Sintered transparent polycrystalline ceramics: the next generation of fillers for clarity enhancement in corundum

  • Mubashir Mansoor 1
  • Mehya Mansoor 1
  • Maryam Mansoor 1
  • Ted Themelis 2
  • Filiz Çinar Şahin 1
  • 1 Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak 34467, Istanbul, Turkey
  • 2 GemLab, Bangkok 10120, Thailand

Abstract

A significant proportion of mined natural corundum (ruby and sapphire) contain fractures, which negatively affect a gemstone’s clarity and value. Over the past decades, heat treatment techniques have been developed for either fracture healing or filling to make such gems marketable. The clarity enhancement processes are mainly based on techniques which are either not durable, as in the case of lead silicate fillers, or do not yield perfect transmittance through a fracture, as in the case of borax based fluxes. Therefore, the gemstone treatment community is actively in pursuit of better techniques for clarity enhancement in corundum. Given that application of pressure is a recent advancement in the heat treatment processes of natural sapphire, it is essential to explore the possibilities regarding different outcomes such treatments can have. In this perspective paper, we have briefly described how the application of pressure during heat treatments can lead to in-situ sintering of transparent polycrystalline ceramics within the fractures of corundum, which can result in clarity enhancement. Spinel-structure based fillers can be tailored to mimic corundum in terms of tribological, chemical, and optical properties. Therefore, gemstones treated with such fillers will be durable, unlike currently used glass-based filler material. We also provide a possible explanation for ghost-fissures in sapphires heated under pressure, as being a by-product of an in-situ sintering process of ceramic fillers that are thermodynamically compatible with Al2O3. The prospect of transparent polycrystalline ceramics in the gem and jewelry industry opens a new field of research in this area, given that ceramic fillers can outperform currently used methods and materials for clarity enhancement in gemstones. In essence, we present a novel application for sintered transparent polycrystalline ceramics.

Downloads

Download data is not yet available.
Keywords: Transparent ceramics, Heat treatment, Sapphire, Transient liquid phase sintering, High temperature pressure (HT P), High pressure high temperature (HPHT)

References

[1] V. Pishchik, L.A. Lytvynov, E.R. Dobrovinskaya, Sapphire material, manufacturing, applications, Springer US, New York, NY. (2009). https://doi.org/10.1007/978-0-387-85695-7.
[2] R.W. Hughes, W. Manorotkul, E.B. Hughes, Ruby & sapphire: A gemologist's guide, RWH Publishing. (2017).
[3] L.A. Groat, Geology of gem deposits, Mineralogical Association of Canada. (2007).
[4] E.V. Dubinsky, J. Stone-Sundberg, J.L. Emmett, A quantitative description of the causes of color in corundum, Gems Gemol. 56 (2020) 2–28. https://doi.org/10.5741/gems.56.1.2.
[5] S.F. McClure, R.E. Kane, N. Sturman, Gemstone enhancement and its detection in the 2000s, Gems Gemol. 46 (2010) 218–240. https://doi.org/10.5741/gems.46.3.218.
[6] T. Themelis, The Heat Treatment of Ruby & Sapphire: Experiments & Observations, Ted Themelis Pub., Bangkok. (2019).
[7] T. Themelis, Flux-enhanced Rubies & Sapphires, Ted Themelis Pub., Bangkok. (2004).
[8] A.C. Palke, C.M. Breeding, The origin of needle-like rutile inclusions in natural gem corundum: A combined EPMA, LA-ICP-MS, and nanoSIMS investigation, Am. Min. 102 (2017) 1451–1461. https://doi.org/10.2138/am-2017-5965.
[9] K. Nassau, Heat treating ruby and sapphire: Technical aspects, Gems Gemol. 17 (1981) 121–131. https://doi.org/10.5741/gems.17.3.121.
[10] J.L. Emmett, T.R. Douthit, Heat treating the sapphires of Rock Creek, Montana, Gems Gemol. 29 (1993) 250–272. https://doi.org/10.5741/gems.29.4.250.
[11] J.L. Emmett, Fluxes and the Heat Treatment of Ruby and Sapphire, Gems Gemol. 35 (1999) 90–92.
[12] S.A. Utlak, T.M. Besmann, Thermodynamic assessment of the Na2O-Al2O3-SiO2-B2O3 pseudo-binary and -ternary systems, J. Chem. Thermodyn. 130 (2019) 251–268. https://doi.org/10.1016/j.jct.2018.09.001.
[13] M. Mansoor, M. Mansoor, M. Mansoor, Z. Er, The Potentials of Lanthanum Borates in Heat Treatments of Corundum, Int. Conf. Adv. Mater. Sci. Eng. (2020).
[14] J.I. Koivula, Induced fingerprints, Gems Gemol. 19 (1983) 220–227. https://doi.org/10.5741/gems.19.4.220.
[15] S.F. McClure, C.P. Smith, W. Wang, M. Hall, Identification and durability of lead glass-filled rubies, Gems Gemol. 42 (2006) 22–36. https://doi.org/10.5741/gems.42.1.22.
[16] K. Nassau, Gemstone enhancement: History, science and state of the art, Butterworth-Heinemann, Oxford. (1994).
[17] H.M. Choi, S.K. Kim, Y.C. Kim, New treated blue sapphire by HPHT apparatus, Proceedings of the 4th International Gem and Jewelry Conference, GIT. (2014).
[18] A. Peretti, M. Musa, W. Bieri, E. Cleveland, I. Ahamed, et al., Identification and characteristics of PHT (‘HPHT’) - treated sapphires - An update of the GRS research progress, GRS. (2018).
[19] CGL Central Gem Lab, CISGEM, DSEF German Gem Lab, GIA Gemmological Institute of America, GIT Gem and Jewelry Institute of Thailand, Gübelin Gem Lab, SSEF Swiss Gemmological Institute, Lotus Gemology, ICA Lab, Dunaigre Consulting, GJEPC-GTL & Hanmi Lab, Sapphire Heated with Pressure (Slides), The Gem & Jewelry Institute of Thailand. (2019).
[20] H.-S. Kim, S. Roberts, Brittle-Ductile transition and Dislocation mobility in Sapphire, J. Am. Ceram. Soc. 77 (1994) 3099–3104. https://doi.org/10.1111/j.1151-2916.1994.tb04555.x.
[21] M.L. Kronberg, Plastic deformation of single crystals of sapphire: Basal slip and twinning, Acta Metall. 5 (1957) 507–524. https://doi.org/10.1016/0001-6160(57)90090-1.
[22] A.H. Heuer, K.P.D. Lagerlof, J. Castaing, Slip and twinning in sapphire (alpha-Al2O3), Phil. Mag. A. 78 (1998) 747–763. https://doi.org/10.1080/01418619808241934.
[23] K.P. Lagerlof, B.J. Pletka, T.E. Mitchell, A.H. Heuer, Deformation and diffusion in sapphire (α-Al2O3), Radiat. Eff. 74 (1983) 87–107. https://doi.org/10.1080/00337578308218402.
[24] L.B. Kong, Y.Z. Huang, W.X. Que, T.S. Zhang, S. Li, et al., Transparent ceramics, Springer Cham. (2015). https://doi.org/10.1007/978-3-319-18956-7.
[25] Z. Xiao, S. Yu, Y. Li, S. Ruan, L.B. Kong, et al., Materials development and potential applications of Transparent Ceramics: A Review, Mater. Sci. Eng: R: Rep. 139 (2020) 100518. https://doi.org/10.1016/j.mser.2019.100518.
[26] X. Mao, S. Wang, S. Shimai, J. Guo, Transparent polycrystalline alumina ceramics with orientated optical axes, J. Am. Ceram. Soc. 91 (2008) 3431–3433. https://doi.org/10.1111/j.1551-2916.2008.02611.x.
[27] B. Apak, G. Göller, Y. Onüralp, F.Ç. Şahin, The effects of codoping Y2O3 on MgO doped spark plasma sintered Al2O3, Adv. Sci. Technol. 63 (2010) 74–78. https://doi.org/10.4028/www.scientific.net/AST.63.74.
[28] M. Mansoor, M. Mansoor, M. Mansoor, Z. Er, F. Ç. Şahin, Ab-initio study of paramagnetic defects in Mn and Cr doped transparent polycrystalline Al2O3 ceramics, Synth. Sinter. 1 (2021) 135–142. https://doi.org/10.53063/synsint.2021.1340.
[29] E.C. Nykwest, S.P. Alpay, Towards magnetic alumina: Uncovering the roles of transition metal doping and electron hybridization in spin delocalization, J. Phys: Condens. Matter. 31 (2019) 245801. https://doi.org/10.1088/1361-648x/ab0fe4.
[30] S.F. Wang, J. Zhang, D.W. Luo, F. Gu, D.Y. Tang, et al., Transparent ceramics: Processing, materials and applications, Prog. Solid State Chem. 41 (2013) 20–54. https://doi.org/10.1016/j.progsolidstchem.2012.12.002.
[31] J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, et al., Transparent ceramics for high-energy laser systems, Opt. Mater. 33 (2011) 511–518. https://doi.org/10.1016/j.optmat.2010.10.038.
[32] H.B. Barlett, Occurrence and properties of crystalline alumina in silicate melts, J. Am. Ceram. Soc. 15 (1932) 361–361. https://doi.org/10.1111/j.1151-2916.1932.tb13944.x.
[33] B. Konar, I.-H. Jung, A coupled phase diagram experimental study and thermodynamic optimization of the Li2O-cao-Al2O3 and Li2O-CaO-SiO2 systems, and prediction of the phase diagrams of the Li2O-CaO-Al2O3-SiO2 system, J. Eur. Ceram. Soc. 40 (2020) 2185–2199. https://doi.org/10.1016/j.jeurceramsoc.2019.12.043.
[34] N.S. Kulkarni, T.M. Besmann, K.E. Spear, Thermodynamic optimization of Lithia-Alumina, J. Am. Ceram. Soc. 91 (2008) 4074–4083. https://doi.org/10.1111/j.1551-2916.2008.02753.x.
[35] M. Sakkaki, F. Sadegh Moghanlou, M. Vajdi, M. Shahedi Asl, M. Mohammadi, M. Shokouhimehr, Numerical simulation of heat transfer during Spark Plasma Sintering of zirconium diboride, Ceram. Int. 46 (2020) 4998–5007. https://doi.org/10.1016/j.ceramint.2019.10.240.
[36] R.W. Hughes, Pressure Heated Sapphire • Squeezing Sapphire • Corundums treated with high temperatures and low pressure (HT+P), Lotus Gemology. (2019).
[37] J.W. McCauley, A simple model for aluminum oxynitride spinels, J. Am. Ceram. Soc. 61 (1978) 372–373. https://doi.org/10.1111/j.1151-2916.1978.tb09336.x.
[38] S.S. Batsanov, E.D. Ruchkin, I.A. Poroshina, Refractive indices of Solids, Springer, Singapore. (2016). https://doi.org/10.1007/978-981-10-0797-2.
[39] F.C. Sahin, H.E. Kanbur, B. Apak, Preparation of alon ceramics via reactive spark plasma sintering, J. Eur. Ceram. Soc. 32 (2012) 925–929. https://doi.org/10.1016/j.jeurceramsoc.2011.10.043.
[40] M. Bass, Handbook of Optics, 2nd ed., McGraw-Hill Professional. (1995).
[41] A. Maghsoudipour, F. Moztarzadeh, M. Saremi, J.G. Heinrich, Oxidation behavior of AlN–Al2O3 Composites, Ceram. Int. 30 (2004) 773–783. https://doi.org/10.1016/j.ceramint.2003.10.004.
[42] D. Clay, D. Poslusny, M. Flinders, S.D. Jacobs, R.A. Cutler, Effect of LiAl5O8 additions on the sintering and optical transparency of LiAlON, J. Eur. Ceram. Soc. 26 (2006) 1351–1362. https://doi.org/10.1016/j.jeurceramsoc.2005.01.056.
[43] H.E. Kanbur, Production and Characterization of Alon Ceramics by Reactive Spark Plasma Sintering Method, Master’s thesis, İstanbul Technical University, Institute of Science and Technology, İstanbul. (2012).
[44] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, et al., FactSage thermochemical software and databases, 2010–2016, Calphad. 54 (2016) 35–53. https://doi.org/10.1016/j.calphad.2016.05.002.
[45] N. Renfro, Microscopic Observations of Blue Sapphires Treated with Heat and Pressure, Gems Gemol. 54 (2018) 458.
[46] R.W. Hughes, A “ghost” fissure in a Sri Lankan sapphire treated with high-temperature heating plus pressure (HT+P) - Hyperion • Inclusion Search Engine, Lotus Gemology, Image Number: A-003-4780-1. (2019).
[47] E.B. Hughes, A “ghost” fissure in a Sri Lankan sapphire treated with high-temperature heating plus pressure (HT+P) - Hyperion • Inclusion Search Engine, LotusGemology, Image Number: A-003-1024-2. (2018).
[48] I.A. Dobrinets, V.G. Vins, A.M. Zaitsev, HPHT-Treated Diamonds, Springer, Berlin, Heidelberg. (2013). https://doi.org/10.1007/978-3-642-37490-6.

Cited By

Crossref Google Scholar
Sintered transparent polycrystalline ceramics: the next generation of fillers for clarity enhancement in corundum
Submitted
2021-08-16
Published
2021-09-29
How to Cite
Mansoor, M., Mansoor, M., Mansoor, M., Themelis, T., & Çinar Şahin, F. (2021). Sintered transparent polycrystalline ceramics: the next generation of fillers for clarity enhancement in corundum. Synthesis and Sintering, 1(3), 183-188. https://doi.org/10.53063/synsint.2021.1342

Most read articles by the same author(s)