A perspective to efficient synthesis of zirconium carbide via novel pyro-vacuum method: lower temperatures and enhanced purity

  • Faramarz Kazemi 1
  • Behzad Nayebi 1
  • 1 Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

The use of ultra-high temperature ceramics (UHTCs) as a novel additive in the refractory industry is becoming increasingly popular. However, the synthesis of such materials is associated with some commercial obstacles, mainly high-temperature synthesis methods. In the present study, the pyro-vacuum method is presented as a new method to decrease the final product's synthesis temperature and oxygen content. Some thermodynamic aspects and phase evolution of the materials during the synthesis procedure are described for the synthesis of non-oxide material. Conclusively, it seems that by applying vacuum conditions, the final UHTC phases can be synthesized at significantly lower temperatures (>400 °C lower, for ZrC), if adequate powder mixtures are considered. Also due to phase analysis, it was found that the oxygen content of the final phase is lower than the conventional routes and other references. The process provides promising prospects for the economic synthesis of UHTCs.

Downloads

Download data is not yet available.
Keywords: Ultra-high temperature ceramics, Zirconium carbide, Pyro-vacuum, Synthesis, Nanoparticle

References

[1] W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, Wiley, USA. (2014). https://doi.org/10.1002/9781118700853.ch16.
[2] F. Arianpour, F. Golestanifard, H.R. Rezaie, M. Mazaheri, A. Celik, et al., Processing, phase evaluation and mechanical properties of MoSi2 doped 4TaC-HfC based UHTCs consolidated by spark plasma sintering, Int. J. Refract. Met. Hard Mater. 56 (2016) 1–7. https://doi.org/10.1016/j.ijrmhm.2015.11.011.
[3] Y. Zhou, T.W. Heitmann, W.G. Fahrenholtz, G.E. Hilmas, Synthesis of ZrCx with controlled carbon stoichiometry by low temperature solid state reaction, J. Eur. Ceram. Soc. 39 (2019) 2594–2600. https://doi.org/10.1016/j.jeurceramsoc.2019.03.004.
[4] Y.S. Nam, X.M. Cui, L. Jeong, J.Y. Lee, W.H. Park, Fabrication and characterization of zirconium carbide (ZrC) nanofibers with thermal storage property, Thin Solid Films. 517 (2009) 6531–6538. https://doi.org/10.1016/j.tsf.2009.04.021.
[5] L. Combemale, Y. Leconte, X. Portier, N. Herlin-Boime, C. Reynaud, Synthesis of nanosized zirconium carbide by laser pyrolysis route, J. Alloy Compound. 483 (2009) 468–472. https://doi.org/10.1016/j.jallcom.2008.07.159.
[6] M. Dolle, D. Gosset, C. Bogicevic, F. Karolak, D. Simeone, G. Baldinozzi, Synthesis of nanosized zirconium carbide by a sol-gel route, J. Eur. Ceram. Soc. 27 (2007) 2061–2067. https://doi.org/10.1016/j.jeurceramsoc.2006.06.005.
[7] M. Gendre, A. Maitre, G. Trolliard, Synthesis of zirconium oxycarbide (ZrCxOy) powders: Influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties, J. Eur. Ceram. Soc. 31 (2011) 2377–2385. https://doi.org/10.1016/j.jeurceramsoc.2011.05.037.
[8] C.K. Gupta, Chemical metallurgy, Wiley-VCH, Weinheim. (2003) 441–452. https://doi.org/10.1002/3527602003.
[9] F. Arianpour, F. Kazemi, H.R. Rezaie, Thermodynamic study of zirconium carbide synthesis via a low-temperature pyro-vacuum method, J. Aust. Ceram. Soc. 56 (2020) 969–977. https://doi.org/10.1007/s41779-019-00428-1.
[10] F. Arianpour, F. Kazemi, H.R. Rezaie, A. Asjodi, J. Liu, Nano Zirconium Carbide Powder Synthesis via Carbothermal Route, Defect Diffus. Forum. 334–335 (2013) 381–386. https://doi.org/10.4028/www.scientific.net/DDF.334-335.381.
[11] R. Ebrahimi Kahrizsangi, E. Amini Kahrizsangi, Zirconia carbothermal reduction: non-isothermal kinetics, Int. J. Refract. Met. Hard Mater. 27 (2009) 637–41. https://doi.org/10.1016/j.ijrmhm.2008.10.011.
[12] J. David, G. Trolliard, M Gendre, A. Maitre, TEM study of the reaction mechanisms involved in the carbothermal reduction of zirconia, J. Eur. Ceram. Soc. 33 (2013) 165–179. https://doi.org/10.1016/j.jeurceramsoc.2012.07.024.
[13] A. Saberi, B. Alinejad, Z. Negahdari, F. Kazemi, A. Almasi, A novel method to low temperature synthesis of nanocrystalline forsterite, Mater. Res. Bull. 42 (2007) 666–673. https://doi.org/10.1016/j.materresbull.2006.07.020.
[14] F. Kazemi, A. Saberi, S. Malek-Ahmadi, S. Sohrabi, H.R. Rezaie, M. Tahriri, A novel method for synthesis of metastable tetragonal zirconia nano-powders at low temperatures, Ceram. - Silik. 55 (2011) 26–30. https://doi.org/10.1016/j.materresbull.2011.06.010.
[15] F. Kazemi, F. Arianpour, M. Taheri, A. Saberi, H.R. Rezaie, Effects of chelating agent on sol-gel synthesis of nano zirconia: The comparison of Pechini and sugar-based methods, Int. J. Miner. Metall. Mater. 27 (2020) 693–702. https://doi.org/10.1007/s12613-019-1933-3.
[16] F. Kazemi, F. Arianpour, H.R. Rezaie, Kinetic study of carbothermal reduction of zirconia under vacuum condition, J. Therm. Anal. Calorim. 139 (2020) 67–73. https://doi.org/10.1007/s10973-019-08368-5.
[17] X. Zhu, L. Xu, C. Chaopeng, Q. Liu, H. Wang, Thermodynamics of nano-zirconium carbide powder prepared by hydrothermal synthesis and carbothermal reduction, J. Mater. Res. Technol. 30 (2024) 8152–8160. https://doi.org/10.1016/j.jmrt.2024.05.186.
[18] G. Khalaj, F. Soleymani, F. Sharifi, A. Najafi, Evaluation of APC impact on controlling precursors properties in the sol for synthesizing meso porous ZrC nanopowder through sol-gel process, J. Mater. Res. Technol. 26 (2023) 6182–6192. https://doi.org/10.1016/j.jmrt.2023.08.287.

Cited By

Crossref Google Scholar
A perspective to efficient synthesis of zirconium carbide via novel pyro-vacuum method: lower temperatures and enhanced purity
Submitted
2024-06-17
Available online
2024-08-30
How to Cite
Kazemi, F., & Nayebi, B. (2024). A perspective to efficient synthesis of zirconium carbide via novel pyro-vacuum method: lower temperatures and enhanced purity. Synthesis and Sintering, 4(3), 197-202. https://doi.org/10.53063/synsint.2024.43233

Most read articles by the same author(s)