Ablation behavior of ZrB2–SiC–Si composites with WC and MoSi2 additives coated through SPS on graphite

  • Mehran Jaberi Zamharir 1
  • Mohammad Zakeri 1
  • Zahra Jahangiri 2
  • Ahad Mohammadzadeh 3
  • 1 Ceramics Department, Materials and Energy Research Center, Karaj, Iran
  • 2 Department of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
  • 3 Imdea Materials Institute, Calle Eric Kandel, 2, 28906, Getafe, Madrid, Spain


The intention of this paper is to investigate the resistance to ablation of shielding composite coatings built with ultra-high temperature ceramic materials on graphite substrate. To apply the coating on the graphite, the spark plasma sintering route was employed. The applied monolayer coatings had the base compositions of ZrB2–SiC–Si with the additives of WC and MoSi2, both in the same contents of 1.25 and 3.75 vol%. The outcomes achieved from the ablation tests by oxyacetylene flame showed that applying the protective composite coatings notably enhances the resistance to ablation of the substrate made of graphite. The coating containing more of WC and MoSi2 additives had better performance in terms of ablation resistance in 30–210 seconds. The formation of an oxide layer of (Zr,Si)O2 at the beginning of the ablation process and creating a layer with a porous microstructure on the composite coating surface functioned as a barrier against the destruction and erosion of the inner parts during longer ablation times.


Download data is not yet available.
Keywords: UHTCs, Ablation resistance, Graphite, Additive content, Composites coating, Spark plasma sintering


[1] Z. Dong, B. Sun, H. Zhu, G. Yuan, B. Li, et al., A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management, New Carbon Mater. 36 (2021) 873–892. https://doi.org/10.1016/S1872-5805(21)60090-2.
[2] F. Muhammed, T. Lavaggi, S. Advani, M. Mirotznik, J.W. Gillespie, Influence of material and process parameters on microstructure evolution during the fabrication of carbon–carbon composites: a review, J. Mater. Sci. 56 (2021) 17877–17914. https://doi.org/10.1007/s10853-021-06401-3.
[3] M. Singh, R. Vander Wal, Carbon - carbon composites: Effect of graphene size upon the nano-micro - structure and material properties, Carbon Trends. 4 (2021) 100061. https://doi.org/10.1016/j.cartre.2021.100061.
[4] J.H. Park, J. Yang, D. Kim, H. Gim, W.Y. Choi, J.W. Lee, Review of recent technologies for transforming carbon dioxide to carbon materials, Chem. Eng. J. 427 (2022) 130980. https://doi.org/10.1016/j.cej.2021.130980.
[5] W. Zhai, L. Bai, R. Zhou, X. Fan, G. Kang, et al., Recent progress on wear‐resistant materials: designs, properties, and applications, Adv. Sci. 8 (2021) 2003739. https://doi.org/10.1002/advs.202003739.
[6] R. Soni, R. Verma, R. Kumar Garg, V. Sharma, A critical review of recent advances in the aerospace materials, Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.08.108.
[7] K.M. Steel, W.J. Koros, An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials, Carbon. 43 (2005) 1843–1856. https://doi.org/10.1016/j.carbon.2005.02.028.
[8] P. Baraneedharan, S. Vadivel, C.A. Anil, S.B. Mohamed, S. Rajendran, Advances in preparation, mechanism and applications of various carbon materials in environmental applications: A review, Chemosphere. 300 (2022) 134596. https://doi.org/10.1016/j.chemosphere.2022.134596.
[9] D.E. Wittmer, M.Z. Temuri, Thermochemical studies in selected metal-carbon-oxygen systems, J. Am. Ceram. Soc. 74 (1991) 973–982. https://doi.org/10.1111/j.1151-2916.1991.tb04330.x.
[10] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 (2011) 569–581. https://doi.org/10.1038/nmat3064.
[11] D.S. Su, G. Centi, A perspective on carbon materials for future energy application, J. Energy Chem. 22 (2013) 151–173. https://doi.org/10.1016/S2095-4956(13)60022-4.
[12] M. Thompson, Q. Xia, Z. Hu, X.S. Zhao, A review on biomass-derived hard carbon materials for sodium-ion batteries, Mater. Adv. 2 (2021) 5881–5905. https://doi.org/10.1039/D1MA00315A.
[13] X. Zhang, B. Du, P. Hu, Y. Cheng, J. Han, Thermal response, oxidation and ablation of ultra–high temperature ceramics, C/SiC, C/C, graphite and graphite–ceramics, J. Mater. Sci. Technol. 102 (2022) 137–158. https://doi.org/10.1016/j.jmst.2021.06.022.
[14] B. Du, Y. Cheng, L. Xun, S. Zhang, J. Tong, et al., Using PyC modified 3D carbon fiber to reinforce UHTC under low temperature sintering without pressure, J. Adv. Ceram. 10 (2021) 871–884. https://doi.org/10.1007/s40145-021-0495-9.
[15] D. Yang, S. Dong, C. Hong, X. Zhang, Preparation, modification, and coating for carbon-bonded carbon fiber composites: A review, Ceram. Int. 48 (2022) 14935–14958. https://doi.org/10.1016/j.ceramint.2022.03.055.
[16] M. Naderi, M. Vajdi, F. Sadegh Moghanlou, H. Nami, Sensitivity analysis of fluid flow parameters on the performance of fully dense ZrB2-made micro heat exchangers, Synth. Sinter. 3 (2023) 88–106. https://doi.org/10.53063/synsint.2023.32143.
[17] X. Zhu, Y. Zhang, Y. Su, Y. Fu, P. Zhang, SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation, J. Eur. Ceram. Soc. 41 (2021) 114–120. https://doi.org/10.1016/j.jeurceramsoc.2020.08.045.
[18] M. Zhang, X. Ren, H. Chu, J. Lv, W. Li, et al., Oxidation inhibition behaviors of the HfB2-SiC-TaSi2 coating for carbon structural materials at 1700 °C, Corros. Sci. 177 (2020) 108982. https://doi.org/10.1016/j.corsci.2020.108982.
[19] Y. Jiang, S. Yin, M. Li, Z. Zhang, G. Tang, et al., Oxidation and ablation behaviour of multiphase ultra-high-temperature ceramic Ta0·5Zr0·5B2–Si–SiC protective coating for graphite, Ceram. Int. 47 (2021) 11358–11371. https://doi.org/10.1016/j.ceramint.2020.12.262.
[20] J. Binner, M. Porter, B. Baker, J. Zou, V. Venkatachalam, et al., Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs – a review, Int. Mater. Rev. 65 (2020) 389–444. https://doi.org/10.1080/09506608.2019.1652006.
[21] Y. Jiang, Q. Ren, H. Ru, Z. Mao, H. Xu, Oxidation protection of graphite materials by single-phase ultra-high temperature boride modified monolayer Si-SiC coating, Ceram. Int. 45 (2019) 539–549. https://doi.org/10.1016/j.ceramint.2018.09.206.
[22] M. Shirani, M. Rahimipour, M. Zakeri, S. Safi, T. Ebadzadeh, ZrB2-SiC-WC coating with SiC diffusion bond coat on graphite by spark plasma sintering process, Ceram. Int. 43 (2017) 14517–14520. https://doi.org/10.1016/j.ceramint.2017.07.123.
[23] M. Jaberi Zamharir, M. Zakeri, M. Razavi, Challenges toward applying UHTC-based composite coating on graphite substrate by spark plasma sintering, Synth. Sinter. 1 (2021) 202–210. https://doi.org/10.53063/synsint.2021.1452.
[24] S.A. Akbarpour Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Effect of HfB2 and WC additives on the ablation resistance of ZrB2–SiC composite coating manufactured by SPS, Ceram. Int. 46 (2020) 25106–25112. https://doi.org/10.1016/j.ceramint.2020.06.297.
[25] E.L. Corral, R.E. Loehman, Ultra-high-temperature ceramic coatings for oxidation protection of carbon-carbon composites, J. Am. Ceram. Soc. 91 (2008) 1495–1502. https://doi.org/10.1111/j.1551-2916.2008.02331.x.
[26] X. Jin, X. Fan, C. Lu, T. Wang, Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites, J. Eur. Ceram. Soc. 38 (2018) 1–28. https://doi.org/10.1016/j.jeurceramsoc.2017.08.013.
[27] S. Chen, X. Qiu, B. Zhang, J. Xu, F. Zhong, et al., Advances in antioxidation coating materials for carbon/carbon composites, J. Alloys Compd. 886 (2021) 161143. https://doi.org/10.1016/j.jallcom.2021.161143.
[28] L.S. Walker, E.L. Corral, Self‐generating high‐temperature oxidation‐resistant glass‐ceramic coatings for C–C composites using UHTCs, J. Am. Ceram. Soc. 97 (2014) 3004–3011. https://doi.org/10.1111/jace.13017.
[29] D. Wang, Y. Zeng, X. Xiong, G. Li, Z. Chen, et al., Preparation and ablation properties of ZrB2–SiC protective laminae for carbon/carbon composites, Ceram. Int. 40 (2014) 14215–14222. https://doi.org/10.1016/j.ceramint.2014.06.010.
[30] S.A.A. Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Ablation resistance of graphite coated by spark plasma sintered ZrB2–SiC based composites, Bol. Soc. Esp. Cerám. Vidr. 61 (2022) 604–610. https://doi.org/10.1016/j.bsecv.2021.05.004.
[31] R. Aliasgarian, M. Naderi, S.E. Mirsalehi, Ablation mechanism of ZrB2-SiC coating for SiC-coated graphite under an oxyacetylene flame, Surf. Coat. Technol. 350 (2018) 511–518. https://doi.org/10.1016/j.surfcoat.2018.07.031.
[32] M. Jaberi Zamharir, M. Zakeri, Z. Jahangiri, A. Mohammadzadeh, Microstructural characterization of ZrB2–SiC–Si–MoSi2–WC coatings applied by SPS on graphite substrate, Synth. Sinter. 3 (2023) 124–131. https://doi.org/10.53063/synsint.2023.32152.
[33] M. Jaberi Zamharir, M. Shahedi Asl, M. Zakeri, M. Razavi, Microstructure of spark plasma coated ultrahigh temperature ZrB2–SiC–Si composites on graphite substrate, Silicon. 15 (2023) 6015–6024. https://doi.org/10.1007/s12633-023-02475-7.
[34] Y. Zhang, H. Hu, P. Zhang, Z. Hu, H. Li, L. Zhang, SiC/ZrB2–SiC–ZrC multilayer coating for carbon/carbon composites against ablation, Surf. Coat. Technol. 300 (2016) 1–9. https://doi.org/10.1016/j.surfcoat.2016.05.028.
[35] A. Kaiser, M. Lobert, R. Telle, Thermal stability of zircon (ZrSiO4), J. Eur. Ceram. Soc. 28 (2008) 2199–2211. https://doi.org/10.1016/j.jeurceramsoc.2007.12.040.
[36] W. Tan, M. Adducci, R. Trice, Evaluation of rare‐earth modified ZrB2–SiC ablation resistance using an oxyacetylene torch, J. Am. Ceram. Soc. 97 (2014) 2639–2645. https://doi.org/10.1111/jace.12991.

Cited By

Crossref Google Scholar
Ablation behavior of ZrB2–SiC–Si composites with WC and MoSi2 additives coated through SPS on graphite
How to Cite
Jaberi Zamharir, M., Zakeri, M., Jahangiri, Z., & Mohammadzadeh, A. (2023). Ablation behavior of ZrB2–SiC–Si composites with WC and MoSi2 additives coated through SPS on graphite. Synthesis and Sintering, 3(3), 179-191. https://doi.org/10.53063/synsint.2023.33173

Most read articles by the same author(s)