Ab-initio study of paramagnetic defects in Mn and Cr doped transparent polycrystalline Al2O3 ceramics

  • Mubashir Mansoor 1
  • Mehya Mansoor 1
  • Maryam Mansoor 1
  • Zuhal Er 2
  • Filiz Çinar Şahin 1
  • 1 Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak 34467, Istanbul, Turkey
  • 2 Department of Applied Physics, Istanbul Technical University, Maslak 34467, Istanbul, Turkey

Abstract

Birefringence is a major source of difficulty in sintering of transparent polycrystalline alumina ceramics, especially as the grain size exceeds a few hundred nanometers, which ultimately leads to complete opacity, mainly due to scattering of light. Recent studies have made it clear that by application of a strong magnetic field, alumina grains can be aligned along a particular crystallographic orientation, which minimizes scattering due to birefringence, and enhances transparency. Defects that cause spin delocalization are known to induce a paramagnetic behavior in alumina ceramics. Therefore, such defects have become a focal point of research for magnetic field assisted sintering of transparent polycrystalline alumina, in order to reduce the necessary magnetic field strength during production process. In light of recent studies on paramagnetic potentials of transition metal doped alumina, we have applied Spin Polarized Density Functional Theory (SP-DFT) calculations on manganese and chromium doped and co-doped alumina to calculate the magnetic moments, density of states and defect formation energies, which should be expected from this system of dopants, along with their interactions with oxygen vacancies. The results clearly indicate that formation of a point defect comprised of chromium and manganese positioned substitutionally at adjacent aluminum sites, in vicinity of an oxygen vacancy can induce a magnetic moment equivalent to 5 Bohr magnetons (μβ), outperforming previously reported defects. Based on this study we find it likely that chromium and manganese co-doping in alumina can further reduce the required magnetic field strength for production of transparent polycrystalline alumina.

Downloads

Download data is not yet available.
Keywords: DFT, Transparent ceramics, Sintering, Alumina, Paramagnetic ceramics

References

[1] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, et al., On-resistance modulation of high voltage gan hemt on sapphire substrate under high applied voltage, IEEE Electron Device Lett. 28 (2007) 676–678. https://doi.org.10.1109/led.2007.901665.
[2] G. Bakshi, A. Vaish, R.S. Yaduvanshi, Two-Layer sapphire Rectangular dielectric Resonator antenna for Rugged Comunications, Prog. Electromagn. Res. Lett. 85 (2019) 73–80. https://doi.org/10.2528/pierl19030602.
[3] C.P. Khattak, R. Shetty, C.R. Schwerdtfeger, S. Ullal, World׳s largest sapphire for many applications, J. Cryst. Growth. 452 (2016) 44–48. https://doi.org/10.1016/j.jcrysgro.2015.11.026.
[4] G. Lin, Y. Huang, High mechanical strength sapphire cover lens for smartphone screen, Cryst. Res. Technol. 53 (2018) 1800049. https://doi.org/10.1002/crat.201800049.
[5] V. Pishchik, L.A. Lytvynov, E.R. Dobrovinskaya, Sapphire: Material, Manufacturing, Applications (Micro- and Opto-Electronic Materials, Structures, and Systems, Springer, New York, NY. (2009). https://doi.org/10.1007/978-0-387-85695-7.
[6] S. Cristoloveanu, Silicon Films on Sapphire, Rep. Prog. Phys. 50 (1987) 327–371. https://doi.org/10.1088/0034-4885/50/3/002.
[7] W.M. Yim, R.J. Paff, Thermal expansion of ALN, Sapphire, and Silicon, J. Appl Phys. 45 (1974) 1456–1457. https://doi.org/10.1063/1.1663432.
[8] M. Ataei, F. Sadegh Moghanlou, S. Noorzadeh, M. Vajdi, M. Shahedi Asl, Heat transfer and flow characteristics of hybrid Al2O3/TiO2–water nanofluid in a minichannel heat sink, Heat Mass Transf. 56 (2020) 2757–2767. https://doi.org/10.1007/s00231-020-02896-9.
[9] R.H. French, D.J. Jones, S. Loughin, Interband electronic structure Of alpha-Alumina up to 2167 K, J. Am. Ceram. Soc. 77 (1994) 412–422. https://doi.org/10.1111/j.1151-2916.1994.tb07009.x.
[10] S. Na-Phattalung, S. Limpijumnong, J. T-Thienprasert, First‐principles study of chromium defects in α‐Al2O3: The Origin of Red Color in ruby, Phys. Status Solidi B. 257 (2020) 2000159. https://doi.org/10.1002/pssb.202000159.
[11] G.P. Imthurn, G.A. Garcia, H.W. Walker, L. Forbes, Bonded silicon‐on‐sapphire wafers and devices, J. Appl. Phys. 72 (1992) 2526–2527. https://doi.org/10.1063/1.352345.
[12] M. Soeda, T. Kataoka, Y. Ishikura, S. Kimura, T. Masuda, et al., Sapphire-based capacitive pressure sensor for high temperature and harsh environment application, Proc. IEEE Sens. (2002). https://doi.org/10.1109/icsens.2002.1037237.
[13] Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, A. Wang, Single-crystal sapphire based optical polarimetric sensor for high temperature measurement, Sensors. 6 (2006) 823–834. https://doi.org/10.3390/s6080823.
[14] L.B. Kong, Y.Z. Huang, W.X. Que, T.S. Zhang, S. Li, et al., Transparent ceramics, Topics in Mining, Metallurgy and Materials Engineering, Springer Cham. (2015). https://doi.org/10.1007/978-3-319-18956-7.
[15] R. Apetz, M.P. Bruggen, Transparent alumina: A light-scattering model, Journal of the American Ceramic Society. 86 (2003) 480–486. https://doi.org/10.1111/j.1151-2916.2003.tb03325.x.
[16] B. Cockayne, M. Chesswas, D.B. Gasson, Single-crystal growth of sapphire, J. Mater. Sci. 2 (1967) 7–11. https://doi.org/10.1111/j.1151-2916.2003.tb03325.x.
[17] M. Trunec, K. Maca, R. Chmelik, Polycrystalline alumina ceramics doped with nanoparticles for increased transparency, J. Eur. Ceram. Soc. 35 (2015) 1001–1009. https://doi.org/10.1016/j.jeurceramsoc.2014.09.041.
[18] A. Belenky, I. Bar-On, D. Rittel, Static and dynamic fracture of transparent nanograined alumina, J. Mech. Phys. Solids. 58 (2010) 484–501. https://doi.org/10.1016/j.jmps.2010.02.002.
[19] T. Ashikaga, B.-N. Kim, H. Kiyono, T.S. Suzuki, Effect of crystallographic orientation on transparency of alumina prepared using magnetic alignment and SPS, J. Eur. Ceram. Soc. 38 (2018) 2735–2741. https://doi.org/10.1016/j.jeurceramsoc.2018.02.006.
[20] B. Apak, G. Göller, Y. Onüralp, F.Ç. Şahin, The effects of codoping Y2O3 on MgO doped spark plasma sintered Al2O3, Adv. Sci. Technol. 63 (2010) 74–78. https://doi.org/10.4028/www.scientific.net/AST.63.74.
[21] L. Liu, K. Morita, T.S. Suzuki, B.-N. Kim, Effect of the heating rate on the Spark-Plasma-Sintering (SPS) of Transparent Y2O3 Ceramics: Microstructural Evolution, mechanical and optical properties, Ceramics. 4 (2021) 56–69. https://doi.org/10.3390/ceramics4010006.
[22] F.C. Sahin, H.E. Kanbur, B. Apak, Preparation of AlON Ceramics via reactive Spark Plasma Sintering, J. Eur. Ceram. Soc. 32 (2012) 925–929. https://doi.org/10.1016/j.jeurceramsoc.2011.10.043.
[23] X. Mao, S. Wang, S. Shimai, J. Guo, Transparent polycrystalline alumina ceramics with orientated optical axes, J. Am. Ceram. Soc. 91 (2008) 3431–3433. https://doi.org/10.1111/j.1551-2916.2008.02611.x.
[24] H. Yi, X. Mao, G. Zhou, S. Chen, X. Zou, et al., Crystal plane evolution of grain oriented alumina ceramics with high transparency, Ceram. Int. 38 (2012) 5557–5561. https://doi.org/10.1016/j.ceramint.2012.03.074.
[25] E.C. Nykwest, S.P. Alpay, Towards magnetic alumina: Uncovering the roles of transition metal doping and electron hybridization in spin delocalization, J. Phys.: Condens. Matter. 31 (2019) 245801. https://doi.org/10.1088/1361-648x/ab0fe4.
[26] E.C. Nykwest, B. Christopher Rinderspacher, J.M. Elward, R.E. Brennan, K.R. Limmer, Magnetic and energetic properties of transition metal doped alumina, J. Phys.: Condens. Matter. 30 (2018) 395801. https://doi.org/10.1088/1361-648x/aada2a.
[27] G.C. Wei, Transparent ceramics for lighting, J. Eur. Ceram. Soc. 29 (2009) 237–244. https://doi.org/10.1016/j.jeurceramsoc.2008.03.018.
[28] K. Morita, B.-N. Kim, H. Yoshida, K. Hiraga, Y. Sakka, Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II - effect of SPS and loading temperatures, J. Eur. Ceram. Soc. 38 (2018) 2596–2604. https://doi.org/10.1016/j.jeurceramsoc.2017.12.004.
[29] A.R. Moon, M.R. Phillips, Iron and Spinel precipitation IN Iron-Doped Sapphire, J. Am. Ceram. Soc. 74 (1991) 865–868. https://doi.org/10.1111/j.1151-2916.1991.tb06943.x.
[30] J.L. Emmett, T.R. Douthit, Heat treating the Sapphires of Rock creek, montana, Gems Gemol. 29 (1993) 250–272. https://doi.org/10.5741/gems.29.4.250.
[31] G.P. Pells, Radiation damage effects in alumina, J. Am. Ceram. Soc. 77 (1994) 368–377. https://doi.org/10.1111/j.1151-2916.1994.tb07004.x.
[32] J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys. 105 (1996) 9982–9985. https://doi.org/10.1063/1.472933.
[33] G. Kresse, D. Joubert, From Ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758.
[34] G. Kresse, M. Marsman, J. Furthmüller, VASP the Guide. (2018).
[35] MedeA version 3.2.2; MedeA is a registered trademark of Materials Design, Inc., San Diego, USA.
[36] G. Kresse, J. Furthmüller, Efficient Iterative Schemes Forab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169.
[37] S. Zhang, J. Northrup, Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion, Phys. Rev. Lett. 67 (1991) 2339–2342. https://doi.org/10.1103/PhysRevLett.67.2339.
[38] C.G. Van de Walle, D.B. Laks, G.F. Neumark, S.T. Pantelides, First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe, Phys. Rev. B. 47 (1993) 9425–9434. https://doi.org/10.1103/PhysRevB.47.9425.
[39] K.T. Jacob, Revision of thermodynamic data on MnO–Al2O3Melts, Can. Metall. Quart. 20 (1981) 89–92. https://doi.org/10.1179/cmq.1981.20.1.89.
[40] A. Muan, S. Somiya, Phase equilibrium studies in the system iron oxide-Al2O3-Cr2O3, J. Am. Ceram. Soc. 42 (1959) 603–613. https://doi.org/10.1111/j.1151-2916.1959.tb13581.x.
[41] V. Somjit, B. Yildiz, Doping α-Al2O3 to reduce its hydrogen permeability: Thermodynamic assessment of hydrogen defects and solubility from first principles, Acta Mater. 169 (2019) 172–183. https://doi.org/10.1016/j.actamat.2019.02.031.
[42] A. Zunger, O.I. Malyi, Understanding doping of quantum materials, Chem. Rev. 121 (2021) 3031–3060. https://doi.org/10.1021/acs.chemrev.0c00608.
[43] M. Youssef, B. Yildiz, Intrinsic point-defect equilibria in tetragonal ZrO2: Density functional theory analysis with finite-temperature effects, Phys. Rev. B. 86 (2012). https://doi.org/10.1103/PhysRevB.86.144109.
[44] G. Zhang, Y. Lu, X. Wang, Hydrogen interactions with intrinsic point defects in hydrogen permeation barrier of α-Al2O3: A first-principles study, Phys. Chem. Chem. Phys. 16 (2014) 17523. https://doi.org/10.1039/C4CP01382D.
[45] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, et al., First-principles calculations for point defects in solids, Rev. Mod. Phys. 86 (2014) 253–305. https://doi.org/10.1103/RevModPhys.86.253.
[46] A. Alkauskas, P. Broqvist, A. Pasquarello, Defect levels through hybrid density functionals: Insights and applications, Phys. Status Solidi B. 248 (2011) 775–789. https://doi.org/10.1002/pssb.201046195.
[47] V.A. Pustovarov, T.V. Perevalov, V.A. Gritsenko, T.P. Smirnova, A.P. Yelisseyev, Oxygen vacancy in Al2O3: Photoluminescence Study and first-principle simulation, Thin Solid Films. 519 (2011) 6319–6322. https://doi.org/10.1016/j.tsf.2011.04.014.
[48] H.-Y. Lee, Y.-W. Rhee, S.-J.L. Kang, Discontinuous dissolution and grain-boundary migration in Al2O3-Fe2O3 by oxygen partial pressure change, J. Am. Ceram. Soc. 79 (1996) 1659–1663. https://doi.org/10.1111/j.1151-2916.1996.tb08778.x.

Cited By

Crossref Google Scholar
Ab-initio study of paramagnetic defects in Mn and Cr doped transparent polycrystalline Al2O3 ceramics
Submitted
2021-07-26
Available online
2021-09-13
How to Cite
Mansoor, M., Mansoor, M., Mansoor, M., Er, Z., & Çinar Şahin, F. (2021). Ab-initio study of paramagnetic defects in Mn and Cr doped transparent polycrystalline Al2O3 ceramics. Synthesis and Sintering, 1(3), 135-142. https://doi.org/10.53063/synsint.2021.1340

Most read articles by the same author(s)