Reactive spark plasma sintering of ZrB2-TiC composites: Role of nano-sized carbon black additive

  • Hamid Istgaldi 1
  • Mehdi Mehrabian 2
  • Faramarz Kazemi 3
  • Behzad Nayebi 3
  • 1 Department of mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
  • 2 School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 1684613114, Tehran, Iran
  • 3 Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

ZrB2-TiC composites with and without nano-sized carbon black as the sintering additive were densified through spark plasma sintering at 1900 °C for 7 minutes under the applied pressure of 40 MPa. The role of carbon black in densification behavior, phase arrangement, microstructural characteristics and mechanical properties of the sintered composites were then investigated. While both of the composite samples were found to be fully sintered, the thermodynamic of the reactive sintering was also studied. Results indicated that whereas the reactive sintering process leads to complete consumption of TiC through the formation of the solid solution as the matrix in both of the composite samples, the presence of carbon black at the initial composition of the samples can result in remained carbon at the final microstructure. Besides the in-situ synthesized zirconium carbide as the major reinforcement phase, such a remained carbon can lead to significantly different mechanical behavior of the composites. Accordingly, the hardness of 21.8 and 24.3 GPa and the indentation fracture toughness of 3.3 and 4.5 MPa.m0.5 were obtained for carbon-black free and doped samples, respectively. The densification, hardening, and toughening mechanisms in both of the composite samples were finally discussed.

Downloads

Download data is not yet available.
Keywords: Spark plasma sintering, Zirconium diboride, Titanium carbide, In-situ synthesis, Toughening mechanism

References

[1] S.-Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: a review, J. Eur. Ceram. Soc. 29 (2009) 995–1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008.
[2] H. Istgaldi, M. Shahedi Asl, P. Shahi, B. Nayebi, Z. Ahmadi, Solid solution formation during spark plasma sintering of ZrB2–TiC–graphite composites, Ceram. Int. 46 (2020) 2923–2930. https://doi.org/10.1016/j.ceramint.2019.09.287.
[3] Z. Balak, M. Shahedi Asl, M. Azizieh, H. Kafashan, R. Hayati, Effect of different additives and open porosity on fracture toughness of ZrB2–SiC-based composites prepared by SPS, Ceram. Int. 43 (2017) 2209–2220. https://doi.org/10.1016/j.ceramint.2016.11.005.
[4] M. Vajdi, F.S. Moghanlou, E.R. Niari, M. Shahedi Asl, M. Shokouhimehr, Heat transfer and pressure drop in a ZrB2 microchannel heat sink: a numerical approach, Ceram. Int. 46 (2020) 1730–1735. https://doi.org/10.1016/j.ceramint.2019.09.146.
[5] M. Jaberi Zamharir, M. Shahedi Asl, N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, Significance of hot pressing parameters and reinforcement size on densification behavior of ZrB2–25 vol% SiC UHTCs, Ceram. Int. 41 (2015) 6439–6447. https://doi.org/10.1016/j.ceramint.2015.01.082.
[6] H. Istgaldi, B. Nayebi, Z. Ahmadi, P. Shahi, M. Shahedi Asl, Characterization of ZrB2–TiC composites reinforced with short carbon fibers, Ceram. Int. 46 (2020) 23155–23164. https://doi.org/10.1016/j.ceramint.2020.06.095.
[7] V.H. Nguyen, S.A. Delbari, M. Shahedi Asl, Q. Van Le, A.S. Namini, et al. Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics, Ceram. Int. 47 (2021) 12459–12466. https://doi.org/10.1016/j.ceramint.2021.01.103.
[8] B. Mohammadzadeh, S. Jung, T.H. Lee, J.H. Cha, J. Park, et al., Characterization and FEA evaluation of a ZrB2-SiC ceramic containing TaC for beam–column joint application. Ceram, Int. 47 (2020) 11438–11450. https://doi.org/10.1016/j.ceramint.2020.12.271.
[9] V.H. Nguyen, M. Shahedi Asl, S.A. Delbari, Q. Van Le, A.S. Namini, et al., Effects of SiC on densification, microstructure and nano-indentation properties of ZrB2–BN composites, Ceram. Int. 47 (2020) 9873–9880. https://doi.org/10.1016/j.ceramint.2020.12.129.
[10] M.D. Alvari, M.G. Kakroudi, B. Salahimehr, R. Alaghmandfard, M. Shahedi Asl, M. Mohammadi, Microstructure, mechanical properties, and oxidation behavior of hot-pressed ZrB2–SiC–B4C composites, Ceram. Int. 47 (2020) 9627–9634. https://doi.org/10.1016/j.ceramint.2020.12.101.
[11] M. Shahedi Asl, M. Ghassemi Kakroudi, S. Noori, Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure, J. Alloys Compd. 679 (2015) 481–487. https://doi.org/10.1016/j.jallcom.2014.09.006.
[12] M. Shahedi Asl, M. Ghassemi Kakroudi, A processing–microstructure correlation in ZrB2–SiC composites hot-pressed under a load of 10 MPa, Univers. J. Mater. Sci. 3 (2015) 14–21. https://www.hrpub.org/journals/article_info.php?aid=2325.
[13] M. Shahedi Asl, B. Nayebi, Z. Ahmadi, M.J. Zamharir, M. Shokouhimehr, Effects of carbon additives on the properties of ZrB2–based composites: a review, Ceram. Int. 44 (2018) 7334–7348.‏ https://doi.org/10.1016/j.ceramint.2018.01.214.
[14] S.K. Mishra, S.K. Das, Sintering and microstructural behaviour of SHS produced zirconium diboride powder with the addition of C and TiC, Mater. Lett. 59 (2005) 3467–3470. https://doi.org/10.1016/j.matlet.2005.06.015.
[15] S.K. Mishra, L.C. Pathak, Effect of carbon and titanium carbide on sintering behaviour of zirconium diboride, J. Alloys Compd. 465 (2008) 547–555. https://doi.org/10.1016/j.jallcom.2007.11.004.
[16] J. Yin, H. Zhang, Y. Yan, Z. Huang, X. Liu, D. Jiang, High toughness in pressureless densified ZrB2-based composites co-doped with boron–titanium carbides, Scr. Mater. 66 (2012) 523–526. https://doi.org/10.1016/j.scriptamat.2011.12.036.
[17] M. Sribalaji, B. Mukherjee, S.R. Bakshi, P. Arunkumar, K.S. Babu, A.K. Keshri, In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite, Compos. B. Eng. 123 (2017) 227–240.‏ https://doi.org/10.1016/j.compositesb.2017.05.035.
[18] J.X. Xue, J.X. Liu, G.J. Zhang, H.B. Zhang, T. Liu, et al., Improvement in mechanical/physical properties of TiC-based ceramics sintered at 1500 °C for inert matrix fuels, Scr. Mater. 114 (2016) 5–8.‏ https://doi.org/10.1016/j.scriptamat.2015.11.024.
[19] D. Chen, W. Li, X. Zhang, P. Hu, J. Han, C. Hong, W. Han, Microstructural feature and thermal shock behavior of hot-pressed ZrB2–SiC–ZrO2 composite, Mater. Chem. Phys. 116 (2009) 348–352. https://doi.org/10.1016/j.matchemphys.2009.03.033.
[20] G.J. Zhang, Z.Y. Deng, N. Kondo, J.F. Yang, T. Ohji, Reactive hot pressing of ZrB2–SiC composites, J. Am. Ceram. Soc. 83 (2000) 2330–2332. https://doi.org/10.1111/j.1151-2916.2000.tb01558.x.
[21] H. Wang, C. Wang, X. Yao, D. Fang, Processing and Mechanical Properties of Zirconium Diboride‐Based Ceramics Prepared by Spark Plasma Sintering, J. Am. Ceram. Soc. 90 (2007) 1992–1997. https://doi.org/10.1111/j.1551-2916.2007.01665.x.
[22] F. Guillard, A. Allemand, J.D. Lulewicz, J. Galy, Densification of SiC by SPS-effects of time, temperature and pressure, J. Eur. Ceram. Soc. 27 (2007) 2725–2728. https://doi.org/10.1016/j.jeurceramsoc.2006.10.005.
[23] Z. Balak, M. Azizieh, H. Kafashan, M. Shahedi Asl, Z. Ahmadi, Optimization of effective parameters on thermal shock resistance of ZrB2-SiC-based composites prepared by SPS: Using Taguchi design, Mater. Chem. Phys. 196 (2017) 333–340. https://doi.org/10.1016/j.matchemphys.2017.04.062.
[24] E. Ghasali, H. Nouranian, A. Rahbari, H. Majidian, M. Alizadeh, T. Ebadzadeh, Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering, Mater. Res. 19 (2016) 1189–1192. https://doi.org/10.1590/1980-5373-MR-2016-0395.
[25] A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, Pressureless sintering of zirconium diboride, J. Am. Ceram. Soc. 89 (2006) 450–456. https://doi.org/10.1111/j.1551-2916.2005.00739.x.
[26] A. Balbo, D. Sciti, Spark plasma sintering and hot pressing of ZrB2–MoSi2 ultra-high-temperature ceramics, Mater. Sci. Eng. 475 (2008) 108–112. https://doi.org/10.1016/j.msea.2007.01.164.
[27] M. Shahedi Asl, B. Nayebi, Z. Ahmadi, P. Pirmohammadi, M. Ghassemi Kakroudi, Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2–SiC composites, Mater. Charact. 102 (2015) 137–145. https://doi.org/10.1016/j.matchar.2015.03.002.
[28] S.R Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, J.A. Salem, Evaluation of ultra-high temperature ceramics for aero-propulsion use, J. Eur. Ceram. Soc. 22 (2002) 2757–2767. https://doi.org/10.1016/S0955-2219(02)00140-1.
[29] M. Shahedi Asl, M.G. Kakroudi, R.A. Kondolaji, H. Nasiri, Influence of graphite nano-flakes on densification and mechanical properties of hot-pressed ZrB2–SiC composite, Ceram. Int. 41 (2015) 5843–5851. https://doi.org/10.1016/j.ceramint.2015.01.014.
[30] Z. Ahmadi, B. Nayebi, M. Shahedi Asl, M.G. Kakroudi, Fractographical characterization of hot pressed and pressureless sintered AlN-doped ZrB2–SiC composites, Mater. Charact. 110 (2015) 77–85. https://doi.org/10.1016/j.matchar.2015.10.016.
[31] M. Shahedi Asl, M.G. Kakroudi, Characterization of hot-pressed graphene reinforced ZrB2–SiC composite, Mater. Sci. Eng. 625 (2015) 385–392. https://doi.org/10.1016/j.msea.2014.12.028.
[32] W. Zhi, W. Zhanjun, S. Guodong, Fabrication, mechanical properties and thermal shock resistance of a ZrB2-graphite ceramic, Int. J. Refract. Met. Hard Mater. 29 (2011) 351–355. https://doi.org/10.1016/j.ijrmhm.2010.12.014.
[33] Z. Wang, S. Wang, X. Zhang, P. Hu, W. Han, C. Hong, Effect of graphite flake on microstructure as well as mechanical properties and thermal shock resistance of ZrB2–SiC matrix ultrahigh temperature ceramics, J. Alloys Compd. 484 (2009) 390–394. https://doi.org/10.1016/j.jallcom.2009.04.109.
[34] X. Zhang, Z. Wang, X. Sun, W. Han, C. Hong, Effect of graphite flake on the mechanical properties of hot pressed ZrB2–SiC ceramics, Mater. Lett. 62 (2008) 4360–4362. https://doi.org/10.1016/j.matlet.2008.07.027.
[35] W.B. Tian, Y.M. Kan, G.J. Zhang, P.L. Wang, Effect of carbon nanotubes on the properties of ZrB2–SiC ceramics, Mater. Sci. Eng. 487 (2008) 568–573. https://doi.org/10.1016/j.msea.2007.11.027.
[36] G.B. Yadhukulakrishnan, S. Karumuri, A. Rahman, R.P. Singh, A.K. Kalkan, S.P. Harimkar, Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites, Ceram. Int. 39 (2013) 6637–6646. https://doi.org/10.1016/j.ceramint.2013.01.101.
[37] F. Yang, X. Zhang, J. Han, S. Du, Characterization of hot-pressed short carbon fiber reinforced ZrB2–SiC ultra-high temperature ceramic composites, J. Alloys Compd. 472 (2009) 395–399. https://doi.org/10.1016/j.jallcom.2008.04.092.
[38] Z. Nasiri, M. Mashhadi, A. Abdollahi, Effect of short carbon fiber addition on pressureless densification and mechanical properties of ZrB2–SiC–Csf nanocomposite, Int. J. Refract. Met. Hard Mater. 51 (2015) 216–223. https://doi.org/10.1016/j.ijrmhm.2015.04.005.
[39] W. Wang, K. Cann, Carbon black used as a fluidization aid in gas phase elastomer polymerization: I. Carbon black–monomer interactions, Carbon. 40 (2002) 221–224. https://doi.org/10.1016/S0008-6223(01)00178-6.
[40] C.M. Long, M.A. Nascarella, P.A.Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions, Environ. Pollut. 181 (2013) 271–286. https://doi.org/10.1016/j.envpol.2013.06.009.
[41] K.H. Wu, T.H. Ting, G.P. Wang, W.D. Ho, C.C. Shih, Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites, Polym. Degrad. Stab. 93 (2008) 483–488. https://doi.org/10.1016/j.polymdegradstab.2007.11.009.
[42] C. Lin, D.D.L. Chung, Effect of carbon black structure on the effectiveness of carbon black thermal interface pastes, Carbon. 45 (2007) 2922–2931. https://doi.org/10.1016/j.carbon.2007.10.006.
[43] I. Farahbakhsh, Z. Ahmadi, M. Shahedi Asl, Densification, microstructure and mechanical properties of hot pressed ZrB2–SiC ceramic doped with nano-sized carbon black, Ceram. Int. 43 (2017) 8411–8417. https://doi.org/10.1016/j.ceramint.2017.03.188.
[44] G.R Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc. 64 (1981) 533–538 https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.
[45] L.F. Nielsen, Elasticity and damping of porous materials and impregnated materials, J. Am. Ceram. Soc. 67 (1984) 93–98. https://doi.org/10.1111/j.1151-2916.1984.tb09622.x.
[46] V.I. Ivashchenko, P.E.A. Turchi, V.I. Shevchenko, N.R. Mediukh, L. Gorb, J. Leszczynski, Phase diagram, electronic, mechanical and thermodynamic properties of TiB2–ZrB2 solid solutions: A first-principles study, Mater. Chem. Phys. 263 (2021) 124340. https://doi.org/10.1016/j.matchemphys.2021.124340.
[47] I. Farahbakhsh, Z. Ahmadi, M. Shahedi Asl, Densification, microstructure and mechanical properties of hot pressed ZrB2–SiC ceramic doped with nano-sized carbon black, Ceram. Int. 43 (2017) 8411–8417.‏ https://doi.org/10.1016/j.ceramint.2017.03.188.
[48] S. Zhou, Z. Wang, X. Sun, J. Han, Microstructure, mechanical properties and thermal shock resistance of zirconium diboride containing silicon carbide ceramic toughened by carbon black, Mater. Chem. Phys. 122 (2010) 470–473. ‏https://doi.org/10.1016/j.matchemphys.2010.03.028.

Cited By

Crossref Google Scholar
Reactive spark plasma sintering of ZrB2-TiC composites: Role of nano-sized carbon black additive
Submitted
2022-02-27
Available online
2022-05-21
How to Cite
Istgaldi, H., Mehrabian, M., Kazemi, F., & Nayebi, B. (2022). Reactive spark plasma sintering of ZrB2-TiC composites: Role of nano-sized carbon black additive. Synthesis and Sintering, 2(2), 67-77. https://doi.org/10.53063/synsint.2022.22107

Most read articles by the same author(s)