Microstructural characterization of ZrB2–SiC–Si–MoSi2–WC coatings applied by SPS on graphite substrate

  • Mehran Jaberi Zamharir 1
  • Mohammad Zakeri 1
  • Zahra Jahangiri 2
  • Ahad Mohammadzadeh 3
  • 1 Ceramics Department, Materials and Energy Research Center, Karaj, Iran
  • 2 Department of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
  • 3 Imdea Materials Institute, Calle Eric Kandel, 2, 28906, Getafe, Madrid, Spain

Abstract

The aim of this research was to apply a protective composite coating made of ultra-high temperature ceramics (UHTCs) on the graphite substrates. The spark plasma sintering (SPS) method was used to apply this coating on the graphite substrate. First, efforts were made to choose the right chemical composition for the composite material of the coating and the sintering conditions (temperature, pressure, and holding time) for applying the coating. Then, single-layer coatings with the basic composition of ZrB2–SiC–Si with WC and MoSi2 additives in equal amounts of 1.25 and 3.75 vol% of each were successfully applied on the graphite substrates under sintering conditions of 1875±25 °C final temperature, 10 MPa initial pressure, 25 MPa final pressure and 5 min holding time. The presence of the Si element in the basic composition of these coatings, in addition to helping to form an intermediate diffusion layer at the interface between the composite coating and the graphite substrate, caused the strengthening of the joining despite the difference in the coefficient of thermal expansion between the graphite and the composite coating.

Downloads

Download data is not yet available.
Keywords: Ultra-high temperature ceramics, Composite, Coating, Additive, Microstructure, SPS

References

[1] J.D. Webster, M.E. Westwood, F.H. Hayes, R.J. Day, R. Taylor, et al. Oxidation protection coatings for C/SiC based on yttrium silicate, J. Eur. Ceram. Soc. 18 (1998) 2345–2350. https://doi.org/10.1016/S0955-2219(98)00241-6.
[2] M.M. Harussani, S.M. Sapuan, G. Nadeem, T. Rafin, W. Kirubaanand, Recent applications of carbon-based composites in defence industry: A review, Def. Technol. 18 (2022) 1281–1300. https://doi.org/10.1016/j.dt.2022.03.006.
[3] S.M. Gee, J.A. Little, Oxidation behaviour and protection of carbon/carbon composites, J. Mater. Sci. 26 (1991) 1093–1100. https://doi.org/10.1007/BF00576792.
[4] M. Patel, K. Saurabh, V.V.B. Prasad, J. Subrahmanyam, High temperature C/C–SiC composite by liquid silicon infiltration: a literature review, Bull. Mater. Sci. 35 (2012) 63–73. https://doi.org/10.1007/s12034-011-0247-5.
[5] C. Strondl, G.J. van der Kolk, T. Hurkmans, W. Fleischer, T. Trinh, et al., Properties and characterization of multilayers of carbides and diamond-like carbon, Surf. Coat. Technol. 142–144 (2001) 707–713. https://doi.org/10.1016/S0257-8972(01)01179-3.
[6] J. Du, H. Zhang, Y. Geng, W. Ming, W. He, et al., A review on machining of carbon fiber reinforced ceramic matrix composites, Ceram. Int. 45 (2019) 18155–18166. https://doi.org/10.1016/j.ceramint.2019.06.112.
[7] D.E. Wittmer, M.Z. Temuri, Thermochemical studies in selected metal-carbon-oxygen systems, J. Am. Ceram. Soc. 74 (1991) 973–982. https://doi.org/10.1111/j.1151-2916.1991.tb04330.x.
[8] E.L. Corral, R.E. Loehman, Ultra-high-temperature ceramic coatings for oxidation protection of carbon-carbon composites, J. Am. Ceram. Soc. 91 (2008)1495–1502. https://doi.org/10.1111/j.1551-2916.2008.02331.x.
[9] H. Yang, H. Zhao, T. Wang, X. Liu, K. Zhang, et al., The oxidation behavior of multi-layered SiC coated graphite in water vapor containing environment, Corros. Sci. 196 (2022) 110025. https://doi.org/10.1016/j.corsci.2021.110025.
[10] X. Zhang, B. Du, P. Hu, Y. Cheng, J. Han, Thermal response, oxidation and ablation of ultra–high temperature ceramics, C/SiC, C/C, graphite and graphite–ceramics, J. Mater. Sci. Technol. 102 (2022) 137–158. https://doi.org/10.1016/j.jmst.2021.06.022.
[11] G. Feng, Y. Yu, X. Yao, Y. Jia, J. Sun, H. Li, Ablation behavior of single and alternate multilayered ZrC-SiC coatings under oxyacetylene torch, J. Eur. Ceram. Soc. 42 (2022) 830–840. https://doi.org/10.1016/j.jeurceramsoc.2021.11.008.
[12] M. Shahedi Asl, B. Nayebi, Z. Ahmadi, M. Jaberi Zamharir, M. Shokouhimehr, Effects of carbon additives on the properties of ZrB2–based composites: A review, Ceram. Int. 44 (2018) 7334–7348. https://doi.org/10.1016/j.ceramint.2018.01.214.
[13] M. Shahedi Asl, M.J. Zamharir, Z. Ahmadi, S. Parvizi, Effects of nano-graphite content on the characteristics of spark plasma sintered ZrB2–SiC composites, Mater. Sci. Eng. A. 716 (2018) 99–106. https://doi.org/10.1016/j.msea.2018.01.038.
[14] F. Valizadeh Harzand, S. Anzani, A. Babapoor, Recent advances in synthesis of ultra-high temperature ceramic matrix composites, Synth. Sinter. 2 (2022) 186–190. https://doi.org/10.53063/synsint.2022.2475.
[15] K.-T. Wang, L.-Y. Cao, J.-F. Huang, J. Fei, A mullite/SiC oxidation protective coating for carbon/carbon composites, J. Eur. Ceram. Soc. 33 (2013) 191–198. https://doi.org/10.1016/j.jeurceramsoc.2012.08.009.
[16] P. Mazur, O. Grigoriev, D. Vedel, L. Melakh, I. Shepa, Ultra-high temperature ceramics based on ZrB2 obtained by pressureless sintering with addition of Cr3C2, Mo2C, and WC, J. Eur. Ceram. Soc. 42 (2022) 4479–4492. https://doi.org/10.1016/j.jeurceramsoc.2022.04.043.
[17] A. Nisar, R. Hassan, A. Agarwal, K. Balani, Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems, Ceram. Int. 48 (2022) 8852–8881. https://doi.org/10.1016/j.ceramint.2021.12.199.
[18] G. Bianco, A. Nisar, C. Zhang, B. Boesl, A. Agarwal, A critical analysis of the parameters affecting the oxidation behavior of ultra‐high‐temperature diboride ceramics, J. Am. Ceram. Soc. 105 (2022) 1939–1953. https://doi.org/10.1111/jace.18218.
[19] A. Shima, M. Kazemi, Influence of TiN addition on densification behavior and mechanical properties of ZrB2 ceramics, Synth. Sinter. 3 (2023) 46–53. https://doi.org/10.53063/synsint.2023.31133.
[20] S.-Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: a review, J. Eur. Ceram. Soc. 29 (2009) 995–1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008.
[21] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc. 90 (2007) 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x.
[22] M. Naderi, M. Vajdi, F. Sadegh Moghanlou, H. Nami, Sensitivity analysis of fluid flow parameters on the performance of fully dense ZrB2-made micro heat exchangers, Synth. Sinter. 3 (2023) 88–106. https://doi.org/10.53063/synsint.2023.32143.
[23] X. Zou, Q. Fu, L. Liu, H. Li, Y. Wang, et al., ZrB2-SiC coating to protect carbon/carbon composites against ablation, Surf. Coat. Technol. 226 (2013) 17–21. https://doi.org/10.1016/j.surfcoat.2013.03.027.
[24] X. Yao, H. Li, Y. Zhang, H. Wu, X. Qiang, A SiC–Si–ZrB2 multiphase oxidation protective ceramic coating for SiC-coated carbon/carbon composites, Ceram. Int. 38 (2012) 2095–2100. https://doi.org/10.1016/j.ceramint.2011.10.047.
[25] M. Shirani, M. Rahimipour, M. Zakeri, S. Safi, T. Ebadzadeh, ZrB2-SiC-WC coating with SiC diffusion bond coat on graphite by spark plasma sintering process, Ceram. Int. 43 (2017) 14517–14520. https://doi.org/10.1016/j.ceramint.2017.07.123.
[26] S.A. Akbarpour Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Effect of HfB2 and WC additives on the ablation resistance of ZrB2–SiC composite coating manufactured by SPS, Ceram. Int. 46 (2020) 25106–25112. https://doi.org/10.1016/j.ceramint.2020.06.297.
[27] M. Jaberi Zamharir, M. Shahedi Asl, M. Zakeri, M. Razavi, Microstructure of spark plasma coated ultrahigh temperature ZrB2–SiC–Si composites on graphite substrate, Silicon. 15 (2023) 6015–6024. https://doi.org/10.1007/s12633-023-02475-7.
[28] M. Jaberi Zamharir, M. Zakeri, M. Razavi, Challenges toward applying UHTC-based composite coating on graphite substrate by spark plasma sintering, Synth. Sinter. 1 (2021) 202–210. https://doi.org/10.53063/synsint.2021.1452.
[29] M. Jaberi Zamharir, M. Zakeri, M. Razavi, M. Shahedi Asl, Effect of co-addition of WC and MoSi2 on the microstructure of ZrB2–SiC–Si composites, Int. J. Refract. Met. Hard Mater. 103 (2022) 105775. https://doi.org/10.1016/j.ijrmhm.2021.105775.
[30] E.I. Zamulaeva, M.V. Zinovieva, P.V. Kiryukhantsev-Korneev, M.I. Petrzhik, Y.Y. Kaplanskii, et al., Protective coatings deposited onto LPBF-manufactured nickel superalloy by pulsed electrospark deposition using MoSi2-MoB-HfB2 and MoSi2-MoB-ZrB2 electrodes, Surf. Coat. Technol. 427 (2021) 127806. https://doi.org/10.1016/j.surfcoat.2021.127806.
[31] R. Kannan, L. Rangaraj, Densification, mechanical, and tribological properties of ZrB2‐ZrCx composites produced by reactive hot pressing, J. Am. Ceram. Soc. 103 (2020) 6120–6135. https://doi.org/10.1111/jace.17338.
[32] R. Silverstein, F.W. Zok, C.G. Levi, Vapor‐mediated melt infiltration for synthesizing SiC composite matrices, J. Am. Ceram. Soc. 104 (2021) 3833–3844. https://doi.org/10.1111/jace.17793.
[33] S. Safi, A. Kazemzadeh, MCMB-SiC composites; New class high-temperature structural materials for aerospace applications, Ceram. Int. 39 (2013) 81–86. https://doi.org/10.1016/j.ceramint.2012.05.098.
[34] Z. He, L. Sun, C. Li, X. Si, C. Zhang, et al., Wetting and brazing of Cf/C composites with Si–Zr eutectic alloys: The formation of nano- and coarse-SiC reaction layers, Carbon. 167 (2020) 92–103. https://doi.org/10.1016/j.carbon.2020.05.109.
[35] R. Xue, J. Wang, P. Yang, Z. Zhang, H. Xia, Z. Xiao, Mechanism of retaining graphite phase in the graphite/SiC composite by condense layer with fine SiC grain reaction formed via nano carbon black, Ceram. Int. 49 (2023) 38653–38661. https://doi.org/10.1016/j.ceramint.2023.09.198.
[36] L. Zhu, X. Ren, X. Wang, X. Kang, R. Zheng, P. Feng, Microstructure and high-temperature oxidation resistance of MoSi2-ZrO2 composite coatings for Niobium substrate, J. Eur. Ceram. Soc. 41 (2021) 1197–1210. https://doi.org/10.1016/j.jeurceramsoc.2020.09.029.

Cited By

Crossref Google Scholar
Microstructural characterization of ZrB2–SiC–Si–MoSi2–WC coatings applied by SPS on graphite substrate
Submitted
2023-05-28
Available online
2023-06-28
How to Cite
Jaberi Zamharir, M., Zakeri, M., Jahangiri, Z., & Mohammadzadeh, A. (2023). Microstructural characterization of ZrB2–SiC–Si–MoSi2–WC coatings applied by SPS on graphite substrate. Synthesis and Sintering, 3(2), 124-131. https://doi.org/10.53063/synsint.2023.32152

Most read articles by the same author(s)