Recent advances in synthesis and applications of mixed matrix membranes

  • Iman Salahshoori 1
  • Ahmad Seyfaee 2
  • Aziz Babapoor 3
  • 1 Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • 2 School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
  • 3 Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Researchers are currently considering membranes separation processes due to their eco-friendly, process simplicity and high efficiency. Selecting a suitable and efficient operation is the primary concern of researchers in the field of separation industries. In recent decades, polymeric and inorganic membranes in the separation industry have made significant progress. The polymeric and inorganic membranes have been challenged due to their competitiveness in permeability and selectivity factors. A combination of nanoparticle fillers within the polymer matrix is an effective method to increase polymeric and inorganic membranes’ efficiency in separation processes. Mixed matrix membranes (MMMs) have been considered by the separation industry due to high mechanical and physicochemical, and transfer properties.  Moreover, gas separation, oil treatment, heavy metal ions removal, water treatment and oil-water separation are common MMMs applications. Selecting suitable polymer blends and fillers is the key to the MMMs construction. The combination of rubbery and glassy polymers with close solubility parameters increases the MMMs performance. The filler type and synthesis methods also affect the morphological and transfer properties of MMMs significantly. Zeolites, graphene oxide (GO), nanosilica, carbon nanotubes (CNTs), zeolite imidazole frameworks (ZIFs) and metal-organic frameworks (MOFs) are used in the MMMs synthesis as fillers. Finally, solution mixing, polymerization in situ and sol-gel are the primary synthesising MMMs methods.

Downloads

Download data is not yet available.
Keywords: Separation process, Mixed matrix membranes, Nanofiller, Polymer blend, Synthesis

References

[1] I. Salahshoori, D. Nasirian, N. Rashidi, M.K. Hossain, A. Hatami, M. Hassanzadeganroudsari, The effect of silica nanoparticles on polysulfone–polyethylene glycol (PSF/PEG) composite membrane on gas separation and rheological properties of nanocomposites, Polym. Bull. 78 (2021) 3227–3258. https://doi.org/10.1007/s00289-020-03255-8.
[2] X. Guo, Z. Qiao, D. Liu, C. Zhong, Mixed–matrix membranes for CO2 separation: role of the third component, J. Mater. Chem. A. 7 (2019) 24738–24759. https://doi.org/10.1039/C9TA09012F.
[3] A. Hatami, I. Salahshoori, N. Rashidi, D. Nasirian, The effect of ZIF-90 particle in Pebax/Psf composite membrane on the transport properties of CO2, CH4 and N2 gases by Molecular Dynamics Simulation method, Chin. J. Chem. Eng. 28 (2020) 2267–2284. https://doi.org/10.1016/j.cjche.2019.12.011.
[4] D.R. Paul, D.R. Kemp, The diffusion time lag in polymer membranes containing adsorptive fillers, J. Polym. Sci. Polym. Symp. 41 (1973) 79–93. https://doi.org/10.1002/polc.5070410109.
[5] Y. Yuan, Z. Qiao, J. Xu, J. Wang, S. Zhao, et al., Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels, J. Membr. Sci. 620 (2021) 118923. https://doi.org/10.1016/j.memsci.2020.118923.
[6] H. Liang, C. Zou, W. Tang, Development of novel polyether sulfone mixed matrix membranes to enhance antifouling and sustainability: Treatment of oil sands produced water (OSPW), J. Taiwan Inst. Chem. Eng. 118 (2021). https://doi.org/10.1016/j.jtice.2020.12.022.
[7] E. Abdulkarem, Y. Ibrahim, M. Kumar, H.A. Arafat, V. Naddeo, et al., Polyvinylidene fluoride (PVDF) –α–zirconium phosphate (α–ZrP) nanoparticles based mixed matrix membranes for removal of heavy metal ions, Chemosphere. 267 (2021) 128896. https://doi.org/10.1016/j.chemosphere.2020.128896.
[8] C.H. Nguyen, C.-C. Fu, D.-Y. Kao, T.T.V. Tran, R.-S. Juang, Adsorption removal of tetracycline from water using poly(vinylidene fluoride)/polyaniline-montmorillonite mixed matrix membranes, J. Taiwan Inst. Chem. Eng. 112 (2020) 259–270. https://doi.org/10.1016/j.jtice.2020.06.007.
[9] M.R. De Guzman, C.K.A. Andra, M.B.M.Y. Ang, G.V.C. Dizon, A.R. Caparanga, et al., Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation, J. Membr. Sci. 620 (2021) 118881. https://doi.org/10.1016/j.memsci.2020.118881.
[10] D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, J. Ind. Eng. Chem. 19 (2013) 375–393. https://doi.org/10.1016/j.jiec.2012.09.019.
[11] B. Zhang, Q. Yan, G. Chen, C. Yi, S. Qi, B. Yang, Fabrication of mixed matrix membranes with zinc ion loaded titanium dioxide for improved CO2 separation, Sep. Purif. Technol. 254 (2021) 117472. https://doi.org/10.1016/j.seppur.2020.117472.
[12] M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Montazer-Rahmati, Performance studies of mixed matrix membranes for gas separation: A review, Sep. Purif. Technol. 75 (2010) 229–242. https://doi.org/10.1016/j.seppur.2010.08.023.
[13] P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Sep. Purif. Technol. 81 (2011) 243–264. https://doi.org/10.1016/j.seppur.2011.07.042.
[14] W.F. Yong, H. Zhang, Recent advances in polymer blend membranes for gas separation and pervaporation, Prog. Mater. Sci. 116 (2021) 100713. https://doi.org/10.1016/j.pmatsci.2020.100713.
[15] J.-T. Chen, C.-C. Shih, Y.-J. Fu, S.-H. Huang, C.-C. Hu, et al., Zeolite-filled porous mixed matrix membranes for air separation, Ind. Eng. Chem. Res. 53 (2014) 2781–2789. https://doi.org/10.1021/ie403833u.
[16] J. Shen, M. Zhang, G. Liu, K. Guan, W. Jin, Size effects of graphene oxide on mixed matrix membranes for CO2 separation, AIChE J. 62 (2016) 2843–2852. https://doi.org/10.1002/aic.15260.
[17] K. Goh, H.E. Karahan, E. Yang, T.-H. Bae, Graphene-based membranes for CO2/CH4 separation: Key challenges and perspectives, Appl. Sci. 9 (2019) 2784. https://doi.org/10.3390/app9142784.
[18] W.K. Setiawan, K.-Y. Chiang, Silica applied as mixed matrix membrane inorganic filler for gas separation: a review, Sustain. Environ. Res. 29 (2019) 1–21. https://doi.org/10.1186/s42834-019-0028-1.
[19] H. Zhang, R. Guo, J. Hou, Z. Wei, X. Li, Mixed-matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO2 separation, ACS Appl. Mater. Interfaces. 8 (2016) 29044–29051. https://doi.org/10.1021/acsami.6b09786.
[20] S. Sanip, A. Ismail, P. Goh, T. Soga, M. Tanemura, H. Yasuhiko, Gas separation properties of functionalized carbon nanotubes mixed matrix membranes, Sep. Purif. Technol. 78 (2011) 208–213. https://doi.org/10.1016/j.seppur.2011.02.003.
[21] L. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen, C. Wang, Preparation of Poly(ether–block–amide)/Attapulgite Mixed Matrix Membranes for CO2/N2 Separation, J. Membr. Sci. 500 (2015) 66–75. https://doi.org/10.1016/j.memsci.2015.11.017.
[22] J.A. Thompson, J.T. Vaughn, N.A. Brunelli, W.J. Koros, C.W. Jones, S. Nair, Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas, Microporous Mesoporous Mater. 192 (2014) 43–51. https://doi.org/10.1016/j.micromeso.2013.06.036.
[23] R. Lin, B.V. Hernandez, L. Ge, Z. Zhu, Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces, J. Mater. Chem. A. 6 (2018) 293–312. https://doi.org/10.1039/C7TA07294E.
[24] B. Zhou, Q. Li, Q. Zhang, J. Duan, W. Jin, Sharply promoted CO2 diffusion in a mixed matrix membrane with hierarchical supra-nanostructured porous coordination polymer filler, J. Membr. Sci. 597 (2020) 117772. https://doi.org/10.1016/j.memsci.2019.117772.
[25] M.S. Maleh, A. Raisi, Comparison of porous and nonporous filler effect on performance of poly (ether–block–amide) mixed matrix membranes for gas separation applications, Chem. Eng. Res. Des. 147 (2019) 545–560. https://doi.org/10.1016/j.cherd.2019.05.038.
[26] K. Duan, J. Wang, Y. Zhang, J. Liu, Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation, J. Membr. Sci.572 (2019) 588–595. https://doi.org/10.1016/j.memsci.2018.11.054.
[27] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci. 32 (2007) 483–507. https://doi.org/10.1016/j.progpolymsci.2007.01.008.
[28] M. Carreon, G. Dahe, J. Feng, S.R. Venna, Mixed Matrix Membranes for Gas Separation Applications, Membranes for Gas Separations, World Scientific. (2017) 1–57. https://doi.org/10.1142/9789813207714_0001.
[29] Q. Xin, C. Zhang, Y. Zhang, Q. Liang, L. Zhang, et al., Constructing superhydrophobic surface of PES/PES-SiO2 mixed matrix membrane contactors for efficient SO2 capture, Sep. Purif. Technol. 259 (2021) 118222. https://doi.org/10.1016/j.seppur.2020.118222.
[30] M.D. Asl, I. Salahshoori, A. Seyfaee, A. Hatami, A.A. Golbarari, Experimental results and optimization via design of experiment (DOE) of the copper ion recovery from aqueous solutions using emulsion liquid membrane (ELM) method, Desalin. Water Treat. 204 (2020) 238–256. https://doi.org/10.5004/dwt.2020.26280.
[31] I. Salahshoori, A. Hatami, A. Seyfaee, Investigation of experimental results and D-optimal design of hafnium ion extraction from aqueous system using emulsion liquid membrane technique, J. Iran. Chem. Soc. 18 (2021) 87–107. https://doi.org/10.1007/s13738-020-02007-9.
[32] M.R. Awual, G.E. Eldesoky, T. Yaita, M. Naushad, H. Shiwaku, et al., Schiff based ligand containing nano-composite adsorbent for optical copper (II) ions removal from aqueous solutions, Chem. Eng. J. 279 (2015) 639–647. https://doi.org/10.1016/j.cej.2015.05.049.
[33] S. Bolisetty, M. Peydayesh, R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis, Chem. Soc. Rev. 48 (2019) 463–487. https://doi.org/10.1039/C8CS00493E.
[34] R. Mukherjee, P. Bhunia, S. De, Impact of graphene oxide on removal of heavy metals using mixed matrix membrane, Chem. Eng. J. 292 (2016) 284–297. https://doi.org/10.1016/j.cej.2016.02.015.
[35] A. Zirehpour, A. Rahimpour, M. Jahanshahi, M. Peyravi, Mixed matrix membrane application for olive oil wastewater treatment: Process optimization based on Taguchi design method, J. Environ. Manage. 132 (2014) 113–120. https://doi.org/10.1016/j.jenvman.2013.10.028.
[36] S. Saqib, S. Rafiq, N. Muhammad, A.L. Khan, A. Mukhtar, et al., Sustainable mixed matrix membranes containing porphyrin and polysulfone polymer for acid gas separations, J. Hazard. Mater. 411 (2021) 125155. https://doi.org/10.1016/j.jhazmat.2021.125155.
[37] C. Wang, G. Ren, K. Wei, D. Liu, T. Wu, et al., Improved dispersion performance and interfacial compatibility of covalent-grafted MOFs in mixed-matrix membranes for gas separation, Green Chem. Eng. 2 (2021) 86–95. https://doi.org/10.1016/j.gce.2020.11.002.
[38] P. Natarajan, B. Sasikumar, S. Elakkiya, G. Arthanareeswaran, A.F. Ismail, et al., Pillared cloisite 15A as an enhancement filler in polysulfone mixed matrix membranes for CO2/N2 and O2/N2 gas separation, J. Nat. Gas Eng. 86 (2021) 103720. https://doi.org/10.1016/j.jngse.2020.103720.
[39] M. van Essen, L. van den Akker, R. Thür, M. Houben, I.F.J. Vankelecom, et al., The influence of pore aperture, volume and functionality of isoreticular gmelinite zeolitic imidazolate frameworks on the mixed gas CO2/N2 and CO2/CH4 separation performance in mixed matrix membranes, Sep. Purif. Technol. 260 (2021) 118103. https://doi.org/10.1016/j.seppur.2020.118103.
[40] M. Raouf, R. Abedini, M. Omidkhah, E. Nezhadmoghadam, A favored CO2 separation over light gases using mixed matrix membrane comprising polysulfone/polyethylene glycol and graphene hydroxyl nanoparticles, Process Saf. Environ. Prot. 133 (2020) 394–407. https://doi.org/10.1016/j.psep.2019.11.002.
[41] H. Taheri Afarani, M. Sadeghi, A. Moheb, E.N. Esfahani, Optimization of the gas separation performance of polyurethane–zeolite 3A and ZSM–5 mixed matrix membranes using response surface methodology, Chin. J. Chem. Eng. 27 (2019) 110–129. https://doi.org/10.1016/j.cjche.2018.03.013.
[42] C. Song, R. Li, Z. Fan, Q. Liu, B. Zhang, Y. Kitamura, CO2/N2 separation performance of Pebax/MIL-101 and Pebax /NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation, Sep. Purif. Technol. 238 (2020) 116500. https://doi.org/10.1016/j.seppur.2020.116500.
[43] A. Jomekian, R.M. Behbahani, T. Mohammadi, A. Kargari, CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane, J. Nat. Gas Eng. 31 (2016) 562–574. https://doi.org/10.1016/j.jngse.2016.03.067.
[44] H.J. Lee, S.W. Kang, Activated potassium ions as CO2 carriers for PEBAX-5513/KBF4 composite membranes, Sep. Purif. Technol. 258 (2021) 117971. https://doi.org/10.1016/j.seppur.2020.117971.
[45] H.R. Amedi, M. Aghajani, Gas separation in mixed matrix membranes based on polyurethane containing SiO2, ZSM-5, and ZIF-8 nanoparticles, J. Nat. Gas Eng. 35 (2016) 695–702. https://doi.org/10.1016/j.jngse.2016.09.015.
[46] T. Li, W. Zhang, S. Zhai, G. Gao, J. Ding, et al., Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane, Water Res. 143 (2018) 87–98. https://doi.org/10.1016/j.watres.2018.06.031.
[47] A. Marjani, A.T. Nakhjiri, M. Adimi, H.F. Jirandehi, S. Shirazian, Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment, Sci. Rep. 10 (2020) 1–11. https://doi.org/10.1038/s41598-020-58472-y.
[48] Y. Yurekli, Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes, J. Hazard Mater. 309 (2016) 53–64. https://doi.org/10.1016/j.jhazmat.2016.01.064.
[49] K.C. Ho, Y.H. Teow, W.L. Ang, A.W. Mohammad, Novel GO/OMWCNTs mixed-matrix membrane with enhanced antifouling property for palm oil mill effluent treatment, Sep. Purif. Technol. 177 (2017) 337–349. https://doi.org/10.1016/j.seppur.2017.01.014.
[50] M. Amid, N. Nabian, M. Delavar, Fabrication of polycarbonate ultrafiltration mixed matrix membranes including modified halloysite nanotubes and graphene oxide nanosheets for olive oil/water emulsion separation, Sep. Purif. Technol. 251 (2020) 117332. https://doi.org/10.1016/j.seppur.2020.117332.
[51] O. Abdalla, M.A. Wahab, A. Abdala, Mixed matrix membranes containing aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation, J. Environ. Chem. Eng. 8 (2020) 104269. https://doi.org/10.1016/j.jece.2020.104269.
[52] A. Alammar, S.-H. Park, C.J. Williams, B. Derby, G. Szekely, Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment, J. Membr. Sci. 603 (2020) 118007. https://doi.org/10.1016/j.memsci.2020.118007.
[53] R.D. Noble, Perspectives on mixed matrix membranes, J. Membr. Sci. 378 (2011) 393–397. https://doi.org/10.1016/j.memsci.2011.05.031.
[54] H. Cong, M. Radosz, B.F. Towler, Y. Shen, Polymer–inorganic nanocomposite membranes for gas separation, Sep. Purif. Technol. 55 (2007) 281–291. https://doi.org/10.1016/j.seppur.2006.12.017.
[55] T.J. Wenzel, A. Skoog Douglas, M. West Donald, F. James Holler, S.R. Crouch: Fundamentals of analytical chemistry, 9th ed., international ed. Anal. Bioanal. Chem. 405 (2013) 7903–7904. https://doi.org/10.1007/s00216-013-7242-1.
[56] S. Meshkat, S. Kaliaguine, D. Rodrigue, Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation, Sep. Purif. Technol. 200 (2018) 177–190. https://doi.org/10.1016/j.seppur.2018.02.038.
[57] M. Farnam, H. bin Mukhtar, A. bin Mohd Shariff, A Review on Glassy and Rubbery Polymeric Membranes for Natural Gas Purification, ChemBioEng. Rev. 8 (2021) 90–109. https://doi.org/10.1002/cben.202100002.
[58] H. Joo Kim, H. Raj Pant, J. Hee Kim, N. Jung Choi, C. Sang Kim, Fabrication of multifunctional TiO2–fly ash/polyurethane nanocomposite membrane via electrospinning, Ceram. Int. 40 (2014) 3023–3029. https://doi.org/10.1016/j.ceramint.2013.10.005.
[59] A. Mushtaq, H.B. Mukhtar, A.M. Shariff, Effect of Glass Transition Temperature in Enhanced Polymeric Blend Membranes, Procedia Eng. 148 (2016) 11–17. https://doi.org/10.1016/j.proeng.2016.06.448.
[60] D. Nasirian, I. Salahshoori, M. Sadeghi, N. Rashidi, M. Hassanzadeganroudsari, Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane, Polym. Bull. 77 (2020) 5529–5552. https://doi.org/10.1007/s00289-019-03031-3.
[61] P. Kubica, A. Wolinska-Grabczyk, E. Grabiec, M. Libera, M. Wojtyniak, et al., Gas transport through mixed matrix membranes composed of polysulfone and copper terephthalate particles, Microporous Mesoporous Mater. 235 (2016) 120–134. https://doi.org/10.1016/j.micromeso.2016.07.037.
[62] M. Ahmadi, S. Janakiram, Z. Dai, L. Ansaloni, L. Deng, Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review, Membranes. 8 (2018) 50. https://doi.org/10.3390/membranes8030050.
[63] M. Valero, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers, Microporous Mesoporous Mater. 192 (2014) 23–28. https://doi.org/10.1016/j.micromeso.2013.09.018.
[64] L.A. Utracki, Commercial polymer blends, Springer New York, NY. (2013). https://doi.org/10.1007/978-1-4615-5789-0.
[65] K. Mortensen, Characterization of Polymer Blends Miscibility, Morphology and Interfaces, Verlag. Ed. Wiley-VCH. (2014) 237–268.
[66] J.A. Covas, L.A. Pessan, A.V. Machado, N.M. Larocca, Polymer blend compatibilization by copolymers and functional polymers, Encyclopedia of Polymer Blends, Wiley-VCH Verlag & Co. KGaA. (2011) 315–356. https://doi.org/10.1002/9783527805242.ch7.
[67] Y.S. Lipatov, A. Nesterov, T. Ignatova, D. Nesterov, Effect of polymer–filler surface interactions on the phase separation in polymer blends, Polymer. 43 (2002) 875–880. https://doi.org/10.1016/S0032-3861(01)00632-2.
[68] M.J. Folkes, P.S. Hope, Polymer blends and alloys, Blackie Academic & Professional, London. (1993).
[69] L.A. Utracki, Compatibilization of polymer blends, Can. J. Chem Eng. 80 (2002) 1008–1016. https://doi.org/10.1002/cjce.5450800601.
[70] N. Mostofi, H. Nazockdast, H. Mohammadigoushki, Study on morphology and viscoelastic properties of PP/PET/SEBS ternary blend and their fibers, J. Appl. Polym. Sci. 114 (2009) 3737–3743. https://doi.org/10.1002/app.30612.
[71] Z. Horák, I. Fortelný, J. Kolařík, D. Hlavatá, A. Sikora, Polymer blends, Encyclopedia of Polymer Science and technology, John Wiley & Sons. (2005). https://doi.org/10.1002/0471440264.pst276.
[72] P. Shi, R. Schach, E. Munch, H. Montes, F. Lequeux, Glass transition distribution in miscible polymer blends: from calorimetry to rheology, Macromolecules. 46 (2013) 3611–3620. https://doi.org/10.1021/ma400417f.
[73] Y. Yu, K.J. Choi, Crystallization in blends of poly (ethylene terephthalate) and poly (butylene terephthalate), Polym. Eng. Sci. 37 (1997) 91–95. https://doi.org/10.1002/pen.11648.
[74] P. Maiti, A.K. Dikshit, A.K. Nandi, Glass‐transition temperature of poly (vinylidene fluoride)‐poly (methyl acrylate) blends: Influence of aging and chain structure, J. Appl. Polym. Sci. 79 (2001) 1541–1548. https://doi.org/10.1002/1097-4628(20010228)79:9%3C1541::AID-APP10%3E3.0.CO;2-P.
[75] L. Messé, R.E. Prud'Homme, Orientation and relaxation study of polystyrene: Polystyrene/poly (phenylene oxide) blends, J. Polym. Sci. B: Polym. Phys. 38 (2000) 1405–1415. https://doi.org/10.1002/(SICI)1099-0488(20000515)38:10%3C1405::AID-POLB180%3E3.0.CO;2-Q.
[76] W. Dong, M. He, H. Wang, F. Ren, J. Zhang, et al., PLLA/ABS blends compatibilized by reactive comb polymers: Double Tg depression and significantly improved toughness, ACS Sustain. Chem. Eng. 3 (2015) 2542–2550. https://doi.org/10.1021/acssuschemeng.5b00740.
[77] W.N. Kim, C.M. Burns, Compatibility studies of polystyrene–polybutadiene blends by thermal analysis, J. Appl. Polym. Sci. 32 (1986) 2989–3004. https://doi.org/10.1002/app.1986.070320112.
[78] Y. Shi, Phase behavior of polyamide 6/612 blends, Plast. Eng. 72 (2016) 46–49. https://doi.org/10.1002/j.1941-9635.2016.tb01515.x.
[79] A. Al-Jabareen, S. Illescas, M.L. Maspoch, O.O. Santana, Effects of composition and transesterification catalysts on the physico-chemical and dynamic properties of PC/PET blends rich in PC, J. Mater. Sci. 45 (2010) 6623–6633. https://doi.org/10.1007/s10853-010-4753-4.
[80] R.D. Boyd, J.P.S. Badyal, Silent Discharge Treatment of Immiscible Polystyrene/Polycarbonate Polymer Blend Surfaces, Macromolecules. 30 (1997) 3658–3663. https://doi.org/10.1021/ma9615213.
[81] H. Patil, R.V. Tiwari, M.A. Repka, Hot-melt extrusion: from theory to application in pharmaceutical formulation, AAPS PharmSciTech. 17 (2016) 20–42. https://doi.org/10.1208/s12249-015-0360-7.
[82] L.A. Utracki, C.A. Wilkie, Polymer blends handbook, Springer Dordrecht. (2014). https://doi.org/10.1007/978-94-007-6064-6.
[83] J.-F. Joanny, L. Leibler, Polymer Blends in Solution, Phase Transitions in Soft Condensed Matter, Springer, Boston, MA. (1989) 297–299. https://doi.org/10.1007/978-1-4613-0551-4_29.
[84] G. Zhu, F. Wang, K. Xu, Q. Gao, Y. Liu, Study on properties of poly (vinyl alcohol)/polyacrylonitrile blend film, Polímeros. 23 (2013) 146–151. https://doi.org/10.4322/polimeros.2013.076.
[85] I. Khan, M. Mansha, M.A. Jafar Mazumder, Polymer Blends, in: M.A. Jafar Mazumder, H. Sheardown, A. Al-Ahmed (Eds.) Functional Polymers, Springer International Publishing, Cham. (2019) 1–38. https://doi.org/10.1007/978-3-319-92067-2_16-1.
[86] J.P. Tomba, X. Ye, F. Li, M.A. Winnik, W. Lau, Polymer blend latex films: Miscibility and polymer diffusion studied by energy transfer, Polymer. 49 (2008) 2055–2064. https://doi.org/10.1016/j.polymer.2008.02.024.
[87] J. Feng, M.A. Winnik, R.R. Shivers, B. Clubb, Polymer blend latex films: morphology and transparency, Macromolecules. 28 (1995) 7671–7682. https://doi.org/10.1021/ma00127a013.
[88] A.R.M. Vijay, C.T. Ratnam, M. Khalid, S. Appadu, T.C.S.M. Gupta, Effect of radiation on the mechanical, morphological and thermal properties of HDPE/rPTFE blends, Radiat. Phys. Chem. 177 (2020) 109190. https://doi.org/10.1016/j.radphyschem.2020.109190.
[89] T.A. Lin, J.-H. Lin, L. Bao, A study of reusability assessment and thermal behaviors for thermoplastic composite materials after melting process: Polypropylene/ thermoplastic polyurethane blends, J. Clean. Prod. 279 (2021) 123473. https://doi.org/10.1016/j.jclepro.2020.123473.
[90] S. Saikrishnan, D. Jubinville, C. Tzoganakis, T.H. Mekonnen, Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling, Polym. Degrad. Stab. 182 (2020) 109390. https://doi.org/10.1016/j.polymdegradstab.2020.109390.
[91] H. Nie, D. Liu, C. Liu, X. Wang, A. He, Morphology evolution in solution polymerized styrene-butadiene rubber (SSBR)/trans-1,4-polyisoprene (TPI) blends: SSBR particle formation, TPI crystal nucleation, growth and polymorphic form, Polymer. 117 (2017) 11–16. https://doi.org/10.1016/j.polymer.2017.04.005.
[92] J. Yin, H. Tang, Z. Xu, N. Li, Enhanced mechanical strength and performance of sulfonated polysulfone/Tröger's base polymer blend ultrafiltration membrane, J. Membr. Sci. 625 (2021) 119138. https://doi.org/10.1016/j.memsci.2021.119138.
[93] M. Sadiq, M.M. Hasan Raza, A.K. Singh, S.K. Chaurasia, M. Zulfequar, et al., Dielectric properties and ac conductivity behavior of rGO incorporated PVP-PVA blended polymer nanocomposites films, Mater. Today: Proc. 49 (2020) 3164–3169. https://doi.org/10.1016/j.matpr.2020.11.169.
[94] T. Shirahase, S. Akasaka, S. Asai, Organic solvent-free fabrication of mesoporous polymer monolith from miscible PLLA/PMMA blend, Polymer. 203 (2020) 122742. https://doi.org/10.1016/j.polymer.2020.122742.
[95] S.M. Hanson, S. Singh, A. Tabet, K.J. Sastry, M. Barry, C. Wang, Mucoadhesive wafers composed of binary polymer blends for sublingual delivery and preservation of protein vaccines, J. Control. Release. 330 (2021) 427–437. https://doi.org/10.1016/j.jconrel.2020.12.029.
[96] H. Jiang, Q. Zhao, P. Wang, J. Ma, X. Zhai, Improved separation and antifouling properties of PVDF gravity-driven membranes by blending with amphiphilic multi-arms polymer PPG-Si-PEG, J. Membr. Sci. 588 (2019) 117148. https://doi.org/10.1016/j.memsci.2019.05.072.
[97] J. Khanjani, S. Pazokifard, M.J. Zohuriaan-Mehr, Improving dirt pickup resistance in waterborne coatings using latex blends of acrylic/PDMS polymers, Prog. Org. Coat. 102 (2017) 151–166. https://doi.org/10.1016/j.porgcoat.2016.10.009.
[98] C.F. Lee, The properties of core–shell composite polymer latex.: Effect of heating on the morphology and physical properties of PMMA/PS core–shell composite latex and the polymer blends, Polymer. 41 (2000) 1337–1344. https://doi.org/10.1016/S0032-3861(99)00281-5.
[99] C. Wang, F. Chu, C. Graillat, A. Guyot, C. Gauthier, J.P. Chapel, Hybrid polymer latexes: acrylics–polyurethane from miniemulsion polymerization: properties of hybrid latexes versus blends, Polymer. 46 (2005) 1113–1124. https://doi.org/10.1016/j.polymer.2004.11.051.
[100] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (2008) 390–400. https://doi.org/10.1016/j.memsci.2008.04.030.
[101] G. Kapantaidakis, G. Koops, M. Wessling, Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone-polyimide miscible blends, Desalination. 145 (2002) 353–357. https://doi.org/10.1016/S0011-9164(02)00435-6.
[102] R.M. Lilleby Helberg, Z. Dai, L. Ansaloni, L. Deng, PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance, Green Energy Environ. 5 (2020) 59–68. https://doi.org/10.1016/j.gee.2019.10.001.
[103] J. Sánchez-Laínez, A. Pardillos-Ruiz, M. Carta, R. Malpass-Evans, N.B. McKeown, et al., Polymer engineering by blending PIM-1 and 6FDA-DAM for ZIF-8 containing mixed matrix membranes applied to CO2 separations, Sep. Purif. Technol. 224 (2019) 456–462. https://doi.org/10.1016/j.seppur.2019.05.035.
[104] M. Kheirtalab, R. Abedini, M. Ghorbani, A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly (ether-block-amide)(Pebax®1657)/graphene oxide nanoparticles for CO2 separation, Process Saf. Environ. Prot. 144 (2020) 208–224. https://doi.org/10.1016/j.psep.2020.07.027.
[105] H. Rajati, A.H. Navarchian, S. Tangestaninejad, Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation, Chem. Eng. Sci. 185 (2018) 92–104. https://doi.org/10.1016/j.ces.2018.04.006.
[106] H. Shin, W.S. Chi, S. Bae, J.H. Kim, J. Kim, High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation, J. Ind. Eng. Chem. 53 (2017) 127–133. https://doi.org/10.1016/j.jiec.2017.04.013.
[107] Y. Mansourpanah, S.S. Madaeni, M. Adeli, A. Rahimpour, A. Farhadian, Surface modification and preparation of nanofiltration membrane from polyethersulfone/polyimide blend—Use of a new material (polyethyleneglycol-triazine), J. Appl. Polym. Sci. 112 (2009) 2888–2895. https://doi.org/10.1002/app.29821.
[108] C. Hegde, A.M. Isloor, M. Padaki, H.-K. Fun, Synthesis and performance characterization of PS-PPEES nanoporous membranes with nonwoven porous support, Arab. J. Chem. 6 (2013) 319–326. https://doi.org/10.1016/j.arabjc.2011.05.014.
[109] B.M. Ganesh, A.M. Isloor, M. Padaki, Preparation and characterization of polysulfone and modified poly isobutylene-alt-maleic anhydride blend NF membrane, Desalination. 287 (2012) 103–108. https://doi.org/10.1016/j.desal.2011.09.047.
[110] Y. Meng, L. Shu, L.-H. Xie, M. Zhao, T. Liu, J.-R. Li, High performance nanofiltration in BUT-8(A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly, J. Taiwan Inst. Chem. Eng. 115 (2020) 331–338. https://doi.org/10.1016/j.jtice.2020.10.032.
[111] H. An, K.Y. Cho, S. Back, X.H. Do, J.-D. Jeon, et al., The significance of the interfacial interaction in mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance, Sep. Purif. Technol. 261 (2021) 118279. https://doi.org/10.1016/j.seppur.2020.118279.
[112] Q. Zhang, H. Li, S. Chen, J. Duan, W. Jin, Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation, J. Membr. Sci. 611 (2020) 118288. https://doi.org/10.1016/j.memsci.2020.118288.
[113] Q.V. Ly, C.N. Matindi, A.T. Kuvarega, Q.V. Le, V.S. Tran, et al., Organic fouling assessment of novel PES/SPSf/Double layered hydroxide mixed matrix membrane for water treatment application, J. Water Process. Eng. 37 (2020) 101526. https://doi.org/10.1016/j.jwpe.2020.101526.
[114] P. Tremblay, M.M. Savard, J. Vermette, R. Paquin, Gas permeability, diffusivity and solubility of nitrogen, helium, methane, carbon dioxide and formaldehyde in dense polymeric membranes using a new on-line permeation apparatus, J. Membr. Sci. 282 (2006) 245–256. https://doi.org/10.1016/j.memsci.2006.05.030.
[115] M.A. Semsarzadeh, B. Ghalei, Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide–polypropylene oxide block copolymer, J. Membr. Sci. 401-402 (2012) 97–108. https://doi.org/10.1016/j.memsci.2012.01.035.
[116] S. Salehi Shahrabi, H.R. Mortaheb, J. Barzin, M.R. Ehsani, Pervaporative performance of a PDMS/blended PES composite membrane for removal of toluene from water, Desalination. 287 (2012) 281–289. https://doi.org/10.1016/j.desal.2011.08.062.
[117] S.J. Lue, J.S. Ou, C.H. Kuo, H.Y. Chen, T.-H. Yang, Pervaporative separation of azeotropic methanol/toluene mixtures in polyurethane–poly(dimethylsiloxane) (PU–PDMS) blend membranes: Correlation with sorption and diffusion behaviors in a binary solution system, J. Membr. Sci. 347 (2010) 108–115. https://doi.org/10.1016/j.memsci.2009.10.012.
[118] D. Zavastin, I. Cretescu, M. Bezdadea, M. Bourceanu, M. Drăgan, et al., Preparation, characterization and applicability of cellulose acetate–polyurethane blend membrane in separation techniques, Colloids Surf. A: Physicochem. Eng. Asp. 370 (2010) 120–128. https://doi.org/10.1016/j.colsurfa.2010.08.058.
[119] A.L. Ahmad, W.Y. Pang, Z.M.H. Mohd Shafie, N.D. Zaulkiflee, PES/PVP/TiO2 mixed matrix hollow fiber membrane with antifouling properties for humic acid removal, J. Water Process. Eng. 31 (2019) 100827. https://doi.org/10.1016/j.jwpe.2019.100827.
[120] R. Mahajan, W.J. Koros, Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials, Ind. Eng. Chem. Res. 39 (2000) 2692–2696. https://doi.org/10.1021/ie990799r.
[121] R. Mahajan, R. Burns, M. Schaeffer, W.J. Koros, Challenges in forming successful mixed matrix membranes with rigid polymeric materials, J. Appl. Polym. Sci. 86 (2002) 881–890. https://doi.org/10.1002/app.10998.
[122] C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel. 96 (2012) 15–28. https://doi.org/10.1016/j.fuel.2011.12.074.
[123] D. Sen, H. Kalipcilar, L. Yilmaz, Development of zeolite filled polycarbonate mixed matrix gas separation membranes, Desalination. 200 (2006) 222–224. https://doi.org/10.1016/j.desal.2006.03.303.
[124] J. Caro, M. Noack, P. Kölsch, Zeolite membranes: from the laboratory scale to technical applications, Adsorption. 11 (2005) 215–227. https://doi.org/10.1007/s10450-005-5394-9.
[125] A. Nuhnen, D. Dietrich, S. Millan, C. Janiak, Role of Filler Porosity and Filler/Polymer Interface Volume in Metal–Organic Framework/Polymer Mixed-Matrix Membranes for Gas Separation, ACS Appl. Mater. Interfaces. 10 (2018) 33589–33600. https://doi.org/10.1021/acsami.8b12938.
[126] M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A.A. Alomair, A. Pérez, M.S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: A review, Sep. Purif. Technol. 188 (2017) 431–450. https://doi.org/10.1016/j.seppur.2017.07.051.
[127] M. Rostamizadeh, B. Sadatnia, S. Norouzbahari, A. Ghadimi, Enhancing the gas separation properties of mixed matrix membranes via impregnation of sieve phases with metal and nonmetal promoters, Sep. Purif. Technol.245 (2020) 116859. https://doi.org/10.1016/j.seppur.2020.116859.
[128] G. Majano, S. Mintova, O. Ovsitser, B. Mihailova, T. Bein, Zeolite Beta nanosized assemblies, Microporous Mesoporous Mater. 80 (2005) 227–235. https://doi.org/10.1016/j.micromeso.2004.12.019.
[129] L. Tosheva, V.P. Valtchev, Nanozeolites: synthesis, crystallization mechanism, and applications, Chem. Mater. 17 (2005) 2494–2513. https://doi.org/10.1021/cm047908z.
[130] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.
[131] J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J. Nanotechnol. 9 (2018) 1050–1074. https://doi.org/10.3762/bjnano.9.98.
[132] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev. 105 (2005) 1025–1102. https://doi.org/10.1021/cr030063a.
[133] L. Marinescu, D. Ficai, O. Oprea, A. Marin, A. Ficai, et al., Optimized Synthesis Approaches of Metal Nanoparticles with Antimicrobial Applications, J. Nanomater. 2020 (2020) 6651207. https://doi.org/10.1155/2020/6651207.
[134] S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Res. Pharm. Sci. 9 (2014) 385.
[135] A. Aqel, K.M. Abou El-Nour, R.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation, Arab. J. Chem. 5 (2012) 1–23. https://doi.org/10.1016/j.arabjc.2010.08.022.
[136] N.G. Sahoo, S. Rana, J.W. Cho, L. Li, S.H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym. Sci. 35 (2010) 837–867. https://doi.org/10.1016/j.progpolymsci.2010.03.002.
[137] P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review, Compos. –A: Appl. Sci. Manuf. 41 (2010) 1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003.
[138] K. Yang, Z. Yi, Q. Jing, R. Yue, W. Jiang, D. Lin, Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy, Chin. Sci. Bull. 58 (2013) 2082–2090. https://doi.org/10.1007/s11434-013-5697-2.
[139] R. Rastogi, R. Kaushal, S. Tripathi, A.L. Sharma, I. Kaur, L.M. Bharadwaj, Comparative study of carbon nanotube dispersion using surfactants, J. Colloid Interface Sci. 328 (2008) 421–428. https://doi.org/10.1016/j.jcis.2008.09.015.
[140] M.N. Nejad, M. Asghari, M. Afsari, Investigation of carbon nanotubes in mixed matrix membranes for gas separation: a review, ChemBioEng. Rev. 3 (2016) 276–298. https://doi.org/10.1002/cben.201600012.
[141] A.K. Geim, K.S. Novoselov, The rise of graphene, Nanoscience and technology: a collection of reviews from nature journals, World Sci. (2010) 11–19. https://doi.org/10.1142/9789814287005_0002.
[142] J. Song, X. Wang, C.-T. Chang, Preparation and Characterization of Graphene Oxide, J. Nanomater. 2014 (2014) 276143. https://doi.org/10.1155/2014/276143.
[143] S. Wang, Y. Xie, G. He, Q. Xin, J. Zhang, et al., Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations, Angew Chem. Int. Ed. Engl. 56 (2017) 14246–14251. https://doi.org/10.1002/anie.201708048.
[144] M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, F.A. Bipasha, S.S. Hossain, Synthesis of graphene, Int. Nano Lett. 6 (2016) 65–83. https://doi.org/10.1007/s40089-015-0176-1.
[145] D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry, Chem. Soc. Rev. 39 (2010) 3157–3180. https://doi.org/10.1039/B923596E.
[146] K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, et al., Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts, J. Am. Chem. Soc. 136 (2014) 6083–6091. https://doi.org/10.1021/ja5017156.
[147] M.S. Alhumaimess, Metal–Organic Frameworks and their Catalytic Applications, J. Saudi Chem. Soc. 24 (2020) 461–473. https://doi.org/10.1016/j.jscs.2020.04.002.
[148] S.T. Meek, J.A. Greathouse, M.D. Allendorf, Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials, Adv. Mater. 23 (2011) 249–267. https://doi.org/10.1002/adma.201002854.
[149] S.R. Venna, M.A. Carreon, Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation, J. Am. Chem. Soc. 132 (2010) 76–78. https://doi.org/10.1021/ja909263x.
[150] N. Keser, Production and performance evaluation of ZIF-8 based binary and ternary mixed matrix gas separation membranes, Master of Science, Middle East Technical University, Ankara. (2012).
[151] R. Mallada, Hydrothermal Synthesis of Zeolite, Encyclopedia of Membranes, Springer, Heidelberg, Berlin. (2014) 1–2. https://doi.org/10.1007/978-3-642-40872-4_953-1.
[152] Y. Li, W. Yang, Microwave synthesis of zeolite membranes: A review, J. Membr. Sci. 316 (2008) 3–17. https://doi.org/10.1016/j.memsci.2007.08.054.
[153] S. Manafi, S. Joughehdoust, Production of zeolite using different methods, IIZC’08, Tehran. (2008).
[154] D.M. Mattox, Physical vapor deposition (PVD) processes, Met. Finish. 100 (2002) 394–408. https://doi.org/10.1016/S0026-0576(02)82043-8.
[155] Y. Zhang, K.J. Balkus, I.H. Musselman, J.P. Ferraris, Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles, J. Membr. Sci. 325 (2008) 28–39. https://doi.org/10.1016/j.memsci.2008.04.063.
[156] X. Zhan, J. Lu, T. Tan, J. Li, Mixed matrix membranes with HF acid etched ZSM-5 for ethanol/water separation: Preparation and pervaporation performance, Appl. Surf. Sci. 259 (2012) 547–556. https://doi.org/10.1016/j.apsusc.2012.05.167.
[157] M. Vatani, A. Raisi, G. Pazuki, Three-component mixed matrix membrane containing [Hmim][PF6] ionic liquid and ZSM-5 nanoparticles based on poly (ether-block-amide) for the pervaporation process, J. Mol. Liq. 277 (2019) 471–480. https://doi.org/10.1016/j.molliq.2018.12.141.
[158] M. Vatani, A. Raisi, G. Pazuki, Mixed matrix membrane of ZSM-5/poly (ether-block-amide)/polyethersulfone for pervaporation separation of ethyl acetate from aqueous solution, Microporous Mesoporous Mater. 263 (2018) 257–267. https://doi.org/10.1016/j.micromeso.2017.12.030.
[159] M. Asghari, M. Mosadegh, H. Riasat Harami, Supported PEBA-zeolite 13X nano-composite membranes for gas separation: Preparation, characterization and molecular dynamics simulation, Chem. Eng. Sci. 187 (2018) 67–78. https://doi.org/10.1016/j.ces.2018.04.067.
[160] N. Bryan, E. Lasseuguette, M. van Dalen, N. Permogorov, A. Amieiro, et al., Development of Mixed Matrix Membranes Containing Zeolites for Post-combustion Carbon Capture, Energy Procedia. 63 (2014) 160–166. https://doi.org/10.1016/j.egypro.2014.11.016.
[161] J. Ahmad, M.B. Hägg, Effect of zeolite preheat treatment and membrane post heat treatment on the performance of polyvinyl acetate/zeolite 4A mixed matrix membrane, Sep. Purif. Technol. 115 (2013) 163–171. https://doi.org/10.1016/j.seppur.2013.04.050.
[162] T. Khosravi, S. Mosleh, O. Bakhtiari, T. Mohammadi, Mixed matrix membranes of Matrimid 5218 loaded with zeolite 4A for pervaporation separation of water–isopropanol mixtures, Chem. Eng. Res. Des. 90 (2012) 2353–2363. https://doi.org/10.1016/j.cherd.2012.06.005.
[163] A. Mahmoudi, M. Asghari, V. Zargar, CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane, J. Ind. Eng. Chem. 23 (2015) 238–242. https://doi.org/10.1016/j.jiec.2014.08.023.
[164] K. Zarshenas, A. Raisi, A. Aroujalian, Mixed matrix membrane of nano-zeolite NaX/poly (ether-block-amide) for gas separation applications, J. Membr. Sci. 510 (2016) 270–283. https://doi.org/10.1016/j.memsci.2016.02.059.
[165] M. Dehghani, M. Asghari, A.H. Mohammadi, M. Mokhtari, Molecular simulation and Monte Carlo study of structural-transport-properties of PEBA-MFI zeolite mixed matrix membranes for CO2, CH4 and N2 separation, Comput. Chem. Eng. 103 (2017) 12–22. https://doi.org/10.1016/j.compchemeng.2017.03.002.
[166] Y. Gou, L. Xiao, Y. Yang, X. Guo, F. Zhang, et al., Incorporation of open-pore MFI zeolite nanosheets in polydimethylsiloxane (PDMS) to isomer-selective mixed matrix membranes, Microporous Mesoporous Mater. 315 (2021) 110930. https://doi.org/10.1016/j.micromeso.2021.110930.
[167] N.N.R. Ahmad, C.P. Leo, A.L. Ahmad, Effects of solvent and ionic liquid properties on ionic liquid enhanced polysulfone/SAPO-34 mixed matrix membrane for CO2 removal, Microporous Mesoporous Mater. 283 (2019) 64–72. https://doi.org/10.1016/j.micromeso.2019.04.001.
[168] G. Sodeifian, M. Raji, M. Asghari, M. Rezakazemi, A. Dashti, Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation, Chin. J. Chem. Eng. 27 (2019) 322–334. https://doi.org/10.1016/j.cjche.2018.03.012.
[169] J. Kim, Q. Fu, K. Xie, J.M.P. Scofield, S.E. Kentish, G.G. Qiao, CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture, J. Membr. Sci. 515 (2016) 54–62. https://doi.org/10.1016/j.memsci.2016.05.029.
[170] A. Ghadimi, T. Mohammadi, N. Kasiri, A Novel Chemical Surface Modification for the Fabrication of PEBA/SiO2 Nanocomposite Membranes To Separate CO2 from Syngas and Natural Gas Streams, Ind. Eng. Chem. Res. 53 (2014) 17476–17486. https://doi.org/10.1021/ie503216p.
[171] S. Hassanajili, M. Khademi, P. Keshavarz, Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes, J. Membr. Sci. 453 (2014) 369–383. https://doi.org/10.1016/j.memsci.2013.10.057.
[172] M. Obaid, G.M.K. Tolba, M. Motlak, O.A. Fadali, K.A. Khalil, et al., Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation, Chem. Eng. J. 279 (2015) 631–638. https://doi.org/10.1016/j.cej.2015.05.028.
[173] M.B. Alkindy, V. Naddeo, F. Banat, S.W. Hasan, Synthesis of polyethersulfone (PES)/GO-SiO2 mixed matrix membranes for oily wastewater treatment, Water Sci. Technol. 81 (2020) 1354–1364. https://doi.org/10.2166/wst.2019.347.
[174] Q. Liu, N. Xu, L. Fan, A. Ding, Q. Dong, Polyacrylonitrile (PAN)/TiO2 mixed matrix membrane synthesis by thermally induced self-crosslinking for thermal and organic-solvent resistant filtration, Chem. Eng. Sci. 228 (2020) 115993. https://doi.org/10.1016/j.ces.2020.115993.
[175] H. Zhu, J. Yuan, J. Zhao, G. Liu, W. Jin, Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes, Sep. Purif. Technol. 214 (2019) 78–86. https://doi.org/10.1016/j.seppur.2018.02.020.
[176] Y.H. Teow, B.S. Ooi, A.L. Ahmad, Study on PVDF-TiO2 mixed-matrix membrane behaviour towards humic acid adsorption, J. Water Process. Eng. 15 (2017) 99–106. https://doi.org/10.1016/j.jwpe.2016.04.005.
[177] Z. Farashi, S. Azizi, M. Rezaei-Dasht Arzhandi, Z. Noroozi, N. Azizi, Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix, J. Nat. Gas Eng. 72 (2019) 103019. https://doi.org/10.1016/j.jngse.2019.103019.
[178] L. Wang, X. Song, T. Wang, S. Wang, Z. Wang, C. Gao, Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application, Appl. Surf. Sci. 330 (2015) 118–125. https://doi.org/10.1016/j.apsusc.2014.12.183.
[179] Z. Raeisi, A. Moheb, M.N. Arani, M. Sadeghi, Non-covalently-functionalized CNTs incorporating poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixtures, Chem. Eng. Res. Des. 167 (2021) 157–168. https://doi.org/10.1016/j.cherd.2021.01.004.
[180] S. Zhang, Q. Wang, D. Li, F. Ran, Single-walled carbon nanotubes grafted with dextran as additive to improve separation performance of polymer membranes, Sep. Purif. Technol. 254 (2021) 117584. https://doi.org/10.1016/j.seppur.2020.117584.
[181] G.N.B. Baroña, M. Choi, B. Jung, High permeate flux of PVA/PSf thin film composite nanofiltration membrane with aluminosilicate single-walled nanotubes, J. Colloid Interface Sci. 386 (2012) 189–197. https://doi.org/10.1016/j.jcis.2012.07.049.
[182] J. Yin, G. Zhu, B. Deng, Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment, J. Membr. Sci. 437 (2013) 237–248. https://doi.org/10.1016/j.memsci.2013.03.021.
[183] H. Sun, W. Gao, Y. Zhang, X. Cao, S. Bao, et al., Bis(phenyl)fluorene-based polymer of intrinsic microporosity/functionalized multi-walled carbon nanotubes mixed matrix membranes for enhanced CO2 separation performance, React. Funct. Polym. 147 (2020) 104465. https://doi.org/10.1016/j.reactfunctpolym.2019.104465.
[184] C.Y. Tang, A.K. Zulhairun, T.W. Wong, S. Alireza, M.S.A. Marzuki, A.F. Ismail, Water transport properties of boron nitride nanosheets mixed matrix membranes for humic acid removal, Heliyon. 5 (2019) e01142. https://doi.org/10.1016/j.heliyon.2019.e01142.
[185] L.M. Camacho, T.A. Pinion, S.O. Olatunji, Behavior of mixed-matrix graphene oxide – Polysulfone membranes in the process of direct contact membrane distillation, Sep. Purif. Technol. 240 (2020) 116645. https://doi.org/10.1016/j.seppur.2020.116645.
[186] H. Namdar, A. Akbari, R. Yegani, H. Roghani-Mamaqani, Influence of aspartic acid functionalized graphene oxide presence in polyvinylchloride mixed matrix membranes on chromium removal from aqueous feed containing humic acid, J. Environ. Chem. Eng. 9 (2021) 104685. https://doi.org/10.1016/j.jece.2020.104685.
[187] K. Sainath, A. Modi, J. Bellare, CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: Evaluating effect of filler concentration on performance, Chem. Eng. J. Adv. 5 (2021) 100074. https://doi.org/10.1016/j.ceja.2020.100074.
[188] S. Ashtiani, M. Khoshnamvand, D. Bouša, J. Šturala, Z. Sofer, et al., Surface and interface engineering in CO2-philic based UiO-66-NH2-PEI mixed matrix membranes via covalently bridging PVP for effective hydrogen purification, Int. J. Hydrog. Energy. 46 (2021) 5449–5458. https://doi.org/10.1016/j.ijhydene.2020.11.081.
[189] Y.M. Xu, S. Japip, T.-S. Chung, Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation, J. Membr. Sci. 549 (2018) 217–226. https://doi.org/10.1016/j.memsci.2017.12.001.
[190] M. Mubashir, Y. Yin fong, C.T. Leng, L.K. Keong, N. Jusoh, Study on the effect of process parameters on CO2/CH4 binary gas separation performance over NH2-MIL-53(Al)/cellulose acetate hollow fiber mixed matrix membrane, Polym. Test. 81 (2020) 106223. https://doi.org/10.1016/j.polymertesting.2019.106223.
[191] J. Ma, S. Li, G. Wu, S. Wang, X. Guo, et al., Preparation of mixed-matrix membranes from metal organic framework (MIL-53) and poly (vinylidene fluoride) for use in determination of sulfonylurea herbicides in aqueous environments by high performance liquid chromatography, J. Colloid Interface Sci. 553 (2019) 834–844. https://doi.org/10.1016/j.jcis.2019.06.082.
[192] X. Dong, Q. Liu, A. Huang, Highly permselective MIL-68(Al)/matrimid mixed matrix membranes for CO2/CH4 separation, J. Appl. Polym. Sci. 133 (2016). https://doi.org/10.1002/app.43485.
[193] M. Khdhayyer, A.F. Bushell, P.M. Budd, M.P. Attfield, D. Jiang, et al., Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1, Sep. Purif. Technol. 212 (2019) 545–554. https://doi.org/10.1016/j.seppur.2018.11.055.
[194] M. Waqas Anjum, B. Bueken, D. De Vos, I.F.J. Vankelecom, MIL-125(Ti) based mixed matrix membranes for CO2 separation from CH4 and N2, J. Membr. Sci. 502 (2016) 21–28. https://doi.org/10.1016/j.memsci.2015.12.022.
[195] J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff, Y. Li, Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation, Microporous Mesoporous Mater. 297 (2020) 110030. https://doi.org/10.1016/j.micromeso.2020.110030.
[196] X. Li, S. Yu, K. Li, C. Ma, J. Zhang, et al., Enhanced gas separation performance of Pebax mixed matrix membranes by incorporating ZIF-8 in situ inserted by multiwalled carbon nanotubes, Sep. Purif. Technol. 248 (2020) 117080. https://doi.org/10.1016/j.seppur.2020.117080.
[197] A. Ehsani, M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng. 66 (2016) 414–423. https://doi.org/10.1016/j.jtice.2016.07.005.
[198] F. Moghadam, T.H. Lee, I. Park, H.B. Park, Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/propane selectivity, J. Membr. Sci. 603 (2020) 118019. https://doi.org/10.1016/j.memsci.2020.118019.
[199] Q. Zhang, S. Luo, J.R. Weidman, R. Guo, Preparation and gas separation performance of mixed-matrix membranes based on triptycene-containing polyimide and zeolite imidazole framework (ZIF-90), Polymer. 131 (2017) 209–216. https://doi.org/10.1016/j.polymer.2017.10.040.
[200] L.Y. Jiang, T.S. Chung, C. Cao, Z. Huang, S. Kulprathipanja, Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single-and dual-layer asymmetric hollow fiber membranes, J. Membr. Sci. 252 (2005) 89–100. https://doi.org/10.1016/j.memsci.2004.12.004.
[201] S. Husain, W.J. Koros, Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation, J. Membr. Sci. 288 (2007) 195–207. https://doi.org/10.1016/j.memsci.2006.11.016.

Cited By

Crossref Google Scholar
Recent advances in synthesis and applications of mixed matrix membranes
Submitted
2021-02-23
Published
2021-03-29
How to Cite
Salahshoori, I., Seyfaee, A., & Babapoor, A. (2021). Recent advances in synthesis and applications of mixed matrix membranes. Synthesis and Sintering, 1(1), 1-27. https://doi.org/10.53063/synsint.2021.116

Most read articles by the same author(s)