In-situ synthesis of TiN and TiB2 compounds during reactive spark plasma sintering of BN–Ti composites

  • Maryam Abdolahpour Salari 1
  • Günay Merhan Muğlu 2
  • Mohsen Rezaei 3
  • M. Saravana Kumar 4
  • Harikrishnan Pulikkalparambil 5
  • Suchart Siengchin 5
  • 1 Department of Physics, Faculty of Sciences, Ataturk University, Erzurum, Turkey
  • 2 Hınıs Vocational College, Department of Medical Services and Techniques, Ataturk University, Erzurum, Turkey
  • 3 Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
  • 4 Department of Mechanical Engineering, Mount Zion College of Engineering and Technology, Pudukkottai, Tamil Nadu, India
  • 5 Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok, 10800, Thailand

Abstract

A BN-TiB2-TiN composite was produced via reactive sintering of the hexagonal BN (hBN) with 20 wt% Ti. Spark plasma sintering (SPS) was used as the fabrication method and the sample was characterized by X-ray diffractometry, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. According to the results, the Ti was utterly consumed during the SPS, led to the in-situ TiB2 and TiN0.9 formations. Additionally, the microstructural study revealed the nucleation and growth of new hBN platelets from the initial fine hBN particles. Anyway, the final composite reached a relative density of 95%, because of the remaining free spaces between the hBN platelets. It was found that some nitrogen and boron atoms could leave the TiN and TiB2 microstructures, respectively, and diffuse into the opposing phase.

Downloads

Download data is not yet available.
Keywords: Boron nitride, Titanium, Reactive spark plasma sintering, In-situ phases, Synthesis

References

[1] T.B. Wang, C.C. Jin, J. Yang, C.F. Hu, T. Qiu, Physical and mechanical properties of hexagonal boron nitride ceramic fabricated by pressureless sintering without additive, Adv. Appl. Ceram. 114 (2015) 273–276. https://doi.org/10.1179/1743676114Y.0000000226.
[2] W.L. Du Frane, O. Cervantes, G.F. Ellsworth, J.D. Kuntz, Consolidation of cubic and hexagonal boron nitride composites, Diam. Relat. Mater. 62 (2016) 30–41. https://doi.org/10.1016/j.diamond.2015.12.003.
[3] X.J. Gao, D.M. Yan, J.W. Cao, C. Zhang, X.M. Mu, et al., The Study on the Property and the Microstructure of Pressureless Sintered h-BN Ceramics, Adv. Mater. Res. 1104 (2015) 9–14. https://doi.org/10.4028/www.scientific.net/amr.1104.9.
[4] X. Duan, D. Jia, Z. Wang, D. Cai, Z. Tian, et al., Influence of hot-press sintering parameters on microstructures and mechanical properties of h-BN ceramics, J. Alloys Compd. 684 (2016) 474–480. https://doi.org/10.1016/j.jallcom.2016.05.153.
[5] T. Hagio, H. Yoshida, Sintering and crystallization of ground hexagonal boron nitride powders, J. Mater. Sci. Lett. 13 (1994) 653–655. https://doi.org/10.1007/BF00271224.
[6] A. Lipp, K.A. Schwetz, K. Hunold, Hexagonal boron nitride: Fabrication, properties and applications, J. Eur. Ceram. Soc. 5 (1989) 3–9. https://doi.org/10.1016/0955-2219(89)90003-4.
[7] H. Yang, F. Gao, M. Dai, D. Jia, Y. Zhou, P. Hu, Recent advances in preparation, properties and device applications of twodimensional h-BN and its vertical heterostructures, J. Semicond. 38 (2017) 031004. https://doi.org/10.1088/1674-4926/38/3/031004.
[8] T. Hagio, K. Kobayashi, H. Yoshida, H. Yasunaga, H. Nishikawa, Sintering of the Mechanochemically Activated Powders of Hexagonal Boron Nitride, J. Am. Ceram. Soc. 72 (1989) 1482–1484. https://doi.org/10.1111/j.1151-2916.1989.tb07682.x.
[9] B. Ertug, Powder Preparation, Properties and Industrial Applications of Hexagonal Boron Nitride, Sinter. Appl. InTech. (2013). https://doi.org/10.5772/53325.
[10] C. Steinborn, M. Herrmann, U. Keitel, A. Schönecker, J. Räthel, et al., Correlation between microstructure and electrical resistivity of hexagonal boron nitride ceramics, J. Eur. Ceram. Soc. 33 (2013) 1225–1235. https://doi.org/10.1016/j.jeurceramsoc.2012.11.024.
[11] X. Gao, C. Zhang, P. Man, Y. Chang, B. Zhao, et al., Reaction mechanism and microstructure evolution of reaction sintered h-BN, J. Wuhan Univ. Technol. Mater. Sci. Ed. 32 (2017) 345–348. https://doi.org/10.1007/s11595-017-1601-2.
[12] H. Yang, H. Fang, H. Yu, Y. Chen, L. Wang, et al., Low temperature self-densification of high strength bulk hexagonal boron nitride, Nat. Commun. 10 (2019) 854. https://doi.org/10.1038/s41467-019-08580-9.
[13] X. Duan, D. Jia, Z. Wu, Z. Tian, Z. Yang, et al., Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics, Scr. Mater. 68 (2013) 104–107. https://doi.org/10.1016/j.scriptamat.2012.09.012.
[14] J.X. Xue, J.X. Liu, B.H. Xie, G.J. Zhang, Pressure-induced preferential grain growth, texture development and anisotropic properties of hot pressed hexagonal boron nitride ceramics, Scr. Mater. 65 (2011) 966–969. https://doi.org/10.1016/j.scriptamat.2011.08.025.
[15] C. Xia, S.A. Delbari, Z. Ahmadi, M. Shahedi Asl, M. Ghassemi Kakroudi, et al., Electron microscopy study of ZrB2–SiC–AlN composites: Hot-pressing vs. pressureless sintering, Ceram. Int. 46 (2020) 29334–29338. https://doi.org/10.1016/j.ceramint.2020.08.054.
[16] V.H. Nguyen, S.A. Delbari, Z. Ahmadi, M. Shahedi Asl, M. Ghassemi Kakroudi, et al., Electron microscopy characterization of porous ZrB2–SiC–AlN composites prepared by pressureless sintering, Ceram. Int. 46 (2020) 25415–25423. https://doi.org/10.1016/j.ceramint.2020.07.011.
[17] M. Ghassemi Kakroudi, N. Pourmohammadie Vafa, M. Shahedi Asl, M. Shokouhimehr, Effects of SiC content on thermal shock behavior and elastic modulus of cordierite–mullite composites. Ceram. Int. 46 (2020) 23780–23784. https://doi.org/10.1016/j.ceramint.2020.06.153.
[18] M. Khoeini, A. Nemati, M. Zakeri, M. Shahedi Asl, Pressureless sintering of ZrB2 ceramics codoped with TiC and graphite, Int. J. Refract. Met. Hard Mater. 81 (2019) 189–195. https://doi.org/10.1016/j.ijrmhm.2019.02.026.
[19] N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, M. Shahedi Asl, Role of h-BN content on microstructure and mechanical properties of hot-pressed ZrB2–SiC composites, Ceram. Int. 46 (2020) 21533–21541. https://doi.org/10.1016/j.ceramint.2020.05.255.
[20] N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, M. Shahedi Asl, Advantages and disadvantages of graphite addition on the characteristics of hot-pressed ZrB2–SiC composites. Ceram. Int. 46 (2020) 8561–8566. https://doi.org/10.1016/j.ceramint.2019.12.086.
[21] T.P. Nguyen, M. Ghassemi Kakroudi, M. Shahedi Asl, Z. Ahmadi, A. Sabahi Namini, et al., Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites, Ceram. Int. 46 (2020) 19209–19216. https://doi.org/10.1016/j.ceramint.2020.04.258.
[22] S. Haji Amiri, M. Ghassemi Kakroudi, T. Rabizadeh, M. Shahedi Asl, Characterization of hot-pressed Ti3SiC2–SiC composites, Int. J. Refract. Met. Hard Mater. 90 (2020) 105232. https://doi.org/10.1016/j.ijrmhm.2020.105232.
[23] M. Ghassemi Kakroudi, M. Dehghanzadeh Alvari, M. Shahedi Asl, N. Pourmohammadie Vafa, T. Rabizadeh, Hot pressing and oxidation behavior of ZrB2–SiC–TaC composites, Ceram. Int. 46 (2020) 3725–3730. https://doi.org/10.1016/j.ceramint.2019.10.093.
[24] V.H. Nguyen, S.A. Delbari, M. Shahedi Asl, Q.V. Le, H.W. Jang, et al., A novel TiC-based composite co-strengthened with AlN particulates and graphene nano-platelets. Int. J. Refract. Met. Hard Mater. 92 (2020) 105331. https://doi.org/10.1016/j.ijrmhm.2020.105331.
[25] V.H. Nguyen, M. Shahedi Asl, Z. Hamidzadeh Mahaseni, M. Dashti Germi, S.A. Delbari, et al., Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method, Ceram. Int. 46 (2020) 25341–25350. https://doi.org/10.1016/j.ceramint.2020.07.001.
[26] B. Nayebi, N. Parvin, J. Aghazadeh Mohandesi, M. Shahedi Asl, Effect of Zr and C co-addition on the characteristics of ZrB2-based ceramics: Role of spark plasma sintering temperature, Ceram. Int. 46 (2020) 24975–24985. https://doi.org/10.1016/j.ceramint.2020.06.283.
[27] C. Xia, M. Shahedi Asl, A. Sabahi Namini, Z. Ahmadi, S.A. Delbari, et al. Enhanced fracture toughness of ZrB2–SiCw ceramics with graphene nano-platelets, Ceram. Int. 46 (2020) 24906–24915. https://doi.org/10.1016/j.ceramint.2020.06.275.
[28] V.H. Nguyen, Y. Pazhouhanfar, S.A. Delbari, S. Shaddel, A. Babapoor, et al., Beneficial role of carbon black on the properties of TiC ceramics, Ceram. Int. 46 (2020) 23544–23555. https://doi.org/10.1016/j.ceramint.2020.06.125.
[29] H. Istgaldi, B. Nayebi, Z. Ahmadi, P. Shahi, M. Shahedi Asl, Characterization of ZrB2–TiC composites reinforced with short carbon fibers, Ceram. Int. 46 (2020) 23155–23164. https://doi.org/10.1016/j.ceramint.2020.06.095.
[30] T. Kusunose, T. Sekino, Thermal conductivity of hot-pressed hexagonal boron nitride, Scr. Mater. 124 (2016) 138–141. https://doi.org/10.1016/j.scriptamat.2016.07.011.
[31] F.R. Zhai, M. Lu, K. Shan, Z.Z. Yi, Z.P. Xie, Spark plasma sintering and characterization of mixed h-bn powders with different grain sizes, Solid State Phenom. 281 (2018) 414–419. https://doi.org/10.4028/www.scientific.net/SSP.281.414.
[32] N. Ay, I. Tore, Pressureless Sintering of Hexagonal Boron Nitride Powders, Mater. Sci. Forum. 554 (2007) 207–212. https://doi.org/10.4028/www.scientific.net/msf.554.207.
[33] M. Shahedi Asl, S.A. Delbari, M. Azadbeh, A. Sabahi Namini, M. Mehrabian, et al., Nanoindentational and conventional mechanical properties of spark plasma sintered Ti–Mo alloys, J. Mater. Res. Technol. 9 (2020) 10647–10658. https://doi.org/10.1016/j.jmrt.2020.07.066.
[34] M. Hubacek, M. Ueki, Presuureless-sintered boron nitride with limithed content of boric oxide, J. Soc. Mater. Sci. 44 (1995) 209–212. https://doi.org/10.2472/jsms.44.507Appendix_209.
[35] F. Olevsky, P. Mogilevsky, E.Y. Gutmanas, I. Gotman, Synthesis of in situ TiB2/TiN ceramic matrix composites from dense BN-Ti and BN-Ti-Ni powder blends, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 27 (1996) 2071–2079. https://doi.org/10.1007/BF02651860.
[36] T. Saito, F. Honda, Chemical contribution to friction behavior of sintered hexagonal boron nitride in water, Wear. 237 (2000) 253–260. https://doi.org/10.1016/S0043-1648(99)00346-4.
[37] Y .Cao, L. Du, C. Huang, W. Liu, W. Zhang, Wear behavior of sintered hexagonal boron nitride under atmosphere and water vapor ambiences, Appl. Surf. Sci. 257 (2011) 10195–10200. https://doi.org/10.1016/j.apsusc.2011.07.018.
[38] M. Kitiwan, A. Ito, T. Goto, Phase transformation and densification of hBN-TiN composites fabrication by spark plasma sintering, Key Eng. Mater. 508 (2012) 52–55. https://doi.org/10.4028/www.scientific.net/KEM.508.52.
[39] M. Kitiwan, A. Ito, T. Goto, B deficiency in TiB2 and B solid solution in TiN in TiN–TiB2 composites prepared by spark plasma sintering, J. Eur. Ceram. Soc. 32 (2012) 4021–4024. https://doi.org/10.1016/j.jeurceramsoc.2012.06.024.

Cited By

Crossref Google Scholar
In-situ synthesis of TiN and TiB2 compounds during reactive spark plasma sintering of BN–Ti composites
Submitted
2021-03-13
Available online
2021-04-23
How to Cite
Abdolahpour Salari, M., Merhan Muğlu, G., Rezaei, M., Saravana Kumar, M., Pulikkalparambil, H., & Siengchin, S. (2021). In-situ synthesis of TiN and TiB2 compounds during reactive spark plasma sintering of BN–Ti composites. Synthesis and Sintering, 1(1), 48-53. https://doi.org/10.53063/synsint.2021.119

Most read articles by the same author(s)