Recent advances in synthesis of ultra-high temperature ceramic matrix composites

  • Farrokhfar Valizadeh Harzand 1
  • Sahar Anzani 2
  • Aziz Babapoor 1
  • 1 Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
  • 2 Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

A ceramic material designed for ultra-high temperatures (UHTCs) generally comprised of nitrides, carbides, and borides derived from transition metal elements, with a particular focus on compounds belonging to TaC and Group IVB (Hf and Zr). Hypersonic vehicle nozzles and engine components can take advantage of the unique characteristics of these materials. A broad range of coatings and composites based on UHTC is currently being developed to conquer the inherent fragility, weak thermal shock resistance, and brittleness of bulk ceramics. Ultra-high temperature materials with high entropy have gained considerable attention in recent years. A review of the current state of the art of UHTC composites and coatings will be provided in this report. Properties and processing approaches to achieve the microstructure will be discussed further.

Downloads

Download data is not yet available.
Keywords: Advanced ceramics, UHTCs, Synthesis, Sintering, Coating, Infiltration

References

[1] W.G. Fahrenholtz, G.E. Hilmas, Ultra-high temperature ceramics: materials for extreme environments, Scr. Mater. 129 (2017) 94–99. https://doi.org/10.1016/j.scriptamat.2016.10.018.
[2] R. Loehman, E. Corral, H.P. Dumm, P. Kotula, R. Tandon, Ultrahigh-temperature ceramics for hypersonic vehicle applications, Ind. Heat. 71 (2004) 36–38. https://doi.org/10.2172/887260.
[3] E. Wuchina, E. Opila, M. Opeka, B. Fahrenholtz, I. Talmy, UHTCs: ultra-high temperature ceramic materials for extreme environment applications, Electrochem. Soc. Interface. 16 (2007) 30. https://doi.org/10.1149/2.F04074IF.
[4] J. Justin, A. Jankowiak, Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability, Aerospace Lab. 3 (2011) 1–11.
[5] M.J. Gasch, D.T. Ellerby, S.M. Johnson, Ultra high temperature ceramic composites, Handbook of ceramic composites, Springer, Boston, MA. (2005) 197–224. https://doi.org/10.1007/0-387-23986-3_9.
[6] W.G. Fahrenholtz, A Historical Perspective on Research Related to Ultra‐High Temperature Ceramics, Ultra‐High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Ltd. (2014) 6–32. https://doi.org/10.1002/9781118700853.ch2.
[7] E. Ionescu, S. Bernard, R. Lucas, P. Kroll, S. Ushakov, et al., Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials, Ceramics, Glass and Glass-Ceramics, Springer, Cham. (2021) 281–323. https://doi.org/10.1007/978-3-030-85776-9_9.
[8] J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, et al., High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics, Sci. Rep. 6 (2016) 1–10. https://doi.org/10.1038/srep37946.
[9] L. Guo, Y. Wang, B. Liu, Y. Zhang, Y. Tang, et al., In-situ phase evolution of multi-component boride to high-entropy ceramic upon ultra-high temperature ablation. J. Eur. Ceram. Soc. 43 (2023) 1322–1333. https://doi.org/10.1016/j.jeurceramsoc.2022.11.019.
[10] E. Opila, S. Levine, J. Lorincz, Oxidation of ZrB2-and HfB2-based ultra-high temperature ceramics: effect of Ta additions, J. Mater. Sci. 39 (2004) 5969–5977. https://doi.org/10.1023/B:JMSC.0000041693.32531.d1.
[11] S. Tang, J. Deng, S. Wang, W. Liu, K. Yang, Ablation behaviors of ultra-high temperature ceramic composites, Mater. Sci. Eng. A. 465 (2007) 1–7. https://doi.org/10.1016/j.msea.2007.02.040.
[12] I. FarahBakhsh, R. Antiochia, H.W. Jang, Pressureless sinterability study of ZrB2–SiC composites containing hexagonal BN and phenolic resin additives, Synth. Sinter. 1 (2021) 99–104. https://doi.org/10.53063/synsint.2021.1231.
[13] Z. Bahararjmand, M.A. Khalilzadeh, F. Saberi-Movahed, T.H. Lee, J. Wang, S.- hoon Lee, H. W. Jang, Role of Si3N4 on microstructure and hardness of hot-pressed ZrB2−SiC composites, Synth. Sinter. 1 (2021) 34–40. https://doi.org/10.53063/synsint.2021.1113.
[14] D. Sciti, L. Silvestroni, V. Medri, F. Monteverde, Sintering and densification mechanisms of ultra‐high temperature ceramics. Ultra‐High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Ltd. (2014) 112–143. https://doi.org/10.1002/9781118700853.ch6.
[15] L. Silvestroni, D. Sciti, Densification of ZrB2–TaSi2 and HfB2–TaSi2 ultra‐high‐temperature ceramic composites, J. Am. Ceram. Soc. 94 (2011) 1920–1930. https://doi.org/10.1111/j.1551-2916.2010.04317.x.
[16] S. Tang, C. Hu, Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review, J. Mater. Sci. Technol. 33 (2017) 117–130. https://doi.org/10.1016/j.jmst.2016.08.004.
[17] Y. Tong, Y. Hu, X. Liang, Z. Zhang, Y. Li, et al., Carbon fiber reinforced ZrC based ultra-high temperature ceramic matrix composite subjected to laser ablation: Ablation resistance, microstructure and damage mechanism, Ceram. Int. 46 (2020) 14408–14415. https://doi.org/10.1016/j.ceramint.2020.02.236.
[18] F. Yang, X. Zhang, J. Han, S. Du, Characterization of hot-pressed short carbon fiber reinforced ZrB2–SiC ultra-high temperature ceramic composites, J. Alloys Compd. 472 (2009) 395–399. https://doi.org/10.1016/j.jallcom.2008.04.092.
[19] P. Hu, Y. Cheng, P. Wang, X. Guo, C. Ma, et al., Rolling compacted fabrication of carbon fiber reinforced ultra-high temperature ceramics with highly oriented architectures and exceptional mechanical feedback, Ceram. Int. 44 (2018) 14907–14912. https://doi.org/10.1016/j.ceramint.2018.04.249.
[20] T. Cheng, Ultra-high-temperature mechanical behaviors of two-dimensional carbon fiber reinforced silicon carbide composites: Experiment and modelling, J. Eur. Ceram. Soc. 41 (2021) 2335–2346. https://doi.org/10.1016/j.jeurceramsoc.2020.11.057.
[21] Y. Arai, R. Inoue, K. Goto, Y. Kogo, Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review, Ceram. Int. 45 (2019) 14481–14489. https://doi.org/10.1016/j.ceramint.2019.05.065.
[22] A. Paul, S. Venugopal, J. Binner, B. Vaidhyanathan, A. Heaton, P. Brown, UHTC–carbon fibre composites: preparation, oxyacetylene torch testing and characterisation, J. Eur. Ceram. Soc. 33 (2013) 423–432. https://doi.org/10.1016/j.jeurceramsoc.2012.08.018.
[23] A. Vinci, L. Silvestroni, N. Gilli, L. Zoli, D. Sciti, Advancements in carbon fibre reinforced ultra-refractory ceramic composites: Effect of rare earth oxides addition, Compos. A: Appl. Sci. 156 (2022) 106858. https://doi.org/10.1016/j.compositesa.2022.106858.
[24] V. Rubio, P. Ramanujam, J. Binner, Ultra-high temperature ceramic composite, Adv. Appl. Ceram. 117 (2018) 56–61. https://doi.org/10.1080/17436753.2018.1475140.
[25] X. Zhang, L. Xu, S. Du, C. Liu, J. Han, W. Han, Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics. J. Alloys Compd. 466 (2008) 241–245. https://doi.org/10.1016/j.jallcom.2007.11.018.
[26] F. Monteverde, Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering. J. Alloys Compd. 428 (2007) 197–205. https://doi.org/10.1016/j.jallcom.2006.01.107.
[27] O. Popov, J. Vleugels, E. Zeynalov, V. Vishnyakov, Reactive hot pressing route for dense ZrB2-SiC and ZrB2-SiC-CNT ultra-high temperature ceramics, J. Eur. Ceram. Soc. 40 (2020) 5012–5019. https://doi.org/10.1016/j.jeurceramsoc.2020.07.039.
[28] H. Istgaldi, M. Mehrabian, F. Kazemi, B. Nayebi, Reactive spark plasma sintering of ZrB2-TiC composites: Role of nano-sized carbon black additive, Synth. Sinter. 2 (2022) 67–77. https://doi.org/10.53063/synsint.2022.22107.
[29] E. Dodi, Z. Balak, H. Kafashan, Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites, Synth. Sinter. 2 (2022) 31–36. https://doi.org/10.53063/synsint.2022.21111.
[30] B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Review on ultra-high temperature boride ceramics. Prog. Mater. Sci. 111 (2020) 100651. https://doi.org/10.1016/j.pmatsci.2020.100651.
[31] R. Liu, X. Liu, Y. Wang, H. Miao, C. Song, et al., Laser ablation behavior and mechanism of Cf/SiC–ZrC ultra-high temperature ceramic matrix composite prepared by PIP method, Ceram. Int. 47 (2021) 23610–23619. https://doi.org/10.1016/j.ceramint.2021.05.080.
[32] L.M. Rueschhoff, C.M. Carney, Z.D. Apostolov, M.K. Cinibulk, Processing of fiber‐reinforced ultra‐high temperature ceramic composites: A review, Int. J. Ceram. Eng. Sci. 2 (2020) 22–37. https://doi.org/10.1002/ces2.10033.
[33] D. Sciti, L. Zoli, T. Reimer, A. Vinci, P. Galizia, A systematic approach for horizontal and vertical scale up of sintered Ultra-High Temperature Ceramic Matrix Composites for aerospace–Advances and perspectives, Compos. B: Eng. 234 (2022) 109709. https://doi.org/10.1016/j.compositesb.2022.109709.
[34] J. Gu, S.-H. Lee, V.H. Vu, J. Yang, H.-S. Lee, J.-S. Kim, Fast fabrication of SiC particulate-reinforced SiC composites by modified PIP process using spark plasma sintering–effects of green density and heating rate. J. Eur. Ceram. Soc. 41 (2021) 4037–4047. https://doi.org/10.1016/j.jeurceramsoc.2021.02.025.
[35] D. Sciti, P. Galizia, T. Reimer, A. Schoberth, C. Gutiérrez-Gonzalez, et al., Properties of large scale ultra-high temperature ceramic matrix composites made by filament winding and spark plasma sintering, Compos. B: Eng. 216 (2021) 108839. https://doi.org/10.1016/j.compositesb.2021.108839.
[36] H. Zhang, X. Liang, Y. Hu, P. Zhang, L. Yang, et al., Correlation of C/C preform density and microstructure and mechanical properties of C/C-ZrC-based ultra-high-temperature ceramic matrix composites, Adv. Compos. Hybrid Mater. 4 (2021) 743–750. https://doi.org/10.1007/s42114-021-00295-0.
[37] Y. Zeng, D. Wang, X. Xiong, S. Gao, Z. Chen, et al., Ultra-high-temperature ablation behavior of SiC–ZrC–TiC modified carbon/carbon composites fabricated via reactive melt infiltration, J. Eur. Ceram. Soc. 40 (2020) 651–659. https://doi.org/10.1016/j.jeurceramsoc.2019.10.027.
[38] E.L. Corral, R.E. Loehman, Ultra‐high‐temperature ceramic coatings for oxidation protection of carbon–carbon composites, J. Am. Ceram. Soc. 91 (2008) 1495–1502. https://doi.org/10.1111/j.1551-2916.2008.02331.x.
[39] B. Baker, V. Rubio, P. Ramanujam, J. Binner, A. Hussain, et al., Development of a slurry injection technique for continuous fibre ultra-high temperature ceramic matrix composites, J. Eur. Ceram. Soc. 39 (2019) 3927–3937. https://doi.org/10.1016/j.jeurceramsoc.2019.05.070.
[40] F. Li, X. Huang, J.-X. Liu, G.-J. Zhang, Sol-gel derived porous ultra-high temperature ceramics, J. Adv. Ceram. 9 (2020) 1–16. https://doi.org/10.1007/s40145-019-0332-6.
[41] S. Lai, J. Zang, W. Shen, G. Huang, C. Fang, et al., High hardness and high fracture toughness B4C-diamond ceramics obtained by high-pressure sintering, J. Eur. Ceram. Soc. 43 (2023) 3090–3095. https://doi.org/10.1016/j.jeurceramsoc.2023.01.044.
[42] D.D. Jayaseelan, R.G. De Sa, P. Brown, W.E. Lee, Reactive infiltration processing (RIP) of ultra high temperature ceramics (UHTC) into porous C/C composite tubes, J. Eur. Ceram. Soc. 31 (2011) 361–368. https://doi.org/10.1016/j.jeurceramsoc.2010.10.013.
[43] X. Jin, X. Fan, C. Lu, T. Wang, Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites, J. Eur. Ceram. Soc. 38 (2018) 1–28. https://doi.org/10.1016/j.jeurceramsoc.2017.08.013.
[44] Z. Tan, X. Wu, W. Zhu, J. Guo, W. Wang, Z. Ma, Ultra-high hardness induced by W precipitation within Ta-Hf-WC ultra-high temperature ceramic coatings, J. Eur. Ceram. Soc. 42 (2022) 6288–6294. https://doi.org/10.1016/j.jeurceramsoc.2022.05.069.
[45] M. Tului, S. Lionetti, G. Pulci, E. Rocca, T. Valente, G. Marino, Effects of heat treatments on oxidation resistance and mechanical properties of ultra high temperature ceramic coatings, Surf. Coat. Technol. 202 (2008) 4394–4398. https://doi.org/10.1016/j.surfcoat.2008.04.015.
[46] L. Xu, J. Cheng, X. Li, Y. Zhang, Z. Fan, et al., Preparation of carbon/carbon‐ultra high temperature ceramics composites with ultra high temperature ceramics coating. J. Am. Ceram. Soc. 101 (2018) 3830–3836. https://doi.org/10.1111/jace.15565.
[47] J. Ren, Y. Zhang, H. Hu, T. Fei, H. Li, Oxidation resistance and mechanical properties of HfC nanowire-toughened ultra-high temperature ceramic coating for SiC-coated C/C composites. Appl. Surf. Sci. 360 (2016) 970–978. https://doi.org/10.1016/j.apsusc.2015.11.097.
[48] D. Ni, Y. Cheng, J. Zhang, J.-X. Liu, J. Zou, et al., Advances in ultra-high temperature ceramics, composites, and coatings. J. Adv. Ceram. 11 (2022) 1–56. https://doi.org/10.1007/s40145-021-0550-6.

Cited By

Crossref Google Scholar
Recent advances in synthesis of ultra-high temperature ceramic matrix composites
Submitted
2021-12-05
Available online
2022-12-30
How to Cite
Valizadeh Harzand, F., Anzani, S., & Babapoor, A. (2022). Recent advances in synthesis of ultra-high temperature ceramic matrix composites. Synthesis and Sintering, 2(4), 186-190. https://doi.org/10.53063/synsint.2022.2475

Most read articles by the same author(s)