. https://doi.org/10.1111/j.1151-2916.1991.tb04330.x.
[11] A. Tyagi, R.S. Walia, Q. Murtaza, S.M. Pandey, P.K. Tyagi, B. Bajaj, A critical review of diamond like carbon coating for wear resistance applications, Int. J. Refract. Met. Hard Mater. 78 (2019) 107–122. https://doi.org/10.1016/j.ijrmhm.2018.09.006.
[12] P. Wang, M. Tong, H. Wang, H. Li, Y. Jia, et al., Gradient HfB2-SiC multilayer oxidation resistant coating for C/C composites, Ceram. Int. 44 (2018) 20968–20973. https://doi.org/10.1016/j.ceramint.2018.08.104.
[13] R.V. Krishnarao, M.Z. Alam, D.K. Das, In-situ formation of SiC, ZrB2-SiC and ZrB2-SiC-B4C-YAG coatings for high temperature oxidation protection of C/C composites, Corros. Sci. 141 (2018) 72–80. https://doi.org/10.1016/j.corsci.2018.07.002.
[14] Q. Fu, P. Zhang, L. Zhuang, L. Zhou, J. Zhang, et al., Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples, J. Mater. Sci. Technol. 96 (2022) 31–68. https://doi.org/10.1016/j.jmst.2021.03.076.
[15] X. Jin, X. Fan, C. Lu, T. Wang, Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites, J. Eur. Ceram. Soc. 38 (2018) 1–28. https://doi.org/10.1016/j.jeurceramsoc.2017.08.013.
[16] Y. Jiang, T. Liu, H. Ru, W. Wang, C. Zhang, X. Yue, Oxidation and ablation protection of double layer HfB2-SiC-Si/SiC-Si coating for graphite materials, J. Alloys Compd. 782 (2019) 761–771. https://doi.org/10.1016/j.jallcom.2018.12.256.
[17] S. Fan, X. Ma, Z. Li, J. Hu, Z. Xie, et al., Design and optimization of oxidation resistant coating for C/C aircraft brake materials, Ceram. Int. 44 (2018) 175–182. https://doi.org/10.1016/j.ceramint.2017.09.156.
[18] E. Wuchina, E. Opila, M. Opeka, B. Fahrenholtz, I. Talmy, UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications, Electrochem. Soc. Interface. 16 (2007) 30. https://doi.org/10.1149/2.F04074IF.
[19] B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Review on ultra-high temperature boride ceramics, Prog. Mater. Sci. 111 (2020) 100651. https://doi.org/10.1016/j.pmatsci.2020.100651.
[20] Z. Balak, M. Zakeri, M. Rahimipour, E. Salahi, Taguchi design and hardness optimization of ZrB2-based composites reinforced with chopped carbon fiber and different additives and prepared by SPS, J. Alloys Compd. 639 (2015) 617–625. https://doi.org/10.1016/j.jallcom.2015.03.131.
[21] J.K. Sonber, T.S.R.C. Murthy, S. Majumdar, V. Kain, Processing of ZrB2- and HfB2-Based Ultra-High Temperature Ceramic Materials: A Review, Mater. Perf. Charact. 10 (2021) 89–121. https://doi.org/10.1520/MPC20200133.
[22] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory Diborides of Zirconium and Hafnium, J. Am. Ceram. Soc. 90 (2007) 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x.
[23] Z. Bahararjmand, M.A. Khalilzadeh, F. Saberi-Movahed, T.H. Lee, J. Wang, et al., Role of Si3N4 on microstructure and hardness of hot-pressed ZrB2−SiC composites, Synth. Sinter. 1 (2021) 34–40. https://doi.org/10.53063/synsint.2021.1113.
[24] E.L. Corral, R.E. Loehman, Ultra-High-Temperature Ceramic Coatings for Oxidation Protection of Carbon–Carbon Composites, J. Am. Ceram. Soc. 91 (2008) 1495–1502. https://doi.org/10.1111/j.1551-2916.2008.02331.x.
[25] P. Panjan, A. Drnovšek, P. Gselman, M. Čekada, M. Panjan, Review of Growth Defects in Thin Films Prepared by PVD Techniques, Coatings. 10 (2020) 447. https://doi.org/10.3390/coatings10050447.
[26] L. Tagliaferri, E. Berretti, A. Giaccherini, S.M. Martinuzzi, F. Bozza, et al., Aluminizing via Ionic Liquid Electrodeposition and Pack Cementation: A Comparative Study with Inconel 738 and a CoNiCrAlY, Coatings. 7 (2017) 83. https://doi.org/10.3390/coatings7060083.
[27] A. Zakeri, M.R. Masoumi Balashadehi, A. Sabour Rouh Aghdam, Development of hybrid electrodeposition/slurry diffusion aluminide coatings on Ni-based superalloy with enhanced hot corrosion resistance, J. Compos. Compd. 2 (2021) 1–8. https://doi.org/10.52547/jcc.3.1.1.
[28] J. Dong, Y. Sun, F. He, H. Huang, J. Zhen, Effects of substrate surface roughness and aluminizing agent composition on the aluminide coatings by low-temperature pack cementation, Mater. Res. Express. 6 (2018) 036409. https://doi.org/10.1088/2053-1591/aaf586.
[29] S. Karimi, S.M. Arab, S.R. Hosseini Zeidabadi, S. Javadpour, Tribological behavior and mechanical properties of friction stir processed HDPE/Fe-Fe3O4 composites, Synth. Sinter. 1 (2021). https://doi.org/10.53063/synsint.2021.1350.
[30] M. Abdolahpour Salari, G. Merhan Muğlu, M. Rezaei, M. Saravana Kumar, H. Pulikkalparambil, S. Siengchin, In-situ synthesis of TiN and TiB2 compounds during reactive spark plasma sintering of BN–Ti composites, Synth. Sinter. 1 (2021) 48–53. https://doi.org/10.53063/synsint.2021.119.
[31] M. Shirani, M. Rahimipour, M. Zakeri, S. Safi, T. Ebadzadeh, ZrB2-SiC-WC coating with SiC diffusion bond coat on graphite by spark plasma sintering process, Ceram. Int. 43 (2017) 14517–14520. https://doi.org/10.1016/j.ceramint.2017.07.123.
[32] K.-T. Wang, L.-Y. Cao, J.-F. Huang, J. Fei, A mullite/SiC oxidation protective coating for carbon/carbon composites, J. Eur. Ceram. Soc. 33 (2013) 191–198. https://doi.org/10.1016/j.jeurceramsoc.2012.08.009.
[33] S.A.A. Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Ablation resistance of graphite coated by spark plasma sintered ZrB2–SiC based composites, Bol. Soc. Esp. Ceram. 61 (2021) 604–610. https://doi.org/10.1016/j.bsecv.2021.05.004.
[34] Y. Miao, X. Wang, Y. Cheng, Carbon nanotube/titanium carbide sol-gel coated zirconium diboride composites prepared by spark plasma sintering, Ceram. Int. 44 (2018) 19262–19267. https://doi.org/10.1016/j.ceramint.2018.07.151.
[35] S.A. Akbarpour Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Effect of HfB2 and WC additives on the ablation resistance of ZrB2–SiC composite coating manufactured by SPS, Ceram. Int. 46 (2020) 25106–25112. https://doi.org/10.1016/j.ceramint.2020.06.297.
[36] M. Ghassemi Kakroudi, M. Dehghanzadeh Alvari, M. Shahedi Asl, N. Pourmohammadie Vafa, T. Rabizadeh, Hot pressing and oxidation behavior of ZrB2–SiC–TaC composites, Ceram. Int. 46 (2020) 3725–3730. https://doi.org/10.1016/j.ceramint.2019.10.093.
[37] S. Haghgooye Shafagh, S. Jafargholinejad, S. Javadian, Beneficial effect of low BN additive on densification and mechanical properties of hot-pressed ZrB2–SiC composites, Synth. Sinter. 1 (2021) 69–75. https://doi.org/10.53063/synsint.2021.1224.
[38] F. Sadegh Moghanlou, M. Vajdi, H. Jafarzadeh, Z. Ahmadi, A. Motallebzadeh, et al., Spark plasma sinterability and thermal diffusivity of TiN ceramics with graphene additive, Ceram. Int. 47 (2021) 10057–10062. https://doi.org/10.1016/j.ceramint.2020.12.152.
[39] L. He, Y. Sun, Q. Meng, B. Liu, J. Wu, X. Zhang, Enhanced oxidation properties of ZrB2–SiC composite with short carbon fibers at 1600 °C, Ceram. Int. 47 (2021) 15483–15490. https://doi.org/10.1016/j.ceramint.2021.02.114.
[40] M. Dehghanzadeh Alvari, M. Ghassemi Kakroudi, B. Salahimehr, R. Alaghmandfard, M. Shahedi Asl, M. Mohammadi, Microstructure, mechanical properties, and oxidation behavior of hot-pressed ZrB2–SiC–B4C composites, Ceram. Int. 47 (2021) 9627–9634. https://doi.org/10.1016/j.ceramint.2020.12.101.
[41] I. FarahBakhsh, R. Antiochia, H.W. Jang, Pressureless sinterability study of ZrB2–SiC composites containing hexagonal BN and phenolic resin additives, Synth. Sinter. 1 (2021) 99–104. https://doi.org/10.53063/synsint.2021.1231.
[42] S.M. Arab, M. Shahedi Asl, M. Ghassemi Kakroudi, B. Salahimehr, K. Mahmoodipour, On the oxidation behavior of ZrB 2 –SiC–VC composites, Int. J. Appl. Ceram. Technol. 18 (2021) 2306–2313. https://doi.org/10.1111/ijac.13858.
[43] L. Silvestroni, C. Melandri, V. Venkatachalam, J. Binner, D. Sciti, Merging toughness and oxidation resistance in a light ZrB2 composite, Mater. Des. 183 (2019) 108078. https://doi.org/10.1016/j.matdes.2019.108078.
[44] W.G. Fahrenholtz, Thermodynamic Analysis of ZrB2-SiC Oxidation: Formation of a SiC-Depleted Region, J. Am. Ceram. Soc. 90 (2007) 143–148. https://doi.org/10.1111/j.1551-2916.2006.01329.x.
[45] S. Torabi, Z. Valefi, N. Ehsani, The effect of the SiC content on the high duration erosion behavior of SiC/ZrB2– SiC/ZrB2 functionally gradient coating produced by shielding shrouded plasma spray method, Ceram. Int. 48 (2022) 1699–1714. https://doi.org/10.1016/j.ceramint.2021.09.249.
[46] Y.-J. Wang, H.-J. Li, Q.-G. Fu, H. Wu, D.-J. Yao, B.-B. Wei, Ablative property of HfC-based multilayer coating for C/C composites under oxy-acetylene torch, Appl. Surf. Sci. 257 (2011) 4760–4763. https://doi.org/10.1016/j.apsusc.2010.11.020.
[47] X. Zou, Q. Fu, L. Liu, H. Li, Y. Wang, et al., ZrB2–SiC coating to protect carbon/carbon composites against ablation, Surf. Coat. Technol. 226 (2013) 17–21. https://doi.org/10.1016/j.surfcoat.2013.03.027.
[48] X. Yao, H. Li, Y. Zhang, H. Wu, X. Qiang, A SiC–Si–ZrB2 multiphase oxidation protective ceramic coating for SiC-coated carbon/carbon composites, Ceram. Int. 38 (2012) 2095–2100. https://doi.org/10.1016/j.ceramint.2011.10.047.
[49] Q. Fu, Y. Shan, C. Cao, H. Li, K. Li, Oxidation and erosion resistant property of SiC/Si–Mo–Cr/MoSi2 multi-layer coated C/C composites, Ceram. Int. 41 (2015) 4101–4107. https://doi.org/10.1016/j.ceramint.2014.11.105.
[50] T. Feng, H.-J. Li, Q.-G. Fu, X.-T. Shen, H. Wu, Microstructure and oxidation of multi-layer MoSi2–CrSi2–Si coatings for SiC coated carbon/carbon composites, Corros. Sci. 52 (2010) 3011–3017. https://doi.org/10.1016/j.corsci.2010.05.020.
[51] C.-S. Kim, T.R. Massa, G.S. Rohrer, Modeling the relationship between microstructural features and the strength of WC–Co composites, Int. J. Refract. Met. Hard Mater. 24 (2006) 89–100. https://doi.org/10.1016/j.ijrmhm.2005.04.011.
[52] T. Li, H. Li, X. Shi, Effect of LaB6 on the thermal shock property of MoSi2-SiC coating for carbon/carbon composites, Appl. Surf. Sci. 264 (2013) 88–93. https://doi.org/10.1016/j.apsusc.2012.09.124.

Cited By

Crossref Google Scholar
Challenges toward applying UHTC-based composite coating on graphite substrate by spark plasma sintering
Submitted
2021-09-20
Available online
2021-12-20
How to Cite
Jaberi Zamharir, M., Zakeri, M., & Razavi, M. (2021). Challenges toward applying UHTC-based composite coating on graphite substrate by spark plasma sintering. Synthesis and Sintering, 1(4), 202-210. https://doi.org/10.53063/synsint.2021.1452

Most read articles by the same author(s)