Recent advances in synthesis, properties, and applications of nano-zero valent iron: A promising material for environmental remediation

  • Mohammad Ghaffarzadeh 1
  • Reza Rasouli Khorjestan 2
  • Alireza Afradi 3
  • Aria Bandehpey 4
  • Gity Behbudi 5
  • 1 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
  • 2 Department of Chemistry, Payame Noor University, Tabriz, Iran
  • 3 Department of Mining and Geology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
  • 4 Faculty of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
  • 5 Department of Chemical Engineering, University of Guilan, Rasht, 1841, Iran

Abstract

Nano-zero valent iron (nZVI) is increasingly recognized as a promising material for environmental remediation because of its high reactivity and efficient removal of various contaminants. This comprehensive review delves into the unique structure, synthesis techniques, and characterization methods of nZVI. It explores real-world applications of nZVI in remediating contaminated water, showcasing its efficacy in eliminating pollutants like heavy metals, organic compounds, and radionuclides. Studies suggest that nZVI composites demonstrate superior adsorption properties for heavy metals and pollutants with their distinctive core-shell structures and surface functional groups. Unlike conventional materials, nZVI composites exhibit heightened adsorption capabilities and easier retrieval from solutions, making them more effective in heavy metal removal. Moreover, the environmental ramifications of nZVI synthesis methods are critically analyzed, considering factors such as energy consumption and potential secondary pollution. The review underscores the significance of ongoing research and development to optimize nZVI's performance and reduce its environmental impact, thereby bolstering its role in promoting a sustainable environment.

Downloads

Download data is not yet available.
Keywords: Nano-zero valent iron (nZVI), Environmental remediation, Contaminant removal, Organic compounds, Heavy metals, Sustainable environment

References

[1] Y. Sadeghipour, F. Mojoudi, G. Behbudi, Modification and Improvement of Fe3O4-Embedded Poly (thiophene) Core/Shell Nanoparticles for Cadmium Removal by Cloud Point Extraction, Adv. Appl. NanoBio-Technol. 1 (2020) 20–27. https://doi.org/10.47277/AANBT/1(1)27.
[2] F. Gharahdaghigharahtappeh, Extent of Nanotechnology and Nano filters in Nano Food production, MSc Food Science and Technology, Jihad Agriculture management of Noshahr, Iran. (2014). https://doi.org/10.5281/zenodo.8256855.
[3] F. Gharahdaghigharahtappeh, H. Ahari, Types of biodegradable nanocomposites in food packaging, 4th International Congress of Food Science and Industry, Agriculture and Food Security, Tehran, Iran. (2022). https://doi.org/10.5281/zenodo.8256628.
[4] A. Hashemi, J. Jang, S. Hosseini-Hashemi, Smart active vibration control system of a rotary structure using piezoelectric materials, Sensors. 22 (2022) 5691. https://doi.org/10.3390/s22155691.
[5] P. Sohrabi, E. Oikonomaki, N. Hamdy, C. Kakderi, C. Bevilacqua, Navigating the green transition during the pandemic equitably: a new perspective on technological resilience among Boston neighborhoods facing the shock, International Symposium: New Metropolitan Perspectives, Springer. (2022) 285–308. https://doi.org/10.1007/978-3-031-34211-0_14.
[6] J. Jortner, C. Rao, Nanostructured advanced materials. Perspectives and directions, Pure Appl. Chem. 74 (2002) 1491–1506. https://doi.org/10.1351/pac200274091491.
[7] R. Mukherjee, R. Kumar, A. Sinha, Y. Lama, A.K. Saha, A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation, Crit. Rev. Environ. Sci. Technol. 46 (2016) 443–466. https://doi.org/10.1080/10643389.2015.1103832.
[8] L. Di, X. Chen, J. Lu, Y. Zhou, Y. Zhou, Removal of heavy metals in water using nano zero-valent iron composites: A review, J. Water Process Eng. 53 (2023) 103913. https://doi.org/10.1016/j.jwpe.2023.103913.
[9] W. Yan, H.-L. Lien, B.E. Koel, W.-x. Zhang, Iron nanoparticles for environmental clean-up: recent developments and future outlook, Environ. Sci. 15 (2013) 63–77. https://doi.org/10.1039/C2EM30691C.
[10] I. Saffarian, G.R. Atefatdoost, S.A. Hosseini, L. Shahryari, Experimental research on the behavior of circular SFRC columns reinforced longitudinally by GFRP rebars, Comput. Concr. 31 (2023) 513–525. https://doi.org/10.12989/cac.2023.31.6.513.
[11] I. Saffarian, G.R. Atefatdoost, S.A. Hosseini, L. Shahryari, Experimental and numerical research on the behavior of steel-fiber-reinforced-concrete columns with GFRP rebars under axial loading, Struct. Eng. Mech. 86 (2023) 399–415. https://doi.org/10.12989/sem.2023.86.3.399.
[12] H.-J. Lu, J.-K. Wang, S. Ferguson, T. Wang, Y. Bao, H.-x. Hao, Mechanism, synthesis and modification of nano zerovalent iron in water treatment, Nanoscale. 8 (2016) 9962–9975. https://doi.org/10.1039/C6NR00740F.
[13] M. Nazarpour, P. Monfaredi, A.S. Moghadam, Experimental evaluation of hollow-core wall orientation in steel moment frame, PCI Journal. 64 (2019) 92–103. https://doi.org/10.15554/pcij64.3-02.
[14] R. Grillo, A.H. Rosa, L.F. Fraceto, Engineered nanoparticles and organic matter: A review of the state-of-the-art, Chemosphere. 119 (2015) 608–619. https://doi.org/10.1016/j.chemosphere.2014.07.049.
[15] M. Solaimanian, S. Milander, M. Tofighian, Evaluating Testing, Protocols and Limits for Asphalt Rejuvenating Agents in PA, Thomas D. Larson Pennsylvania Transportation Institute, The Pennsylvania State University. (2022).
[16] A.V.B. Reddy, Z. Yusop, J. Jaafar, Y.V.M. Reddy, A.B. Aris, et al., Recent progress on Fe-based nanoparticles: synthesis, properties, characterization and environmental applications, J. Environ. Chem. Eng. 4 (2016) 3537–3553. https://doi.org/10.1016/j.jece.2016.07.035.
[17] D.H. Phillips, T.V. Nooten, L. Bastiaens, M. Russell, K. Dickson, et al., Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater, Environ. Sci. Technol. 44 (2010) 3861–3869. https://doi.org/10.1021/es902737t.
[18] H.H. Soufi, D. Tran, S. Louca, Microbiology of Big Soda Lake, a multi‐extreme meromictic volcanic crater lake in the Nevada desert, Environ. Microbiol. 26 (2024) e16578. https://doi.org/10.1111/1462-2920.16578.
[19] Y. Mu, F. Jia, Z. Ai, L. Zhang, Iron oxide shell mediated environmental remediation properties of nano zero-valent iron, Environ. Sci: Nano. 4 (2017) 27–45. https://doi.org/10.1039/C6EN00398B.
[20] K. Li, J. Li, F. Qin, H. Dong, W. Wang, et al., Nano zero valent iron in the 21st century: A data-driven visualization and analysis of research topics and trends, J. Cleaner Prod. 415 (2023) 137812. https://doi.org/10.1016/j.jclepro.2023.137812.
[21] S. Ritchie, Enhanced dechlorination of trichloroethylene by membrane-supported iron and bimetallic nanoparticles, Nanotechnology Applications for Clean Water, Elsevier. (2014) 351–367. https://doi.org/10.1016/B978-1-4557-3116-9.00023-8.
[22] Y. Wang, H. Zhao, G. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants, Appl. Catal. B. 164 (2015) 396–406. https://doi.org/10.1016/j.apcatb.2014.09.047.
[23] W.-J. Liu, T.-T. Qian, H. Jiang, Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants, Chem. Eng. J. 236 (2014) 448–463. https://doi.org/10.1016/j.cej.2013.10.062.
[24] F. Liu, J. Yang, J. Zuo, D. Ma, L. Gan, et al., Graphene-supported nanoscale zero-valent iron: Removal of phosphorus from aqueous solution and mechanistic study, J. Environ. Sci. 26 (2014) 1751–1762. https://doi.org/10.1016/j.jes.2014.06.016.
[25] C. Kim, J.-Y. Ahn, T.Y. Kim, W.S. Shin, I. Hwang, Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI, Environ. Sci. Technol. 52 (2018) 3625–3633. https://doi.org/10.1021/acs.est.7b05847.
[26] P.-J. Chen, W.-L. Wu, K.C.-W. Wu, The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish, Water Res. 47 (2013) 3899–3909. https://doi.org/10.1016/j.watres.2012.12.043.
[27] T. Tosco, C. Bianco, R. Sethi, Taking Nanothechnological remediation processes from Lab scale to end user applications for the restoration of a clean environment, NanoRem 2016b, project. (2016).
[28] W. Stumm, J. Morgan, Aquatic Chemistry Third Edition, John Wiley & Sons, New York, NY. (1996).
[29] C. Wang, D.R. Baer, J.E. Amonette, M.H. Engelhard, J. Antony, Y. Qiang, Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles, J. Am. Chem. Soc. 131 (2009) 8824–8832. https://doi.org/10.1021/ja900353f.
[30] S. Wang, M. Zhao, M. Zhou, Y.C. Li, J. Wang, et al., Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review, J. Hazard. Mater. 373 (2019) 820–834. https://doi.org/10.1016/j.jhazmat.2019.03.080.
[31] W. Yan, A.A. Herzing, C.J. Kiely, W.-x. Zhang, Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water, J. Contam. Hydrol. 118 (2010) 96–104. https://doi.org/10.1016/j.jconhyd.2010.09.003.
[32] X.-Q. Li, D.W. Elliott, W.-X. Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants, materials and engineering aspects, Particulate Systems in Nano- and Biotechnologies, CRC Press. (2008) 309–330. https://doi.org/10.1201/9781420007534.
[33] M.M. Tarekegn, A.M. Hiruy, A.H. Dekebo, Correction: Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions, RSC Adv. 11 (2021) 27084–27084. https://doi.org/10.1039/D1RA90135D.
[34] E. Jafarzadeh, A. Bohluly, A. Kabiri-Samani, S. Mansourzadeh, A study on the performance of circular and rectangular submerged breakwaters using nun-uniform FGVT method, Coast. Eng. 65 (2023) 234–255. https://doi.org/10.1080/21664250.2023.2170688.
[35] P. Monfaredi, M. Nazarpour, A.S. Moghadam, Influence of hollow-core wall panels on the cyclic behavior of different types of steel framing systems, PCI Journal. 66 (2021) 39–53. https://doi.org/10.15554/pcij66.5-02.
[36] A. Hasani, S. Dorafshan, Transforming construction? Evaluation of the state of structural 3D concrete printing in research and practice, Constr. Build. Mater. 438 (2024) 137027. https://doi.org/10.1016/j.conbuildmat.2024.137027.
[37] R.A. Crane, T.B. Scott, Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology, J. Hazard. Mater. 211–212 (2012) 112–125. https://doi.org/10.1016/j.jhazmat.2011.11.073.
[38] F.S. Nahaei, A. Rostami, P. Mirtaheri, Quantum Dot Reflective Semiconductor Optical Amplifiers: Optical Pumping Compared with Electrical Pumping, Nanomaterials. 12 (2022) 2143. https://doi.org/10.3390/nano12132143.
[39] N. Nafissi, N. Heiranizadeh, A. Shirinzadeh-Dastgiri, M. Vakili-Ojarood, A. Naseri, et al., The Application of Artificial Intelligence in Breast Cancer, Eurasian J. Med. Oncol. 8 (2024) 235–244. https://doi.org/10.14744/ejmo.2024.45903.
[40] F. Martins, S. Machado, T. Albergaria, C. Delerue-Matos, LCA applied to nano scale zero valent iron synthesis, Int. J. Life Cycle Ass. 22 (2017) 707–714. https://doi.org/10.1007/s11367-016-1258-7.
[41] M. Barreto-Rodrigues, J. Silveira, J.A. Zazo, J.J. Rodriguez, Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red 1, J. Environ. Chem. Eng. 5 (2017) 628–634. https://doi.org/10.1016/j.jece.2016.12.041.
[42] S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of Arsenic(III) from Groundwater by Nanoscale Zero-Valent Iron, Environ. Sci. Technol. 39 (2005) 1291–1298. https://doi.org/10.1021/es048991u.
[43] Y.-P. Sun, X.-q. Li, J. Cao, W.-x. Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci. 120 (2006) 47–56. https://doi.org/10.1016/j.cis.2006.03.001.
[44] M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent iron (nZVI): From synthesis to environmental applications, Chem. Eng. J. 287 (2016) 618–632. https://doi.org/10.1016/j.cej.2015.11.046.
[45] L.B. Hoch, E.J. Mack, B.W. Hydutsky, J.M. Hershman, J.M. Skluzacek, T.E. Mallouk, Carbothermal Synthesis of Carbon-supported Nanoscale Zero-valent Iron Particles for the Remediation of Hexavalent Chromium, Environ. Sci. Technol. 42 (2008) 2600–2605. https://doi.org/10.1021/es702589u.
[46] Y. Dai, Y. Hu, B. Jiang, J. Zou, G. Tian, H. Fu, Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction, J. Hazard. Mater. 309 (2016) 249–258. https://doi.org/10.1016/j.jhazmat.2015.04.013.
[47] M. Orlandi, P. Suman, R. Silva, E. Arlindo, Carbothermal reduction synthesis: an alternative approach to obtain single-crystalline metal oxide nanostructures, Recent Advances in Complex Functional Materials: From Design to Application, Springer, Cham. (2017) 43–67. https://doi.org/10.1007/978-3-319-53898-3_2.
[48] D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Resour. 51 (2013) 104–122. https://doi.org/10.1016/j.advwatres.2012.02.005.
[49] S.K. Kuila, R. Chatterjee, D. Ghosh, Kinetics of hydrogen reduction of magnetite ore fines, Int. J. Hydrog. Energy. 41 (2016) 9256–9266. https://doi.org/10.1016/j.ijhydene.2016.04.075.
[50] M. Uegami, J. Kawano, T. Okita, Y. Fujii, K. Okinaka, K. Kakuya, S. Yatagi, Iron particles for purifying contaminated soil or ground water, Google Patents. (2006).
[51] K. Yadav, J. Singh, N. Gupta, V. Kumar, A review of nanobioremediation technologies for environmental cleanup: a novel biological approach, J. Mater. Environ. Sci. 8 (2017) 740–757.
[52] O.P. Bolade, A.B. Williams, N.U. Benson, Green synthesis of iron-based nanomaterials for environmental remediation: A review, Environ. Nanotechnol. Monit. Manage. 13 (2020) 100279. https://doi.org/10.1016/j.enmm.2019.100279.
[53] H. Talebzadeh, A. Fattahiamin, M. Talebzadeh, F. Sanaei, P.K. Moghaddam, S. Espahbod, Optimizing Supply Chains: A Grey-DEMATEL Approach to Implementing LARG Framework, Teh. Glas. 19 (2024) 1–8. https://doi.org/10.31803/tg-20240302201341.
[54] F. Serat Nahaei, A. Rostami, S. Matloub, Ultrabroadband reflective semiconductor optical amplifier using superimposed quantum dots, J. Nanophotonics. 15 (2021) 036009–036009. https://doi.org/10.1117/1.JNP.15.036009.
[55] M.A. Soltanianfard, K. Abuhishmeh, H.H. Jalali, S.P. Shah, Sustainable concrete made with wastewater from different stages of filtration, Constr. Build. Mater. 409 (2023) 133894. https://doi.org/10.1016/j.conbuildmat.2023.133894.
[56] S. Machado, S.L. Pinto, J.P. Grosso, H.P.A. Nouws, J.T. Albergaria, C. Delerue-Matos, Green production of zero-valent iron nanoparticles using tree leaf extracts, Sci. Total Environ. 445–446 (2013) 1–8. https://doi.org/10.1016/j.scitotenv.2012.12.033.
[57] L. Huang, X. Weng, Z. Chen, M. Megharaj, R. Naidu, Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity, Spectrochim. Acta. A. 130 (2014) 295–301. https://doi.org/10.1016/j.saa.2014.04.037.
[58] A.M. Abdelfatah, M. Fawzy, A.S. Eltaweil, M.E. El-Khouly, Green Synthesis of Nano-Zero-Valent Iron Using Ricinus Communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water, ACS Omega. 6 (2021) 25397–25411. https://doi.org/10.1021/acsomega.1c03355.
[59] H. Beygi, A. Babakhani, Microemulsion synthesis and magnetic properties of FexNi(1−x) alloy nanoparticles, J. Magn. Magn. Mater. 421 (2017) 177–183. https://doi.org/10.1016/j.jmmm.2016.07.071.
[60] I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions, Adv. Colloid Interface Sci. 110 (2004) 49–74. https://doi.org/10.1016/j.cis.2004.02.003.
[61] B. Morris, The components of the Wired Spanning Forest are recurrent, Probab. Theory Relat. Fields. 125 (2003) 259–265. https://doi.org/10.1007/s00440-002-0236-0.
[62] A. Tavakoli, M. Sohrabi, A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds, Chem. Pap. 61 (2007) 151–170. https://doi.org/10.2478/s11696-007-0014-7.
[63] M. Sanchez-Dominguez, K. Pemartin, M. Boutonnet, Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach, Curr. Opin. Colloid Interface Sci. 17 (2012) 297–305. https://doi.org/10.1016/j.cocis.2012.06.007.
[64] F. Li, C. Vipulanandan, K.K. Mohanty, Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene, Colloids Surf. A. 223 (2003) 103–112. https://doi.org/10.1016/S0927-7757(03)00187-0.
[65] M. Ji, X. Chen, C.M. Wai, J.L. Fulton, Synthesizing and Dispersing Silver Nanoparticles in a Water-in-Supercritical Carbon Dioxide Microemulsion, J. Am. Chem. Soc. 121 (1999) 2631–2632. https://doi.org/10.1021/ja9840403.
[66] H. Ohde, F. Hunt, C.M. Wai, Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion, Chem. Mater. 13 (2001) 4130–4135. https://doi.org/10.1021/cm010030g.
[67] M. Ioannou, E. Hatzikraniotis, C. Lioutas, T. Hassapis, T. Altantzis, et al., Fabrication of nanocrystalline Mg2Si via ball milling process: Structural studies, Powder Technol. 217 (2012) 523–532. https://doi.org/10.1016/j.powtec.2011.11.014.
[68] H.J. Jung, Y. Sohn, H.G. Sung, H.S. Hyun, W.G. Shin, Physicochemical properties of ball milled boron particles: Dry vs. wet ball milling process, Powder Technol. 269 (2015) 548–553. https://doi.org/10.1016/j.powtec.2014.03.058.
[69] S. Li, W. Yan, W.-x. Zhang, Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling, Green Chem. 11 (2009) 1618–1626. https://doi.org/10.1039/B913056J.
[70] S.s. Sreedhara, J. Joardar, V. Ravula, N. Rao Tata, Preparation and characterization of nanoboron by cryo-milling, Adv. Powder Technol. 31 (2020) 3824–3832. https://doi.org/10.1016/j.apt.2020.07.021.
[71] S.-S. Chen, H.-D. Hsu, C.-W. Li, A new method to produce nanoscale iron for nitrate removal, J. Nanopart. Res. 6 (2004) 639–647. https://doi.org/10.1007/s11051-004-6672-2.
[72] F. Movahed, H.M. Ehymayed, S. Kalavi, S.A. Shahrtash, A.Y. Al-Hijazi, et al., Development of an electrochemical sensor for detection of lupron as a drug for fibroids treatment and uterine myoma in pharmaceutical waste and water sources, J. Food Meas. Charact. 18 (2024) 5232–5242. https://doi.org/10.1007/s11694-024-02543-5.
[73] M.M. Tarekegn, A.M. Hiruy, A.H. Dekebo, Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions, RSC Adv. 11 (2021) 18539–18551. https://doi.org/10.1039/D1RA01427G.
[74] M.R. Jamei, M.R. Khosravi, B. Anvaripour, A novel ultrasound assisted method in synthesis of NZVI particles, Ultrason. Sonochem. 21 (2014) 226–233. https://doi.org/10.1016/j.ultsonch.2013.04.015.
[75] L. Chekli, B. Bayatsarmadi, R. Sekine, B. Sarkar, A.M. Shen, et al., Analytical characterisation of nanoscale zero-valent iron: A methodological review, Anal. Chim. Acta. 903 (2016) 13–35. https://doi.org/10.1016/j.aca.2015.10.040.
[76] X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res. 100 (2016) 245–266. https://doi.org/10.1016/j.watres.2016.05.019.
[77] K. Yang, J. Xu, M. Zhang, D. Lin, Re-recognizing micro locations of nanoscale zero-valent iron in biochar using C-TEM technique, Sci. Rep. 11 (2021) 5037. https://doi.org/10.1038/s41598-021-84685-w.
[78] Y.-H. Hwang, D.-G. Kim, H.-S. Shin, Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron, Appl. Catal. B. 105 (2011) 144–150. https://doi.org/10.1016/j.apcatb.2011.04.005.
[79] M. El-Shafei, A. Hamdy, M. Hefny, Zero-valent iron nanostructures: synthesis, characterization and application, J. Environ. Biotechnol. 7 (2018) 1–10.
[80] M. Jerold, D. Joseph, N. Patra, V. Sivasubramanian, Fixed-bed column studies for the removal of hazardous malachite green dye from aqueous solution using novel nano zerovalent iron algal biocomposite, Nanotechnol. Environ. Eng. 1 (2016) 1–10. https://doi.org/10.1007/s41204-016-0007-2.
[81] L. Yang, H. Li, J. Xue, L. He, Y. Ma, et al., Hydrothermal enhanced nanoscale zero-valent iron activated peroxydisulfate oxidation of chloramphenicol in aqueous solutions: Fe-speciation analysis and modeling optimization, Water. 12 (2019) 131. https://doi.org/10.3390/w12010131.
[82] A.M. Abdelfatah, N. El-Maghrabi, A.E.D. Mahmoud, M. Fawzy, Synergetic effect of green synthesized reduced graphene oxide and nano-zero valent iron composite for the removal of doxycycline antibiotic from water, Sci. Rep. 12 (2022) 19372. https://doi.org/10.1038/s41598-022-23684-x.
[83] L. Su, C. Liu, K. Liang, Y. Chen, L. Zhang, et al., Performance evaluation of zero-valent iron nanoparticles (NZVI) for high-concentration H2S removal from biogas at different temperatures, RSC Adv. 8 (2018) 13798–13805. https://doi.org/10.1039/C7RA12125C.
[84] G. Vilardi, J.M. Ochando-Pulido, N. Verdone, M. Stoller, L. Di Palma, On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery, J. Cleaner Prod. 190 (2018) 200–210. https://doi.org/10.1016/j.jclepro.2018.04.151.
[85] A.J. Zimmerman, D.G. Gutierrez, N. Shaghaghi, A. Sharma, A. Deonarine, et al., Mobility and bioaccessibility of arsenic (As) bound to titanium dioxide (TiO2) water treatment residuals (WTRs), Environ. Pollut. 326 (2023) 121468. https://doi.org/10.1016/j.envpol.2023.121468.
[86] J. Zhao, X. Yang, G. Liang, Z. Wang, S. Li, et al., Effective removal of two fluoroquinolone antibiotics by PEG-4000 stabilized nanoscale zero-valent iron supported onto zeolite (PZ-NZVI), Sci. Total Environ. 710 (2020) 136289. https://doi.org/10.1016/j.scitotenv.2019.136289.
[87] X. Zhang, X.-q. Cao, G. Li, J. Yin, D. Zhang, et al., Preparation of Novel ALRCs/nZVI Composite and Its Removal of Cr(VI) from Aqueous, Int. J. Environ. Res. 14 (2020) 123–133. https://doi.org/10.1007/s41742-020-00243-8.
[88] H. Xu, M. Gao, X. Hu, Y. Chen, Y. Li, et al., A novel preparation of S-nZVI and its high efficient removal of Cr(VI) in aqueous solution, J. Hazard. Mater. 416 (2021) 125924. https://doi.org/10.1016/j.jhazmat.2021.125924.
[89] L. Yin, L. Liu, S. Lin, G. Owens, Z. Chen, Synthesis and characterization of Nanoscale Zero-Valent Iron (nZVI) as an adsorbent for the simultaneous removal of As(III) and As(V) from groundwater, J. Water Process Eng. 47 (2022) 102677. https://doi.org/10.1016/j.jwpe.2022.102677.
[90] M. Song, X. Hu, T. Gu, W.-x. Zhang, Z. Deng, Nanocelluloses affixed nanoscale Zero-Valent Iron (nZVI) for nickel removal: Synthesis, characterization and mechanisms, J. Environ. Chem. Eng. 10 (2022) 107466. https://doi.org/10.1016/j.jece.2022.107466.
[91] Q. Cheng, Q. Li, X. Huang, X. Li, Y. Wang, et al., The high efficient Sb(III) removal by cauliflower like amorphous nanoscale zero-valent iron (A-nZVI), J. Hazard. Mater. 436 (2022) 129056. https://doi.org/10.1016/j.jhazmat.2022.129056.
[92] F. Liu, Y. Lou, F. Xia, B. Hu, Immobilizing nZVI particles on MBenes to enhance the removal of U(VI) and Cr(VI) by adsorption-reduction synergistic effect, Chem. Eng. J. 454 (2023) 140318. https://doi.org/10.1016/j.cej.2022.140318.
[93] A.O. Eljamal, R. Mokete, N. Matsunaga, Y. Sugihara, Chemical pathways of Nanoscale Zero-Valent Iron (NZVI) during its transformation in aqueous solutions, J. Environ. Chem. Eng. 6 (2018) 6207–6220. https://doi.org/10.1016/j.jece.2018.09.012.
[94] A. Moridi, S. Sabbaghi, J. Rasouli, K. Rasouli, S.A. Hashemi, et al., Removal of Cefixime from Wastewater Using a Superb nZVI/Copper Slag Nanocomposite: Optimization and Characterization, Water. 15 (2023) 1819. https://doi.org/10.3390/w15101819.
[95] J. Yang, H. Tian, J. Guo, J. He, 3D porous carbon-embedded nZVI@Fe2O3 nanoarchitectures enable prominent performance and recyclability in antibiotic removal, Chemosphere. 331 (2023) 138716. https://doi.org/10.1016/j.chemosphere.2023.138716.
[96] R. Zhao, B. Wang, P. Wu, Q. Feng, M. Chen, et al., Calcium alginate-nZVI-biochar for removal of Pb/Zn/Cd in water: Insights into governing mechanisms and performance, Sci. Total Environ. 894 (2023) 164810. https://doi.org/10.1016/j.scitotenv.2023.164810.
[97] X. Zhang, W. Wang, P. Tan, N. Meng, X. Cao, Y. Zhang, Study on the kinetics and mechanisms of Cr(VI) removal by nZVI modified with four modifiers, Sep. Purif. Technol. 342 (2024) 127022. https://doi.org/10.1016/j.seppur.2024.127022.
[98] F. Sun, Y. Zhu, X. Liu, Z. Chi, Highly efficient removal of Se(IV) using reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO): selenium removal mechanism, Environ. Sci. Pollut. Res. 30 (2023) 27560–27569. https://doi.org/10.1007/s11356-022-24226-8.
[99] L. Yang, X. Jin, Q. Lin, G. Owens, Z. Chen, Enhanced adsorption and reduction of Pb(II) and Zn(II) from mining wastewater by carbon@nano-zero-valent iron (C@nZVI) derived from biosynthesis, Sep. Purif. Technol. 311 (2023) 123249. https://doi.org/10.1016/j.seppur.2023.123249.
[100] Z. Ci, Y. Yue, J. Xiao, X. Huang, Y. Sun, Spectroscopic and modeling investigation of U(VI) removal mechanism on nanoscale zero-valent iron/clay composites, J. Colloid Interface Sci. 630 (2023) 395–403. https://doi.org/10.1016/j.jcis.2022.10.008.
[101] X. Zhang, H. Xu, M. Xi, Z. Jiang, Removal/adsorption mechanisms of Cr(VI) and natural organic matter by nanoscale zero-valent iron-loaded biochar in their coexisting system, J. Environ. Chem. Eng. 11 (2023) 109860. https://doi.org/10.1016/j.jece.2023.109860.
[102] T. Wang, Y. Sun, L. Bai, C. Han, X. Sun, Ultrafast removal of Cr(VI) by chitosan coated biochar-supported nano zero-valent iron aerogel from aqueous solution: Application performance and reaction mechanism, Sep. Purif. Technol. 306 (2023) 122631. https://doi.org/10.1016/j.seppur.2022.122631.
[103] M. Li, Y. Mu, H. Shang, C. Mao, S. Cao, et al., Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal, Appl. Catal. B. 263 (2020) 118364. https://doi.org/10.1016/j.apcatb.2019.118364.
[104] I.-G. Song, Y.-G. Kang, J.-H. Kim, H. Yoon, W.Y. Um, Y.-S. Chang, Assessment of sulfidated nanoscale zerovalent iron for in-situ remediation of cadmium-contaminated acidic groundwater at a zinc smelter, J. Hazard. Mater. 441 (2023) 129915. https://doi.org/10.1016/j.jhazmat.2022.129915.
[105] Y. Fang, X. Wu, M. Dai, A. Lopez-Valdivieso, S. Raza, et al., The sequestration of aqueous Cr(VI) by zero valent iron-based materials: From synthesis to practical application, J. Cleaner Prod. 312 (2021) 127678. https://doi.org/10.1016/j.jclepro.2021.127678.
[106] S. Tasharrofi, Z. Rouzitalab, D.M. Maklavany, A. Esmaeili, M. Rabieezadeh, et al., Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs, Sci. Total Environ. 736 (2020) 139570. https://doi.org/10.1016/j.scitotenv.2020.139570.
[107] K. Plessl, A. Russ, D. Vollprecht, Application and development of zero-valent iron (ZVI) for groundwater and wastewater treatment, Int. J. Environ. Sci. Technol. 20 (2023) 6913–6928. https://doi.org/10.1007/s13762-022-04536-7.
[108] K.P. Sedlazeck, D. Vollprecht, P. Müller, R. Mischitz, R. Gieré, Impact of an in-situ Cr(VI)-contaminated site remediation on the groundwater, Environ. Sci. Pollut. Res. 27 (2020) 14465–14475. https://doi.org/10.1007/s11356-019-07513-9.
[109] S. Bilardi, P.S. Calabrò, R. Greco, N. Moraci, Selective removal of heavy metals from landfill leachate by reactive granular filters, Sci. Total Environ. 644 (2018) 335–341. https://doi.org/10.1016/j.scitotenv.2018.06.353.
[110] P.G. Tratnyek, R.L. Johnson, G.V. Lowry, R.A. Brown, In situ chemical reduction for source remediation, Chlorinated Solvent Source Zone Remediation, Springer, New York, NY. (2014) 307–351. https://doi.org/10.1007/978-1-4614-6922-3_10.
[111] C. Visentin, A.W. da Silva Trentin, A.B. Braun, A. Thomé, Nano scale zero valent iron production methods applied to contaminated sites remediation: an overview of production and environmental aspects, J. Hazard. Mater. 410 (2021) 124614. https://doi.org/10.1016/j.jhazmat.2020.124614.
[112] K. Rouhi, M.S. Motlagh, F. Dalir, J. Perez, A. Golzary, Towards sustainable electricity generation: Evaluating carbon footprint in waste-to-energy plants for environmental mitigation in Iran, Energy Rep. 11 (2024) 2623–2632. https://doi.org/10.1016/j.egyr.2024.02.017.
[113] Y. Shams Maleki, A. Dadfarin, M. Esna Ashari, Laboratory investigation of chemical-mechanical stabilization conditions and durability of SP sand samples under the effect of freeze-thaw periods, Amirkabir J. Civil. Eng. 55 (2023) 1601–1624. https://doi.org/10.22060/ceej.2023.22411.7964.
[114] H. Seyrani, S. Ramezanpour, A. Vaezghaemi, F. Kobarfard, A sequential Ugi–Smiles/transition-metal-free endo-dig Conia–ene cyclization: the selective synthesis of saccharin substituted 2, 5-dihydropyrroles, New J. Chem. 45 (2021) 15647–15654. https://doi.org/10.1039/D1NJ01159F.
[115] S. Li, W. Wang, F. Liang, W.-x. Zhang, Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application, J. Hazard. Mater. 322 (2017) 163–171. https://doi.org/10.1016/j.jhazmat.2016.01.032.
[116] M.R. Jamei, M.R. Khosravi, B. Anvaripour, Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method, Asia-Pac. J. Chem. Eng. 8 (2013) 767–774. https://doi.org/10.1002/apj.1720.
[117] A. Long, K. Loethen, A. Behzadnezhad, W. Zhang, A snapshot of SARS‐CoV‐2 viral RNA throughout wastewater treatment plants in Arkansas, Water Environ. Res. 96 (2024) e10992. https://doi.org/10.1002/wer.10992.

Cited By

Crossref Google Scholar
Recent advances in synthesis, properties, and applications of nano-zero valent iron: A promising material for environmental remediation
Submitted
2024-08-21
Available online
2024-10-05
How to Cite
Ghaffarzadeh, M., Rasouli Khorjestan, R., Afradi, A., Bandehpey, A., & Behbudi, G. (2024). Recent advances in synthesis, properties, and applications of nano-zero valent iron: A promising material for environmental remediation. Synthesis and Sintering, 4(4), 226-240. https://doi.org/10.53063/synsint.2024.44242