Non-catalytic applications of g-C3N4: A brief review

  • Milad Sakkaki 1
  • Seyed Mohammad Arab 1
  • 1 Department of Mechanical Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran

Abstract

The g-C3N4 which is well known as a polymeric non-metal semiconductor, has been fabricated by thermal polymerization. It has also been used in catalytic applications including, photo-catalysis, removal and degradation of pollutants in water, Friedel-Crafts reactions, oxygen reduction reaction and etc. It has drawn noticeable research attention due to its economical and affordable fabrication, non-toxicity, biocompatibility, good thermal and electrical conductivity, high hardness, Corrosion resistance, and fireproofing properties. Therefore, the g-C3N4 has found non-catalytic applications including composites, cutting tools, improving surface properties, light emitting devices, optical sensors, and solar cells. In the current review, the novel and non-catalytic applications of g-C3N4 have been highlighted.

Downloads

Download data is not yet available.
Keywords: Graphitic carbon nitride (g-C3N4), Cutting tools, Composite, Non-catalytic applications

References

[1] Y.T. Yew, C.S. Lim, A.Y.S. Eng, J. Oh, S. Park, M. Pumera, Electrochemistry of Layered Graphitic Carbon Nitride Synthesised from Various Precursors: Searching for Catalytic Effects, ChemPhysChem. 17 (2016) 481–488. https://doi.org/10.1002/cphc.201501009.
[2] Y. Miyamoto, M.L. Cohen, S.G. Louie, Theoretical investigation of graphitic carbon nitride and possible tubule forms, Solid State Commun. 102 (1997) 605–608. https://doi.org/10.1016/S0038-1098(97)00025-2.
[3] A. Y. Liu R.M. Wentzcovitch, Stability of carbon nitride solids, Phys. Rev. B. 50 (1994) 10362–10365. https://doi.org/10.1103/PhysRevB.50.10362.
[4] A.Y. Liu, M.L. Cohen, Structural properties and electronic structure of low-compressibility materials, Phys. Rev. B. 41 (1990) 10727–10734. https://doi.org/10.1103/PhysRevB.41.10727.
[5] E.Z. Lee, Y.-S. Jun, W. H. Hong, A. Thomas, M.M. Jin, Cubic mesoporous graphitic carbon(IV) nitride: an all-in-one chemosensor for selective optical sensing of metal ions, Angew. Chem. Int. Ed. 49 (2010) 9706–9710. https://doi.org/10.1002/anie.201004975.
[6] J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis, ACS Appl. Mater. Interfaces. 6 (2014) 16449–16465. https://doi.org/10.1021/am502925j.
[7] J. Liebig, Uber einige Stickstoff - Verbindungen, Ann. Pharm. 10 (1834) 1–47. https://doi.org/10.1002/jlac.18340100102.
[8] A.Y. Liu, M.L. Cohen, Prediction of New Low Compressibility Solids, Sci. 245 (1989) 841–842. https://doi.org/10.1126/science.245.4920.841.
[9] Z. Ahmadi, M. Zakeri, A. Habibi-Yangjeh, M. Shahedi Asl, A novel ZrB2–C3N4 composite with improved mechanical properties, Ceram. Int. 45 (2019) 21512–21519. https://doi.org/10.1016/j.ceramint.2019.07.144.
[10] M. Mousavi, A. Habibi-Yangjeh, Ternary g-C3N4/Fe3O4/Ag3VO4 nanocomposites: Novel magnetically separable visible-light-driven photocatalysts for efficiently degradation of dye pollutants, Mater. Chem. Phys. 163 (2015) 421–430. https://doi.org/10.1016/j.matchemphys.2015.07.061.
[11] J. Yang, X. Wu, X. Li, Y. Liu, L. Kong, et al., Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine, Appl. Phys. A. 105 (2011) 161–166. https://doi.org/10.1007/s00339-011-6471-4.
[12] E.G. Gillan, Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor, Chem. Mater. 12 (2000) 3906–3912. https://doi.org/10.1021/cm000570y.
[13] P. Suyana, P. Ganguly, B.N. Nair, S.C. Pillai, U.S. Hareesh, Structural and compositional tuning in g-C3N4 based systems for photocatalytic antibiotic degradation, Chem. Eng. J. Adv. 8 (2021) 100148. https://doi.org/10.1016/j.ceja.2021.100148.
[14] Q. Hao, G. Jia, W. Wei, A. Vinu, Y. Wang, et al., Graphitic carbon nitride with different dimensionalities for energy and environmental applications, Nano Res. 13 (2020) 18–37. https://doi.org/10.1007/s12274-019-2589-z.
[15] L. Shen, Z. Xing, J. Zou, Z. Li, X. Wu, et al., Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance, Sci. Rep. 7 (2017) 41978. https://doi.org/10.1038/srep41978.
[16] Y. Yuan, L. Zhang, J. Xing, M.I.B. Utama, X. Lu, et al., High-yield synthesis and optical properties of g-C3N4, Nanoscale. 7 (2015) 12343–12350. https://doi.org/10.1039/C5NR02905H.
[17] Y. Wang, X. Wang, M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angew. Chem. Int. Ed. 51 (2012) 68–89. https://doi.org/10.1002/anie.201101182.
[18] Q. Yang, W. Wang, Y. Zhao, J. Zhu, Y. Zhu, L. Wang, Metal-free mesoporous carbon nitride catalyze the Friedel–Crafts reaction by activation of benzene, RSC Adv. 5 (2015) 54978–54984. https://doi.org/10.1039/C5RA08871B.
[19] F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Chemical Synthesis of Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst for Friedel–Crafts Reaction of Benzene, Angew. Chem. Int. Ed. 45 (2006) 4467–4471. https://doi.org/10.1002/anie.200600412.
[20] X. Li, P. Cui, W. Zhong, J. Li, X. Wang, et al., Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction, Chem. Commun. 52 (2016) 13233–13236. https://doi.org/10.1039/C6CC07049C.
[21] H.-S. Zhai, L. Cao, X.-H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24 (2013) 103–106. https://doi.org/10.1016/j.cclet.2013.01.030.
[22] A. Azanaw, B. Birlie, B. Teshome, M. Jemberie, Textile effluent treatment methods and eco-friendly resolution of textile wastewater, Case Stud. Chem. Environ. Eng. 6 (2022) 100230. https://doi.org/10.1016/j.cscee.2022.100230.
[23] F.S.A. Khan, N.M. Mubarak, Y.H. Tan, M. Khalid, R.R. Karri, et al., A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes, J. Hazard Mater. 413 (2021) 125375. https://doi.org/10.1016/j.jhazmat.2021.125375.
[24] K. Rathinam, M.M. Nara, I.M.A. ElSherbiny, I. Ali, S. Panglisch, Application of g-C3N4-based Materials for the Efficient Removal and Degradation of Pollutants in Water and Wastewater Treatment, Nanomaterials and Nanocomposites for Environmental Remediation, Springer, Singapore. (2021) 95–119. https://doi.org/10.1007/978-981-16-3256-3_5.
[25] M. Sakkaki, F. Sadegh Moghanlou, M. Vajdi, M. Shahedi Asl, M. Mohammadi, M. Shokouhimehr, Numerical simulation of heat transfer during spark plasma sintering of zirconium diboride, Ceram. Int. 46 (2020) 4998–5007. https://doi.org/10.1016/j.ceramint.2019.10.240.
[26] S.M. Bagheri, M. Vajdi, F. Sadegh Moghanlou, M. Sakkaki, M. Mohammadi, et al., Numerical modeling of heat transfer during spark plasma sintering of titanium carbide, Ceram. Int. 46 (2020) 7615–7624. https://doi.org/10.1016/j.ceramint.2019.11.262.
[27] E. Ranjbarpour Niari, M. Vajdi, M. Sakkaki, S. Azizi, F. Sadegh Moghanlou, M. Shahedi Asl, Finite element simulation of disk‐shaped HfB 2 ceramics during spark plasma sintering process, Int. J. Appl. Ceram. Technol. 19 (2022) 344–357. https://doi.org/10.1111/ijac.13886.
[28] F. Adibpur, S.A. Tayebifard, M. Zakeri, M. Shahedi Asl, Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites, Ceram. Int. 46 (2020) 156–164. https://doi.org/10.1016/j.ceramint.2019.08.243.
[29] M. Shahedi Asl, B. Nayebi, Z. Ahmadi, M.J. Zamharir, M. Shokouhimehr, Effects of carbon additives on the properties of ZrB2–based composites: A review, Ceram. Int. 44 (2018) 7334–7348. https://doi.org/10.1016/j.ceramint.2018.01.214.
[30] E. Ghasali, M. Shahedi Asl, Microstructural development during spark plasma sintering of ZrB2–SiC–Ti composite, Ceram. Int. 44 (2018) 18078–18083. https://doi.org/10.1016/j.ceramint.2018.07.011.
[31] S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, J.A. Salem, Evaluation of ultra-high temperature ceramics foraeropropulsion use, J. Eur. Ceram. Soc. 22 (2002) 2757–2767. https://doi.org/10.1016/S0955-2219(02)00140-1.
[32] R.M. Rocha, F.F. Sene, M.O. Juliani, C.O. Davi, Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites, J. Aerosp. Technol. Manag. 11 (2019) e2819. https://doi.org/10.5028/jatm.v11.1049.
[33] Z. Ahmadi, M. Zakeri, M. Farvizi, A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, M. Shahedi Asl, Synergistic influence of SiC and C3N4 reinforcements on the characteristics of ZrB2 -based composites, J. Asian Ceram. Soc. 9 (2021) 53–62. https://doi.org/10.1080/21870764.2020.1847425.
[34] L. Zhang, H. Qi, G. Li, D. Wang, T. Wang, et al., Significantly enhanced wear resistance of PEEK by simply filling with modified graphitic carbon nitride, Mater. Des. 129 (2017) 192–200. https://doi.org/10.1016/j.matdes.2017.05.041.
[35] V. Matějka, M. Leonardi, P. Praus, G. Straffelini, S. Gialanella, The Role of Graphitic Carbon Nitride in the Formulation of Copper-Free Friction Composites Designed for Automotive Brake Pads, Metals (Basel). 12 (2022) 123. https://doi.org/10.3390/met12010123.
[36] H.D. Yang, X.Q. Xia, Z.H. Qing, Trial on C3N4 Coating Cutter Hard-Dry Cutting on Hardened Steel, Appl. Mech. Mater. 33 (2010) 483-486. https://doi.org/10.4028/www.scientific.net/AMM.33.483.
[37] T. Wang, B. Song, L. Wang, A new filler for epoxy resin: study on the properties of graphite carbon nitride (g-C3N4) reinforced epoxy resin composites, Polymers (Basel). 12 (2020) 76. https://doi.org/10.3390/polym12010076.
[38] B. Song, T. Wang, L. Wang, H. Liu, X. Mai, et al., Interfacially reinforced carbon fiber/epoxy composite laminates via in-situ synthesized graphitic carbon nitride (g-C3N4), Compos. B: Eng. 158 (2019) 259–268. https://doi.org/10.1016/j.compositesb.2018.09.081.
[39] S. Xiong, Y. Zhao, Y. Wang, J. Song, X. Zhao, S. Li, Enhanced interfacial properties of carbon fiber/epoxy composites by coating carbon nanotubes onto carbon fiber surface by one-step dipping method, Appl. Surf. Sci. 546 (2021) 149135. https://doi.org/10.1016/j.apsusc.2021.149135.
[40] B. Song, T. Wang, H. Sun, H. Liu, X. Mai, et al., Graphitic carbon nitride (g-C3N4) interfacially strengthened carbon fiber epoxy composites, Compos. Sci. Technol. 167 (2018) 515–521. https://doi.org/10.1016/j.compscitech.2018.08.031.
[41] S.-Y. Fu, X.-Q. Feng, B. Lauke, Y.-W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Compos. B: Eng. 39 (2008) 933–961. https://doi.org/10.1016/j.compositesb.2008.01.002.
[42] B.B. Wang, Q.J. Cheng, L.H. Wang, K. Zheng, K. Ostrikov, The effect of temperature on the mechanism of photoluminescence from plasma-nucleated, nitrogenated carbon nanotips, Carbon. 50 (2012) 3561–3571. https://doi.org/10.1016/j.carbon.2012.03.028.
[43] D. Papadimitriou, G. Roupakas, C.A. Dimitriadis, S. Logothetidis, Raman scattering and photoluminescence of nitrogenated amorphous carbon films, J. Appl. Phys. 92 (2002) 870–875. https://doi.org/10.1063/1.1488251.
[44] R. Tang, D. Gong, Y. Deng, S. Xiong, J. Zheng, et al., π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation, J. Hazard Mater. 423 (2022) 126944. https://doi.org/10.1016/j.jhazmat.2021.126944.
[45] D. Wang, X. Huang, Y. Huang, X. Yu, Y. Lei, et al., Self-assembly synthesis of petal-like Cl-doped g-C3N4 nanosheets with tunable band structure for enhanced photocatalytic activity, Colloids Surf. A: Physicochem. Eng. Asp. 611 (2021) 125780. https://doi.org/10.1016/j.colsurfa.2020.125780.
[46] Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, et al., Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine, Sci. Rep. 3 (2013) 1943. https://doi.org/10.1038/srep01943.
[47] A. Wang, C. Lee, H. Bian, Z. Li, Y. Zhan, et al., Synthesis of g-C3N4 /Silica Gels for White-Light-Emitting Devices, Part. Part. Syst. Charact. 34 (2017) 1600258. https://doi.org/10.1002/ppsc.201600258.
[48] E.W. Stein, P.S. Grant, H. Zhu, M.J. McShane, Microscale Enzymatic Optical Biosensors Using Mass Transport Limiting Nanofilms. 1. Fabrication and Characterization Using Glucose as a Model Analyte, Anal. Chem. 79 (2007) 1339–1348. https://doi.org/10.1021/ac061414z.
[49] G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties, J. Photochem. Photobiol. C: Photochem. Rev. 20 (2014) 33–50. https://doi.org/10.1016/j.jphotochemrev.2014.04.002.
[50] M.B. Asgari, V. Mirzaei Mahmoud Abadi, M. Mirhabibi, Types of Solar Cells and Application, Am. J. Opt. Photonics. 3 (2015) 94. https://doi.org/10.11648/j.ajop.20150305.17.
[51] S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Shahedi Asl, Z. Ahmadi, S. Ghosh, Synthesis of novel ternary g-C3N4/SiC/C-Dots photocatalysts and their visible-light-induced activities in removal of various contaminants, J. Photochem. Photobiol. A: Chem. 392 (2020) 112431. https://doi.org/10.1016/j.jphotochem.2020.112431.
[52] J. Xu, G. Wang, J. Fan, B. Liu, S. Cao, J. Yu, g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells, J. Power Sources. 274 (2015) 77–84. https://doi.org/10.1016/j.jpowsour.2014.10.033.

Cited By

Crossref Google Scholar
Non-catalytic applications of g-C3N4: A brief review
Submitted
2022-10-24
Available online
2022-12-30
How to Cite
Sakkaki, M., & Arab, S. M. (2022). Non-catalytic applications of g-C3N4: A brief review. Synthesis and Sintering, 2(4), 176-180. https://doi.org/10.53063/synsint.2022.24126

Most read articles by the same author(s)