Platinum-based electrochemical sensors for glucose detection: a mini-review

  • Milad Khanchoupan 1
  • Alireza Pishevar 1
  • Donya Souri 2
  • Reza Yusofvand 3
  • Zeynab Dabirifar 4
  • 1 Department of Chemical Engineering, Faculty of Engineering, Imam Hussein University, Tehran, Iran
  • 2 Department of Chemistry, Payame Noor University, East Tehran Branch, Tehran, Iran
  • 3 Department of Exceptional Talents, Faculty of Medicine Sciences, Lorestan University of Medical Sciences , Khorramabad, Iran
  • 4 Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran

Abstract

This mini-review provides a comprehensive overview of platinum-based electrochemical sensors for glucose detection, focusing on recent advancements in material design, fabrication techniques, and the application of single-atom catalysts. Platinum's exceptional electrocatalytic properties and inherent stability have made it a cornerstone material for developing sensitive, selective, and stable glucose sensors. Performance evaluations from the literature reveal sensors with sensitivities exceeding 850 μA/mM cm² and detection limits as low as 3.6 μM. This review examines various approaches to enhancing sensor performance, including the use of different platinum nanostructures (e.g., nanoparticles, nanowires), the incorporation of conductive polymers or metal oxides, and the application of various electrochemical techniques (e.g., amperometry, cyclic voltammetry). Despite these advancements, challenges remain in achieving improved selectivity, stability, and cost-effectiveness. Future research directions include exploring novel platinum-based materials, developing advanced fabrication techniques such as 3D printing, integrating microfluidic platforms, and leveraging single-atom catalysis to enhance sensor performance further. Developing reliable and efficient platinum-based electrochemical glucose sensors is crucial for advancing diabetes management, biomedical research, and point-of-care diagnostics. This review aims to inspire continued research and innovation in this promising field.

Downloads

Download data is not yet available.
Keywords: Platinum-based sensors, Electrochemical detection, Glucose sensors, Biosensor, Single-atom catalysts

References

[1] L.C. Clark Jr, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.
[2] J.H. Halsey Jr, L.C. Clark Jr, Some regional circulatory abnormalities following experimental cerebral infarction, Neurology. 20 (1970) 238–238. https://doi.org/10.1212/WNL.20.3.238.
[3] K. Dhara, J. Stanley, T. Ramachandran, B.G. Nair, T.G. Babu, Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor, Sens. Actuators B. 195 (2014) 197–205. https://doi.org/10.1016/j.snb.2014.01.044.
[4] M. Govindaraj, J. Rajendran, U.G. PK, M.K. Muthukumaran, B. Jayaraman, Graphitic carbon nitride nanosheets decorated with strontium tungstate nanospheres as an electrochemical transducer for sulfamethazine sensing, ACS Appl. Nano Mater. 6 (2023) 930–945. https://doi.org/10.1021/acsanm.2c04322.
[5] A. Pourali, M.R. Rashidi, J. Barar, G. Pavon-Djavid, Y. Omidi, Voltammetric biosensors for analytical detection of cardiac troponin biomarkers in acute myocardial infarction, TrAC, Trends Anal. Chem. 134 (2021) 116123. https://doi.org/10.1016/j.trac.2020.116123.
[6] K. Li, W. Liu, Y. Ni, D. Li, D. Lin, et al., Technical synthesis and biomedical applications of graphene quantum dots, J. Mater. Chem. B. 5 (2017) 4811–4826. https://doi.org/10.1039/C7TB01073G.
[7] H. Chen, S. Zhou, J. Chen, J. Zhou, K. Fan, et al., An integrated plant glucose monitoring system based on microneedle-enabled electrochemical sensor, Biosens. Bioelectron. 248 (2024) 115964. https://doi.org/10.1016/j.bios.2023.115964.
[8] A. Galant, R. Kaufman, J. Wilson, Glucose: Detection and analysis, Food Chem. 188 (2015) 149–160. https://doi.org/10.1016/j.foodchem.2015.04.071.
[9] Q. Niu, C. Bao, X. Cao, C. Liu, H. Wang, W. Lu, Ni–Fe PBA hollow nanocubes as efficient electrode materials for highly sensitive detection of guanine and hydrogen peroxide in human whole saliva, Biosens. Bioelectron. 141 (2019) 111445. https://doi.org/10.1016/j.bios.2019.111445.
[10] A. Sanati, Y. Esmaeili, E. Bidram, L. Shariati, M. Rafienia, et al., Recent advancement in electrode materials and fabrication, microfluidic designs, and self-powered systems for wearable non-invasive electrochemical glucose monitoring, Appl. Mater. Today. 26 (2022) 101350. https://doi.org/10.1016/j.apmt.2021.101350.
[11] T. Saha, R. Del Caño, K. Mahato, E. De la Paz, C. Chen, et al., Wearable electrochemical glucose sensors in diabetes management: a comprehensive review, Chem. Rev. 123 (2023) 7854–7889. https://doi.org/10.1021/acs.chemrev.3c00078.
[12] D. Papandreou, E. Magriplis, M. Abboud, Z. Taha, E. Karavolia, et al., Consumption of raw orange, 100% fresh orange juice, and nectar-sweetened orange juice—effects on blood glucose and insulin levels on healthy subjects, Nutrients. 11 (2019) 2171. https://doi.org/10.3390/nu11092171.
[13] P. Mirmiran, S. Hosseinpour-Niazi, L. Moghaddam-Banaem, M. Lamyian, A. Goshtasebi, F. Azizi, Inverse relation between fruit and vegetable intake and the risk of gestational diabetes mellitus, Int. J. Vitam. Nutr. Res. 89 (2019) 37–44. https://doi.org/10.1024/0300-9831/a000475.
[14] H. Teymourian, A. Barfidokht, J. Wang, Electrochemical glucose sensors in diabetes management: an updated review (2010–2020), Chem. Soc. Rev. 49 (2020) 7671–7709. https://doi.org/10.1039/D0CS00304B.
[15] C.H. Chou, J.C. Chen, C.C. Tai, I.W. Sun, J.M. Zen, A Nonenzymatic Glucose Sensor Using Nanoporous Platinum Electrodes Prepared by Electrochemical Alloying/Dealloying in a Water‐Insensitive Zinc Chloride‐1‐Ethyl‐3‐Methylimidazolium Chloride Ionic Liquid, Electroanalysis. 20 (2008) 771–775. https://doi.org/10.1002/elan.200704102.
[16] A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management, Chem. Rev. 108 (2008) 2482–2505. https://doi.org/10.1021/cr068069y.
[17] H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.H. Kim, Enzyme‐based glucose sensor: from invasive to wearable device, Adv. Healthcare Mater. 7 (2018) 1701150. https://doi.org/10.1002/adhm.201701150.
[18] J. Okuda-Shimazaki, H. Yoshida, K. Sode, FAD dependent glucose dehydrogenases–Discovery and engineering of representative glucose sensing enzymes, Bioelectrochemistry. 132 (2020) 107414. https://doi.org/10.1016/j.bioelechem.2019.107414.
[19] G. Emir, Y. Dilgin, S. Şahin, C. Akgul, A self-powered enzymatic glucose sensor utilizing bimetallic nanoparticle composites modified pencil graphite electrodes as cathode, Appl. Biochem. Biotechnol. (2024) 1–16. https://doi.org/10.1007/s12010-024-05068-1.
[20] S.S. Nemati, G. Dehghan, S. Rashtbari, T.N. Tan, A. Khataee, Enzyme-based and enzyme-free metal-based glucose biosensors: Classification and recent advances, Microchem. J. 193 (2023) 109038. https://doi.org/10.1016/j.microc.2023.109038.
[21] Q.-Q. Yang, S.-B. He, Y.-L. Zhang, M. Li, X.-H. You, et al., A colorimetric sensing strategy based on chitosan-stabilized platinum nanoparticles for quick detection of α-glucosidase activity and inhibitor screening, Anal. Bioanal. Chem. (2024) 1–10. https://doi.org/10.1007/s00216-024-05198-9.
[22] H. Yu, J. Yu, L. Li, Y. Zhang, S. Xin, et al., Recent progress of the practical applications of the platinum nanoparticle-based electrochemistry biosensors, Front. Chem. 9 (2021) 677876. https://doi.org/10.3389/fchem.2021.677876.
[23] B. Wu, H. Xu, Y. Shi, Z. Yao, J. Yu, et al., Microelectrode glucose biosensor based on nanoporous platinum/graphene oxide nanostructure for rapid glucose detection of tomato and cucumber fruits, Food Qual. Saf. 6 (2022) fyab030. https://doi.org/10.1093/fqsafe/fyab030.
[24] M.H. Hassan, C. Vyas, B. Grieve, P. Bartolo, Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing, Sensors. 21 (2021) 4672. https://doi.org/10.3390/s21144672.
[25] J.D. Newman, A.P.F. Turner, Home blood glucose biosensors: a commercial perspective, Biosens. Bioelectron. 20 (2005) 2435–2453. https://doi.org/10.1016/j.bios.2004.11.012.
[26] P. D'Orazio, Biosensors in clinical chemistry, Clin. Chim. Acta. 334 (2003) 41–69. https://doi.org/10.1016/S0009-8981(03)00241-9.
[27] V.B. Juska, M.E. Pemble, A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems, Sensors. 20 (2020) 6013. https://doi.org/10.3390/s20216013.
[28] E.-H. Yoo, S.-Y. Lee, Glucose Biosensors: An Overview of Use in Clinical Practice, Sensors. 10 (2010) 4558–4576. https://doi.org/10.3390/s100504558.
[29] D. Matthews, E. Bown, A. Watson, R. Holman, J. Steemson, et al., Pen-sized digital 30-second blood glucose meter, Lancet. 329 (1987) 778–779. https://doi.org/10.1016/s0140-6736(87)92802-9.
[30] H.H. Ipekci, O. Kazak, A. Tor, A. Uzunoglu, Tuning active sites of N-doped porous carbon catalysts derived from vinasse for high-performance electrochemical sensing, Part. Sci. Technol. 41 (2023) 93–104. https://doi.org/10.1080/02726351.2022.2056724.
[31] A.F. Quintero-Jaime, F. Conzuelo, W. Schuhmann, D. Cazorla-Amorós, E. Morallón, Multi‐wall carbon nanotubes electrochemically modified with phosphorus and nitrogen functionalities as a basis for bioelectrodes with improved performance, Electrochim. Acta. 387 (2021) 138530. https://doi.org/10.1016/j.electacta.2021.138530.
[32] A.F. Quintero-Jaime, F. Conzuelo, D. Cazorla-Amorós, E. Morallón, Pyrroloquinoline quinone-dependent glucose dehydrogenase bioelectrodes based on one-step electrochemical entrapment over single-wall carbon nanotubes, Talanta. 232 (2021) 122386. https://doi.org/10.1016/j.talanta.2021.122386.
[33] B. Xue, K. Li, L. Feng, J. Lu, L. Zhang, Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor, Electrochim. Acta. 239 (2017) 36–44. https://doi.org/10.1016/j.electacta.2017.04.005.
[34] D. Jiang, Z. Chu, J. Peng, J. Luo, Y. Mao, et al., One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection, Electrochim. Acta. 270 (2018) 147–155. https://doi.org/10.1016/j.electacta.2018.03.066.
[35] D. Thatikayala, D. Ponnamma, K.K. Sadasivuni, J.-J. Cabibihan, A.K. Al-Ali, et al., Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2, Biosensors. 10 (2020) 151. https://doi.org/10.3390/bios10110151.
[36] M. Wei, Y. Qiao, H. Zhao, J. Liang, T. Li, et al., Electrochemical non-enzymatic glucose sensors: recent progress and perspectives, Chem. Commun. 56 (2020) 14553–14569. https://doi.org/10.1039/D0CC05650B.
[37] C.W. Lee, J.M. Suh, H.W. Jang, Chemical sensors based on two-dimensional (2D) materials for selective detection of ions and molecules in liquid, Front. Chem. 7 (2019) 708. https://doi.org/10.3389/fchem.2019.00708.
[38] V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, et al., Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications, Chem. Rev. 112 (2012) 6156–6214. https://doi.org/10.1021/cr3000412.
[39] P.G. Moses, J.J. Mortensen, B.I. Lundqvist, J.K. Nørskov, Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2, J. Chem. Phys. 130 (2009) 104709. https://doi.org/10.1063/1.3086040.
[40] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, et al., Electronic confinement and coherence in patterned epitaxial graphene, Science. 312 (2006) 1191–1196. https://doi.org/10.1126/science.1125925.
[41] Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing, ACS Nano. 4 (2010) 1790–1798. https://doi.org/10.1021/nn100315s.
[42] J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode, Anal. Chim. Acta. 709 (2012) 47–53. https://doi.org/10.1016/j.aca.2011.10.025.
[43] Y.H. Kwak, D.S. Choi, Y.N. Kim, H. Kim, D.H. Yoon, et al., Flexible glucose sensor using CVD-grown graphene-based field effect transistor, Biosens. Bioelectron. 37 (2012) 82–87. https://doi.org/10.1016/j.bios.2012.04.042.
[44] O. Parlak, A. İncel, L. Uzun, A.P.F. Turner, A. Tiwari, Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors, Biosens. Bioelectron. 89 (2017) 545–550. https://doi.org/10.1016/j.bios.2016.03.024.
[45] S. Su, C. Zhang, L. Yuwen, X. Liu, L. Wang, et al., Uniform Au@Pt core–shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction, Nanoscale. 8 (2016) 602–608. https://doi.org/10.1039/C5NR06077J.
[46] J. Huang, Y. He, J. Jin, Y. Li, Z. Dong, R. Li, A novel glucose sensor based on MoS2 nanosheet functionalized with Ni nanoparticles, Electrochim. Acta. 136 (2014) 41–46. https://doi.org/10.1016/j.electacta.2014.05.070.
[47] X. Lin, Y. Ni, S. Kokot, Electrochemical and bio-sensing platform based on a novel 3D Cu nano-flowers/layered MoS2 composite, Biosens. Bioelectron. 79 (2016) 685–692. https://doi.org/10.1016/j.bios.2015.12.072.
[48] X. Zhong, H. Yang, S. Guo, S. Li, G. Gou, et al., In situ growth of Ni–Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation, J. Mater. Chem. A. 22 (2012) 13925–13927. https://doi.org/10.1039/C2JM32427J.
[49] Z. Sun, Q. Zhao, G. Zhang, Y. Li, G. Zhang, et al., Exfoliated MoS2 supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities, RSC Adv. 5 (2015) 10352–10357. https://doi.org/10.1039/C4RA13575J.
[50] J. Li, Z. Yang, Y. Tang, Y. Zhang, X. Hu, Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing, Biosens. Bioelectron. 41 (2013) 698–703. https://doi.org/10.1016/j.bios.2012.09.059.
[51] S. Narla, M. Jones, K. Hermayer, Y. Zhu, Critical care glucose point-of-care testing, Advances in Clinical Chemistry, Elsevier. (2016) 97–121. https://doi.org/10.1016/bs.acc.2016.05.002.
[52] S. Ferri, K. Kojima, K. Sode, Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes, J. Diabetes Sci. Technol. 5 (2011) 1068–1076. https://doi.org/10.1177/193229681100500507.
[53] A. Harper, M.R. Anderson, Electrochemical glucose sensors—developments using electrostatic assembly and carbon nanotubes for biosensor construction, Sensors. 10 (2010) 8248–8274. https://doi.org/10.3390/s100908248.
[54] R. Wilson, A. Turner, Glucose oxidase: an ideal enzyme, Biosens. Bioelectron. 7 (1992) 165–185. https://doi.org/10.1016/0956-5663(92)87013-F.
[55] J. Raba, H.A. Mottola, Glucose oxidase as an analytical reagent, Crit. Rev. Anal. Chem. 25 (1995) 1–42. https://doi.org/10.1080/10408349508050556.
[56] J. John, S.J. Crennell, D.W. Hough, M.J. Danson, G.L. Taylor, The crystal structure of glucose dehydrogenase from Thermoplasma acidophilum, Structure. 2 (1994) 385–393. https://doi.org/10.1016/s0969-2126(00)00040-x.
[57] S. Bagheri, N.M. Julkapli, Modified iron oxide nanomaterials: functionalization and application, J. Magn. Magn. Mater. 416 (2016) 117–133. https://doi.org/10.1016/j.jmmm.2016.05.042.
[58] V. Guzsvány, J. Anojčić, E. Radulović, O. Vajdle, I. Stanković, et al., Screen-printed enzymatic glucose biosensor based on a composite made from multiwalled carbon nanotubes and palladium containing particles, Microchim. Acta. 184 (2017) 1987–1996. https://doi.org/10.1007/s00604-017-2188-1.
[59] C. He, M. Xie, F. Hong, X. Chai, H. Mi, et al., A highly sensitive glucose biosensor based on gold nanoparticles/bovine serum albumin/Fe3O4 biocomposite nanoparticles, Electrochim. Acta. 222 (2016) 1709–1715. https://doi.org/10.1016/j.electacta.2016.11.162.
[60] P. Rafighi, M. Tavahodi, B. Haghighi, Fabrication of a third-generation glucose biosensor using graphene-polyethyleneimine-gold nanoparticles hybrid, Sens. Actuators B. 232 (2016) 454–461. https://doi.org/10.1016/j.snb.2016.03.147.
[61] P.K. Robinson, Enzymes: principles and biotechnological applications, Essays Biochem. 59 (2015) 1. https://doi.org/10.1042/bse0590001.
[62] N. Mohamad Nor, N.S. Ridhuan, K. Abdul Razak, Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode, Biosensors. 12 (2022) 1136. https://doi.org/10.3390/bios12121136.
[63] S.A. Pullano, M. Greco, M.G. Bianco, D. Foti, A. Brunetti, A.S. Fiorillo, Glucose biosensors in clinical practice: Principles, limits and perspectives of currently used devices, Theranostics. 12 (2022) 493. https://doi.org/10.7150/thno.64035.
[64] C. Sabu, T. Henna, V. Raphey, K. Nivitha, K. Pramod, Advanced biosensors for glucose and insulin, Biosens. Bioelectron. 141 (2019) 111201. https://doi.org/10.1016/j.bios.2019.03.034.
[65] J. Wang, N.V. Myung, M. Yun, H.G. Monbouquette, Glucose oxidase entrapped in polypyrrole on high-surface-area Pt electrodes: a model platform for sensitive electroenzymatic biosensors, J. Electroanal. Chem. 575 (2005) 139–146. https://doi.org/10.1016/j.jelechem.2004.08.023.
[66] H. Zhu, Y. Zhu, X. Yang, C. Li, Multiwalled carbon nanotubes incorporated with dendrimer encapsulated with Pt nanoparticles: an attractive material for sensitive biosensors, Chem. Lett. 35 (2006) 326–327. https://doi.org/10.1246/cl.2006.326.
[67] A. Guiseppi-Elie, C. Lei, R.H. Baughman, Direct electron transfer of glucose oxidase on carbon nanotubes, Nanotechnology. 13 (2002) 559. https://doi.org/10.1088/0957-4484/13/5/303.
[68] B.-Y. Wu, S.-H. Hou, F. Yin, Z.-X. Zhao, Y.-Y. Wang, et al., Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode, Biosens. Bioelectron. 22 (2007) 2854–2860. https://doi.org/10.1016/j.bios.2006.11.028.
[69] Z. Wen, S. Ci, J. Li, Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors, J. Phys. Chem. C. 113 (2009) 13482–13487. https://doi.org/10.1021/jp902830z.
[70] M. Yang, F. Qu, Y. Lu, Y. He, G. Shen, R. Yu, Platinum nanowire nanoelectrode array for the fabrication of biosensors, Biomaterials. 27 (2006) 5944–5950. https://doi.org/10.1016/j.biomaterials.2006.08.014.
[71] C. Feng, G. Xu, H. Liu, J. Lv, Z. Zheng, Y. Wu, Facile fabrication of Pt/graphene/TiO2 NTAs based enzyme sensor for glucose detection, J. Electrochem. Soc. 161 (2013) B1. https://doi.org/10.1149/2.025401jes.
[72] B. Akkaya, B. Çakiroğlu, M. Özacar, Tannic Acid-Reduced Graphene Oxide Deposited with Pt Nanoparticles for Switchable Bioelectronics and Biosensors Based on Direct Electrochemistry, ACS Sustainable Chem. Eng. 6 (2018) 3805–3814. https://doi.org/10.1021/acssuschemeng.7b04164.
[73] H. Yang, Q. Shi, Y. Song, X. Li, C. Zhu, et al., Glucose biosensor based on mesoporous Pt nanotubes, J. Electrochem. Soc. 164 (2017) B230. https://doi.org/10.1149/2.1421706jes.
[74] M. Zhao, Z. Li, Z. Han, K. Wang, Y. Zhou, et al., Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor, Biosens. Bioelectron. 49 (2013) 318–322. https://doi.org/10.1016/j.bios.2013.05.017.
[75] C. Zhu, D. Du, A. Eychmüller, Y. Lin, Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry, Chem. Rev. 115 (2015) 8896–8943. https://doi.org/10.1021/acs.chemrev.5b00255.
[76] I. Strauss, A. Mundstock, M. Treger, K. Lange, S. Hwang, et al., Metal–Organic Framework Co-MOF-74-Based Host–Guest Composites for Resistive Gas Sensing, ACS Appl. Mater. Interfaces. 11 (2019) 14175–14181. https://doi.org/10.1021/acsami.8b22002.
[77] M.B. Majewski, A.J. Howarth, P. Li, M.R. Wasielewski, J.T. Hupp, O.K. Farha, Enzyme encapsulation in metal–organic frameworks for applications in catalysis, CrystEngComm. 19 (2017) 4082–4091. https://doi.org/10.1039/C7CE00022G.
[78] Y. Hu, L. Dai, D. Liu, W. Du, Y. Wang, Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs), Renewable Sustainable Energy Rev. 91 (2018) 793–801. https://doi.org/10.1016/j.rser.2018.04.103.
[79] X.-C. Xie, K.-J. Huang, X. Wu, Metal–organic framework derived hollow materials for electrochemical energy storage, J. Mater. Chem. A. 6 (2018) 6754–6771. https://doi.org/10.1039/C8TA00612A.
[80] G. Luo, H. Xie, Y. Niu, J. Liu, Y. Huang, et al., Electrochemical myoglobin biosensor based on magnesium metal-organic frameworks and gold nanoparticles composite modified electrode, Int. J. Electrochem. Sci. 14 (2019) 2405–2413. https://doi.org/10.20964/2019.03.41.
[81] D. Uzak, A. Atiroğlu, V. Atiroğlu, B. Çakıroğlu, M. Özacar, Reduced graphene oxide/Pt nanoparticles/Zn‐MOF‐74 nanomaterial for a glucose biosensor construction, Electroanalysis. 32 (2020) 510–519. https://doi.org/10.1002/elan.201900599.
[82] A. Şavk, H. Aydın, K. Cellat, F. Şen, A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite, J. Mol. Liq. 300 (2020) 112355. https://doi.org/10.1016/j.molliq.2019.112355.
[83] Y. Liu, Y. Ding, Y. Zhang, Y. Lei, Pt–Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment, Sens. Actuators B. 171 (2012) 954–961. https://doi.org/10.1016/j.snb.2012.06.009.
[84] S. Phetsang, J. Jakmunee, P. Mungkornasawakul, R. Laocharoensuk, K. Ounnunkad, Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode, Bioelectrochemistry. 127 (2019) 125–135. https://doi.org/10.1016/j.bioelechem.2019.01.008.
[85] R. Ayranci, B. Demirkan, B. Sen, A. Şavk, M. Ak, F. Şen, Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection, Mater. Sci. Eng. C. 99 (2019) 951–956. https://doi.org/10.1016/j.msec.2019.02.040.
[86] F. Jiménez-Fiérrez, M.I. González-Sánchez, R. Jiménez-Pérez, J. Iniesta, E. Valero, Glucose Biosensor Based on Disposable Activated Carbon Electrodes Modified with Platinum Nanoparticles Electrodeposited on Poly(Azure A), Sensors. 20 (2020) 4489. https://doi.org/10.3390/s20164489.
[87] W. McCormick, D. McCrudden, Development of a highly nanoporous platinum screen-printed electrode and its application in glucose sensing, J. Electroanal. Chem. 860 (2020) 113912. https://doi.org/10.1016/j.jelechem.2020.113912.
[88] T.-P. Wang, B.-D. Hong, Y.-M. Lin, C.-L. Lee, Catalysis of the D-glucose Oxidation Reaction Using Octahedral, Rhombic Dodecahedral, and Cubic Pd@Pt Core-Shell Nanoparticles, Appl. Catal. B. 260 (2020) 118140. https://doi.org/10.1016/j.apcatb.2019.118140.
[89] J. Madden, C. Barrett, F.R. Laffir, M. Thompson, P. Galvin, A. O’ Riordan, On-Chip Glucose Detection Based on Glucose Oxidase Immobilized on a Platinum-Modified, Gold Microband Electrode, Biosensors. 11 (2021) 249. https://doi.org/10.3390/bios11080249.
[90] F.-Y. Lin, P.-Y. Lee, T.-F. Chu, C.-I. Peng, G.-J. Wang, Neutral Nonenzymatic Glucose Biosensors Based on Electrochemically Deposited Pt/Au Nanoalloy Electrodes, Int. J. Nanomed. 16 (2021) 5551–5563. https://doi.org/10.2147/IJN.S321480.
[91] R. Feng, Y. Chu, X. Wang, Q. Wu, F. Tang, A long-term stable and flexible glucose sensor coated with poly(ethylene glycol)-modified polyurethane, J. Electroanal. Chem. 895 (2021) 115518. https://doi.org/10.1016/j.jelechem.2021.115518.
[92] N.S. Ridhuan, N. Mohamad Nor, K. Abdul Razak, Z. Lockman, N.D. Zakaria, ITO electrode modified with Pt nanodendrites-decorated ZnO nanorods for enzymatic glucose sensor, J. Solid State Electrochem. 25 (2021) 1065–1072. https://doi.org/10.1007/s10008-020-04884-9.
[93] S.-S. Wang, W.-J. Qiu, T.-P. Wang, C.-L. Lee, Tuning structures of Pt shells on Pd nanocubes as neutral glucose oxidation catalysts and sensors, Appl. Surf. Sci. 605 (2022) 154670. https://doi.org/10.1016/j.apsusc.2022.154670.
[94] R. Wang, X. Liu, Y. Zhao, J. Qin, H. Xu, et al., Novel electrochemical non-enzymatic glucose sensor based on 3D Au@Pt core–shell nanoparticles decorated graphene oxide/multi-walled carbon nanotubes composite, Microchem. J. 174 (2022) 107061. https://doi.org/10.1016/j.microc.2021.107061.
[95] B. Long, Y. Zhao, P. Cao, W. Wei, Y. Mo, et al., Single-Atom Pt Boosting Electrochemical Nonenzymatic Glucose Sensing on Ni(OH)2/N-Doped Graphene, Anal. Chem. 94 (2022) 1919–1924. https://doi.org/10.1021/acs.analchem.1c04912.
[96] Q.-F. Li, X. Chen, H. Wang, M. Liu, H.-L. Peng, Pt/MXene-Based Flexible Wearable Non-Enzymatic Electrochemical Sensor for Continuous Glucose Detection in Sweat, ACS Appl. Mater. Interfaces. 15 (2023) 13290–13298. https://doi.org/10.1021/acsami.2c20543.
[97] Y. Zhao, Y. Jiang, Y. Mo, Y. Zhai, J. Liu, et al., Boosting electrochemical catalysis and nonenzymatic sensing toward glucose by Single‐Atom PT supported on Cu@ CuO Core–Shell nanowires, Small. 19 (2023) 2207240. https://doi.org/10.1002/smll.202207240.
[98] Y. Wang, H. Guo, M. Yuan, J. Yu, Z. Wang, X. Chen, One-step laser synthesis platinum nanostructured 3D porous graphene: A flexible dual-functional electrochemical biosensor for glucose and pH detection in human perspiration, Talanta. 257 (2023) 124362. https://doi.org/10.1016/j.talanta.2023.124362.
[99] S. Gengan, R.M. Gnanamuthu, S. Sankaranarayanan, V.M. Reddy, B.C. Marepally, R.K. Biroju, Electrochemical modified Pt nanoflower @ rGO for non- enzymatic electrochemical sensing of glucose, Sens. Actuators A. 353 (2023) 114232. https://doi.org/10.1016/j.sna.2023.114232.
[100] W. Han, X. Zhang, R. Wang, T. Bai, H. Liu, et al., Non-enzymatic electrochemical glucose sensor based on Pt2Pd1 alloy nanocrystals with high-index facets, J. Alloys Compd. 936 (2023) 168287. https://doi.org/10.1016/j.jallcom.2022.168287.
[101] Z. Wang, J. Wu, W. Wei, M. Gao, Y.-W. Zhang, et al., Pt single-atom electrocatalysts at Cu2O nanowires for boosting electrochemical sensing toward glucose, Chem. Eng. J. 495 (2024) 153564. https://doi.org/10.1016/j.cej.2024.153564.
[102] Y. Zhang, X. Zeng, Y. Liu, C. Wang, C. Jin, et al., Pt Single-Atom Catalyst on Co3O4 for the Electrocatalytic Detection of Glucose, ACS Appl. Nano Mater. 7 (2024) 13693–13700. https://doi.org/10.1021/acsanm.4c02227.
[103] M.A. Özbek, A. Yaşar, S. Çete, E. Er, N. Erk, A novel biosensor based on graphene/platinum nanoparticles/Nafion composites for determination of glucose, J. Solid State Electrochem. 25 (2021) 1601–1610. https://doi.org/10.1007/s10008-021-04939-5.

Cited By

Crossref Google Scholar
Platinum-based electrochemical sensors for glucose detection: a mini-review
Submitted
2024-10-15
Available online
2024-12-22
How to Cite
Khanchoupan, M., Pishevar, A., Souri, D., Yusofvand, R., & Dabirifar, Z. (2024). Platinum-based electrochemical sensors for glucose detection: a mini-review. Synthesis and Sintering, 4(4), 292-303. https://doi.org/10.53063/synsint.2024.44252

Most read articles by the same author(s)