Recent developments in chitosan-based adsorbents for tetracycline removal: A mini-review

  • Alireza Pishevar 1
  • Milad Khanchoupan 1
  • Alireza Afradi 2
  • Fateme Kazemian 3
  • Gity Behbudi 4
  • 1 Department of Chemical Engineering, Faculty of Engineering, Imam Hussein University, Tehran, Iran
  • 2 Department of Mining and Geology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
  • 3 Department of Chemistry, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
  • 4 Department of Chemical Engineering, University of Guilan, Rasht, 1841, Iran

Abstract

Tetracyclines (TCs) are widely used antibiotics that have raised concerns due to their presence in the environment, posing risks to human health and ecosystems. This mini-review explores recent advancements in utilizing chitosan-based adsorbents to remove TCs from wastewater efficiently. Our review reveals that adsorption performance is highly influenced by temperature and pH, with most studies reporting effective TC removal between 25–45 °C and pH values of 2–12. The Langmuir and Freundlich isotherm models are both applicable, depending on the specific adsorbent, indicating both monolayer and heterogeneous adsorption behavior, with maximum adsorption capacities ranging from 19.32 mg/g to 940 mg/g, with the highest capacity shown for bacterial cellulose microfibers (BCM) char/chitosan (CS)/polyethyleneimine (PEI). Kinetic studies predominantly followed the pseudo-second-order model, suggesting chemisorption as a rate-limiting step, while some followed a pseudo-first-order model. High removal rates (≈ 90–99%) were reported for materials like zeolitic imidazolate framework (ZIF-8)-chitosan, BCM char/CS/PEI, and carboxymethyl-chitosan (CMC)-modified Na-Mt (montmorillonite). This review highlights the significant potential of chitosan-based adsorbents. At the same time, further research is needed to optimize adsorption conditions, understand the mechanisms involved, and address the diverse sources of TC pollution. Given the global impact of TCs, a comprehensive approach encompassing enhanced monitoring, stricter regulations, the development of advanced treatment technologies like chitosan-based adsorbents, and public awareness campaigns is imperative to mitigate their environmental risks effectively.

Downloads

Download data is not yet available.
Keywords: Tetracyclines, Chitosan-based adsorbents, Wastewater treatment, Antibiotic removal, Environmental pollution

References

[1] B. Wang, Y. Zhang, D. Zhu, H. Li, Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes, Environ. Sci. Technol. 54 (2020) 12920–12928. https://doi.org/10.1021/acs.est.9b07963.
[2] S. Begum, T. Begum, N. Rahman, R.A. Khan, A review on antibiotic resistance and way of combating antimicrobial resistance, GSC Biol. Pharm. Sci. 14 (2021) 087–097. https://doi.org/10.30574/gscbps.2021.14.2.0037.
[3] S. Kazemi, M.R. Pirmoradi, H. Karimi, M. Raghami, A. Rahimi, et al., Effect of Foliar Application of Humic Acid and Zinc Sulfate on Vegetative, Physiological, and Biochemical Characteristics of Physalis alkekengi L. Under Soilless Culture, J. Soil Sci. Plant Nutr. 23 (2023) 3845–3856. https://doi.org/10.1007/s42729-023-01305-4.
[4] A. Long, K. Loethen, A. Behzadnezhad, W. Zhang, A snapshot of SARS‐CoV‐2 viral RNA throughout wastewater treatment plants in Arkansas, Water Environ. Res. 96 (2024) e10992. https://doi.org/10.1002/wer.10992.
[5] J. Scaria, K.V. Anupama, P.V. Nidheesh, Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management, Sci. Total Environ. 771 (2021) 145291. https://doi.org/10.1016/j.scitotenv.2021.145291.
[6] Q.F. Han, S. Zhao, X.R. Zhang, X.L. Wang, C. Song, S.G. Wang, Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China, Environ. Int. 138 (2020) 105551. https://doi.org/10.1016/j.envint.2020.105551.
[7] A.J. Cowieson, A.M. Kluenter, Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production, Anim. Feed Sci. Technol. 250 (2019) 81–92. https://doi.org/10.1016/j.anifeedsci.2018.04.026.
[8] M. Adel, M. Dadar, G. Oliveri Conti, Antibiotics and malachite green residues in farmed rainbow trout (Oncorhynchus mykiss) from the Iranian markets: a risk assessment, Int. J. Food Prop. 20 (2017) 402–408. https://doi.org/10.1080/10942912.2016.1163577.
[9] E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, S. Pant, S. Gandra, et al., Global increase and geographic convergence in antibiotic consumption between 2000 and 2015, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) E3463–E3470. https://doi.org/10.1073/pnas.1717295115.
[10] D. Larsson, C.-F. Flach, Antibiotic resistance in the environment, Nat. Rev. Microbiol. 20 (2022) 257–269. https://doi.org/10.1038/s41579-021-00649-x.
[11] T.A. Wencewicz, Crossroads of Antibiotic Resistance and Biosynthesis, J. Mol. Biol. 431 (2019) 3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033.
[12] M. Gros, J. Mas-Pla, A. Sànchez-Melsió, M. Čelić, M. Castaño, et al., Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment, Sci. Total Environ. 857 (2023) 159202. https://doi.org/10.1016/j.scitotenv.2022.159202.
[13] G. Pouyamanesh, N. Ameli, Y. Metanat, A. Khorrami, F. Abbasinezhad-Moud, et al., Thymol Enhances 5-Fluorouracil Cytotoxicity by Reducing Migration and Increasing Apoptosis and Cell Cycle Arrest in Esophageal Cancer Cells: An In-vitro Study, Indian J. Clin. Biochem. (2024) 1–12. https://doi.org/10.1007/s12291-024-01219-7.
[14] D.E. Brodersen, W.M. Clemons, A.P. Carter, R.J. Morgan-Warren, B.T. Wimberly, V. Ramakrishnan, The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit, Cell. 103 (2000) 1143–1154. https://doi.org/10.1016/s0092-8674(00)00216-6.
[15] D. Fuoco, Classification Framework and Chemical Biology of Tetracycline-Structure-Based Drugs, Antibiotics. 1 (2012) 1–13. https://doi.org/10.3390/antibiotics1010001.
[16] Q. Chang, W. Wang, G. Regev‐Yochay, M. Lipsitch, W.P. Hanage, Antibiotics in agriculture and the risk to human health: how worried should we be?, Evol. Appl. 8 (2015) 240–247. https://doi.org/10.1111/eva.12185.
[17] Y. Leng, H. Xiao, Z. Li, J. Wang, Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in coastal areas of Beibu Gulf, China, Sci. Total Environ. 714 (2020) 136899. https://doi.org/10.1016/j.scitotenv.2020.136899.
[18] H. Seyrani, S. Ramezanpour, A. Vaezghaemi, F. Kobarfard, A sequential Ugi–Smiles/transition-metal-free endo-dig Conia–ene cyclization: the selective synthesis of saccharin substituted 2, 5-dihydropyrroles, New J. Chem. 45 (2021) 15647–15654. https://doi.org/10.1039/D1NJ01159F.
[19] D. Belkheiri, F. Fourcade, F. Geneste, D. Floner, H. Aït-Amar, A. Amrane, Feasibility of an electrochemical pre-treatment prior to a biological treatment for tetracycline removal, Sep. Purif. Technol. 83 (2011) 151–156. https://doi.org/10.1016/j.seppur.2011.09.029.
[20] H. Dong, W. Chi, A. Gao, T. Xie, B. Gao, Electrochemical degradation of tetracycline using a Ti/Ta2O5-IrO2 anode: performance, kinetics, and degradation mechanism, Materials. 14 (2021) 4325. https://doi.org/10.3390/ma14154325.
[21] V. Emzhina, E. Kuzin, E. Babusenko, N. Krutchinina, Photodegradation of tetracycline in presence of H2O2 and metal oxide based catalysts, J. Water Process Eng. 39 (2021) 101696. https://doi.org/10.1016/j.jwpe.2020.101696.
[22] S. Hamdi, H. Gharbi-Khelifi, A. Barreiro, M. Mosbahi, R. Cela-Dablanca, et al., Tetracycline adsorption/desorption by raw and activated Tunisian clays, Environ. Res. 242 (2024) 117536. https://doi.org/10.1016/j.envres.2023.117536.
[23] W. Yao, T. Yang, D. Liu, F. Liu, L. Zhang, et al., Preparation of LMO@ FC catalysts and degradation of tetracycline by catalytic ozonation, J. Alloys Compd. 1004 (2024) 175848. https://doi.org/10.1016/j.jallcom.2024.175848.
[24] A. Ishino, N. Manyuan, H. Kawasaki, Degradation of Aqueous Tetracycline Hydrochloride through Radical-based Advanced Oxidation Processes Using UV 222 nm/S2O82− and UV 222 nm/H2O2, J. Water Environ. Technol. 22 (2024) 194–203. https://doi.org/10.2965/jwet.24-026.
[25] H. Karimi-Maleh, A. Ayati, R. Davoodi, B. Tanhaei, F. Karimi, et al., Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review, J. Cleaner Prod. 291 (2021) 125880. https://doi.org/10.1016/j.jclepro.2021.125880.
[26] S. Dasineh, M. Akbarian, H.A. Ebrahimi, G. Behbudi, Tacrolimus-loaded chitosan-coated nanostructured lipid carriers: preparation, optimization and physicochemical characterization, Appl. Nanosci. 11 (2021) 1169–1181. https://doi.org/10.1007/s13204-021-01744-4.
[27] A.H. Assari, N. Shaghaghi, S. Yaghoobi, S. Ghaderi, Determining the characteristics of representative volume elements in severely deformed aluminum-matrix composite, Heliyon. 10 (2024) e36489. https://doi.org/S2405-8440(24)12520-0.
[28] P. Sohrabi, E. Oikonomaki, N. Hamdy, C. Kakderi, C. Bevilacqua, Navigating the green transition during the pandemic equitably: a new perspective on technological resilience among Boston neighborhoods facing the shock, International Symposium: New Metropolitan Perspectives, Springer. (2022) 285–308. https://doi.org/10.1007/978-3-031-34211-0_14.
[29] M. Ul-Islam, K.F. Alabbosh, S. Manan, S. Khan, F. Ahmad, M.W. Ullah, Chitosan-based nanostructured biomaterials: Synthesis, properties, and biomedical applications, Adv. Ind. Eng. Polym. Res. 7 (2024) 79–99. https://doi.org/10.1016/j.aiepr.2023.07.002.
[30] D.C. da Silva Alves, B. Healy, L.A.d.A. Pinto, T.R.S.A. Cadaval Jr, C.B. Breslin, Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments, Molecules. 26 (2021) 594. https://doi.org/10.3390/molecules26030594.
[31] M. Rinaudo, Chitin and chitosan: Properties and applications, Prog. Polym. Sci. 31 (2006) 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001.
[32] I. Hamed, F. Özogul, J.M. Regenstein, Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review, Trends Food Sci. Technol. 48 (2016) 40–50. https://doi.org/10.1016/j.tifs.2015.11.007.
[33] S. Kaur, G.S. Dhillon, Recent trends in biological extraction of chitin from marine shell wastes: a review, Crit. Rev. Biotechnol. 35 (2015) 44–61. https://doi.org/10.3109/07388551.2013.798256.
[34] A. Mishra, T. Omoyeni, P.K. Singh, S. Anandakumar, A. Tiwari, Trends in sustainable chitosan-based hydrogel technology for circular biomedical engineering: A review, Int. J. Biol. Macromol. 276 (2024) 133823. https://doi.org/10.1016/j.ijbiomac.2024.133823.
[35] M. Ibrahim, O. Osman, A.A. Mahmoud, Spectroscopic analyses of cellulose and chitosan: FTIR and modeling approach, J. Comput. Theor. Nanosci. 8 (2011) 117–123. https://doi.org/10.1166/jctn.2011.1668.
[36] W. Xia, P. Liu, J. Zhang, J. Chen, Biological activities of chitosan and chitooligosaccharides, Food Hydrocoll. 25 (2011) 170–179. https://doi.org/10.1016/j.foodhyd.2010.03.003.
[37] L.M. Ferreira, A.M. Dos Santos, F.I. Boni, K.C. Dos Santos, L.M.G. Robusti, et al., Design of chitosan-based particle systems: A review of the physicochemical foundations for tailored properties, Carbohydr. Polym. 250 (2020) 116968. https://doi.org/10.1016/j.carbpol.2020.116968.
[38] I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, et al., Chitosan: An overview of its properties and applications, Polymers, 13 (2021) 3256. https://doi.org/10.3390/polym13193256.
[39] F.A. Beni, A. Gholami, A. Ayati, M.N. Shahrak, M. Sillanpää, UV-switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward tetracycline degradation, Micropor. Mesopor. Mater. 303 (2020) 110275. https://doi.org/10.1016/j.micromeso.2020.110275.
[40] V.K. Sharma, N. Johnson, L. Cizmas, T.J. McDonald, H. Kim, A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes, Chemosphere. 150 (2016) 702–714. https://doi.org/10.1016/j.chemosphere.2015.12.084.
[41] A.L.P.F. Caroni, C.R.M. de Lima, M.R. Pereira, J.L.C. Fonseca, The kinetics of adsorption of tetracycline on chitosan particles, J. Colloid Interface Sci. 340 (2009) 182–191. https://doi.org/10.1016/j.jcis.2009.08.016.
[42] A.L.P.F. Caroni, C.R.M. de Lima, M.R. Pereira, J.L.C. Fonseca, Tetracycline adsorption on chitosan: A mechanistic description based on mass uptake and zeta potential measurements, Colloids Surf. B. 100 (2012) 222–228. https://doi.org/10.1016/j.colsurfb.2012.05.024.
[43] S. Zhang, Y. Dong, Z. Yang, W. Yang, J. Wu, C. Dong, Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology, Chem. Eng. J. 304 (2016) 325–334. https://doi.org/10.1016/j.cej.2016.06.087.
[44] N.A. Oladoja, R.O.A. Adelagun, A.L. Ahmad, E.I. Unuabonah, H.A. Bello, Preparation of magnetic, macro-reticulated cross-linked chitosan for tetracycline removal from aquatic systems, Colloids Surf. B. 117 (2014) 51–59. https://doi.org/10.1016/j.colsurfb.2014.02.006.
[45] A.Y. Abdolmaleki, H. Zilouei, S.N. Khorasani, K. Zargoosh, Adsorption of tetracycline from water using glutaraldehyde-crosslinked electrospun nanofibers of chitosan/poly (vinyl alcohol), Water Sci. Technol. 77 (2018) 1324–1335. https://doi.org/10.2166/wst.2018.010.
[46] J. Kang, H. Liu, Y.-M. Zheng, J. Qu, J.P. Chen, Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan, J. Colloid Interface Sci. 344 (2010) 117–125. https://doi.org/10.1016/j.jcis.2009.11.049.
[47] T. Zhang, M. Wang, W. Yang, Z. Yang, Y. Wang, Z. Gu, Synergistic Removal of Copper(II) and Tetracycline from Water Using an Environmentally Friendly Chitosan-Based Flocculant, Ind. Eng. Chem. Res. 53 (2014) 14913–14920. https://doi.org/10.1021/ie502765w.
[48] S. Jia, Z. Yang, W. Yang, T. Zhang, S. Zhang, et al., Removal of Cu(II) and tetracycline using an aromatic rings-functionalized chitosan-based flocculant: Enhanced interaction between the flocculant and the antibiotic, Chem. Eng. J. 283 (2016) 495–503. https://doi.org/10.1016/j.cej.2015.08.003.
[49] B. Huang, Y. Liu, B. Li, S. Liu, G. Zeng, et al., Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-Chitosan/graphene oxide nanocomposite, Carbohydr. Polym., 157 (2017) 576–585. https://doi.org/10.1016/j.carbpol.2016.10.025.
[50] J. Liu, B. Zhou, H. Zhang, J. Ma, B. Mu, W. Zhang, A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution, Bioresour. Technol. 294 (2019) 122152. https://doi.org/10.1016/j.biortech.2019.122152.
[51] J. Ma, Y. Lei, M.A. Khan, F. Wang, Y. Chu, et al., Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite, Int. J. Biol. Macromol. 124 (2019) 557–567. https://doi.org/10.1016/j.ijbiomac.2018.11.235.
[52] Z. Li, Y. Liu, S. Zou, C. Lu, H. Bai, et al., Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film, Chem. Eng. J. 382 (2020) 123008. https://doi.org/10.1016/j.cej.2019.123008.
[53] R. Zhao, T. Ma, S. Zhao, H. Rong, Y. Tian, G. Zhu, Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water, Chem. Eng. J. 382 (2020) 122893. https://doi.org/10.1016/j.cej.2019.122893.
[54] T. Ahamad, M. Naushad, T. Al-Shahrani, N. Al-hokbany, S.M. Alshehri, Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies, Int. J. Biol. Macromol. 147 (2020) 258–267. https://doi.org/10.1016/j.ijbiomac.2020.01.025.
[55] S. Ranjbari, B. Tanhaei, A. Ayati, S. Khadempir, M. Sillanpää, Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study, Int. J. Biol. Macromol. 155 (2020) 421–429. https://doi.org/10.1016/j.ijbiomac.2020.03.188.
[56] B. Turan, G. Sarigol, P. Demircivi, Adsorption of tetracycline antibiotics using metal and clay embedded cross-linked chitosan, Mater. Chem. Phys. 279 (2022) 125781. https://doi.org/10.1016/j.matchemphys.2022.125781.
[57] F. da Silva Bruckmann, C.E. Schnorr, T. da Rosa Salles, F.B. Nunes, L. Baumann, et al., Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent, Polymers. 14 (2022) 4854. https://doi.org/10.3390/polym14224854.
[58] Y. Liu, X. Zhang, L. Zhao, Removal of tetracycline from water using ethylenediamine-modified magnetic chitosan, Water Cycle. 4 (2023) 179–191. https://doi.org/10.1016/j.watcyc.2023.09.001.
[59] X. Guo, Z. Wu, Z. Wang, F. Lin, P. Li, J. Liu, Preparation of Chitosan-Modified Bentonite and Its Adsorption Performance on Tetracycline, ACS Omega. 8 (2023) 19455–19463. https://doi.org/10.1021/acsomega.3c00745.
[60] E. Mosaffa, N.A. Ramsheh, A. Banerjee, H. Ghafuri, Bacterial cellulose microfilament biochar-architectured chitosan/polyethyleneimine beads for enhanced tetracycline and metronidazole adsorption, Int. J. Biol. Macromol. 273 (2024) 132953. https://doi.org/10.1016/j.ijbiomac.2024.132953.
[61] X. Zheng, C. Pan, S. Zheng, Y. Guo, Functionalized magnetic chitosan-based adsorbent for efficient tetracycline removal: Deep investigation of adsorption behaviors and mechanisms, Sep. Purif. Technol. 335 (2024) 126212. https://doi.org/10.1016/j.seppur.2023.126212.
[62] Y. Liu, R. Liu, M. Li, F. Yu, C. He, Removal of pharmaceuticals by novel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite, Carbohydr. Polym. 220 (2019) 141–148. https://doi.org/10.1016/j.carbpol.2019.05.060.
[63] V. Rizzi, D. Lacalamita, J. Gubitosa, P. Fini, A. Petrella, et al., Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films, Sci. Total Environ. 693 (2019) 133620. https://doi.org/10.1016/j.scitotenv.2019.133620.
[64] T. Ahamad, A.A. Chaudhary, M. Naushad, S.M. Alshehri, Fabrication of MnFe2O4 nanoparticles embedded chitosan-diphenylureaformaldehyde resin for the removal of tetracycline from aqueous solution, Int. J. Biol. Macromol. 134 (2019) 180–188. https://doi.org/10.1016/j.ijbiomac.2019.04.204.
[65] V. Rizzi, J. Gubitosa, P. Fini, A. Petrella, R. Romita, et al., A “classic” material for capture and detoxification of emergent contaminants for water purification: The case of tetracycline, Environ. Technol. Innov. 19 (2020) 100812. https://doi.org/10.1016/j.eti.2020.100812.
[66] X. Tang, Y. Huang, Q. He, Y. Wang, H. Zheng, Y. Hu, Adsorption of tetracycline antibiotics by nitrilotriacetic acid modified magnetic chitosan-based microspheres from aqueous solutions, Environ. Technol. Innov. 24 (2021) 101895. https://doi.org/10.1016/j.eti.2021.101895.
[67] C. Shen, M. Wang, M. Xiong, Y. Zhang, C. Xu, et al., Selective adsorption and fluorescence sensing of tetracycline by Zn-mediated chitosan non-woven fabric, J. Colloid Interface Sci. 603 (2021) 418–429. https://doi.org/10.1016/j.jcis.2021.06.091.
[68] S. Erdem, M. Öztekin, Y. Sağ Açıkel, Investigation of tetracycline removal from aqueous solutions using halloysite/chitosan nanocomposites and halloysite nanotubes/alginate hydrogel beads, Environ. Nanotechnol. Monit. Manage. 16 (2021) 100576. https://doi.org/10.1016/j.enmm.2021.100576.
[69] O. Yaqubi, M.H. Tai, D. Mitra, C. Gerente, K.G. Neoh, et al., Adsorptive removal of tetracycline and amoxicillin from aqueous solution by leached carbon black waste and chitosan-carbon composite beads, J. Environ. Chem. Eng. 9 (2021) 104988. https://doi.org/10.1016/j.jece.2020.104988.
[70] Q. Luo, T. Ren, Z. Lei, Y. Huang, Y. Huang, et al., Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline, Chem. Eng. J. 427 (2022) 131738. https://doi.org/10.1016/j.cej.2021.131738.
[71] A. Nasiri, S. Rajabi, A. Amiri, M. Fattahizade, O. Hasani, et al., Adsorption of tetracycline using CuCoFe2O4@Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: Isotherm, kinetic and thermodynamic study, Arab. J. Chem. 15 (2022) 104014. https://doi.org/10.1016/j.arabjc.2022.104014.
[72] K. Valizadeh, A. Bateni, N. Sojoodi, R. Rafiei, A.H. Behroozi, A. Maleki, Preparation and characterization of chitosan-curdlan composite magnetized by zinc ferrite for efficient adsorption of tetracycline antibiotics in water, Int. J. Biol. Macromol. 235 (2023) 123826. https://doi.org/10.1016/j.ijbiomac.2023.123826.
[73] H. Ait Said, H. Elbaza, M. Lahcini, A. Barroug, H. Noukrati, H. Ben Youcef, Development of calcium phosphate-chitosan composites with improved removal capacity toward tetracycline antibiotic: Adsorption and electrokinetic properties, Int. J. Biol. Macromol. 257 (2024) 128610. https://doi.org/10.1016/j.ijbiomac.2023.128610.
[74] X. Zhang, T. Cai, S. Zhang, J. Hou, L. Cheng, et al., Contamination distribution and non-biological removal pathways of typical tetracycline antibiotics in the environment: A review, J. Hazard. Mater. 463 (2024) 132862. https://doi.org/10.1016/j.jhazmat.2023.132862.

Cited By

Crossref Google Scholar
Recent developments in chitosan-based adsorbents for tetracycline removal: A mini-review
Submitted
2024-10-13
Available online
2025-02-28
How to Cite
Pishevar, A., Khanchoupan, M., Afradi, A., Kazemian, F., & Behbudi, G. (2025). Recent developments in chitosan-based adsorbents for tetracycline removal: A mini-review. Synthesis and Sintering, 5(1), 41-51. https://doi.org/10.53063/synsint.2025.51251

Most read articles by the same author(s)