Pressureless sinterability study of ZrB2–SiC composites containing hexagonal BN and phenolic resin additives

  • Iman FarahBakhsh 1
  • Riccarda Antiochia 2
  • Ho Won Jang 3
  • 1 Department of Engineering & Technology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
  • 2 Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
  • 3 Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea

Abstract

This research is dedicated to investigating the role of different amounts of hexagonal BN (hBN: 0, 1.5, 3, and 4.5 wt%) on the pressureless sinterability of ZrB2–25 vol% SiC ceramics. Phenolic resin (5 wt%) with a carbon yield of ~40% was incorporated as a binder to the powder mixtures and after initial cold pressing, the final sintering process was performed at 1900 °C for 100 min in a vacuum furnace. The as-sintered specimens were characterized by X-ray diffractometry, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results disclosed that the incorporation of 1.5 wt% hBN could increase the relative density to ~92%, while the sample with zero hBN content just reached ~81% of full densification. Appropriate hBN content not only facilitated the particle rearrangement during the cold pressing, but also removed the harmful oxide impurities during the final sintering. Nevertheless, the addition of higher amounts of hBN remarkably lessened the densification because of more delamination of the non-reacted hBN flakes and release and entrapment of more gaseous by-products induced by the reacted hBN phases.

Downloads

Download data is not yet available.
Keywords: Ultrahigh temperature ceramics, Fractography, Pressureless sintering, Densification, BN additive

References

[1] F. Sadegh Moghanlou, M. Vajdi, M. Sakkaki, S. Azizi, Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride, Synth. Sinter. 1 (2021) 54–61. https://doi.org/10.53063/synsint.2021.117.
[2] G. Li, H. Chen, Effect of repeated thermal shock on mechanical properties of ZrB2-SiC-BN ceramic composites, Sci. World J. 2014 (2014) 419386. https://doi.org/10.1155/2014/419386.
[3] C. Yan, R. Liu, C. Zhang, Y. Cao, X. Long, Synthesis of ZrB2 Powders from ZrO2, BN, and C, J. Am. Ceram. Soc. 99 (2016) 16–19. https://doi.org/10.1111/jace.14027.
[4] M. Vajdi, S. Mohammad Bagheri, F. Sadegh Moghanlou, A. Shams Khorrami, Numerical investigation of solar collectors as a potential source for sintering of ZrB2, Synth. Sinter. 1 (2021) 76–84. https://doi.org/10.53063/synsint.2021.128.
[5] M. Fattahi, Y. Azizian-Kalandaragh, S.A. Delbari, A. Sabahi Namini, Z. Ahmadi, M. Shahedi Asl, Nano-diamond reinforced ZrB2–SiC composites, Ceram. Int. 46 (2020) 10172–10179. https://doi.org/10.1016/j.ceramint.2020.01.008.
[6] J. Zou, J. Liu, J. Zhao, G.J. Zhang, S. Huang, et al., A top-down approach to densify ZrB2–SiC–BN composites with deeper homogeneity and improved reliability, Chem. Eng. J. 249 (2014) 93–101. https://doi.org/10.1016/j.cej.2014.03.089.
[7] A. Sabahi Namini, S.A. Delbari, Y. Oh, M. Shahedi Asl, Q. Van Le, et al., Role of TiCN addition on the characteristics of reactive spark plasma sintered ZrB2-based novel composites, J. Alloys Compd. 875 (2021) 159901. https://doi.org/10.1016/j.jallcom.2021.159901.
[8] I. Forooghi, M. Mashhadi, Pressureless Sintering & Mechanical & Thermal Properties of ZrB2-ZrC-SiC Nanocomposite, J. Adv. Mater. Eng. 39 (2021) 115–129. https://doi.org/10.47176/jame.39.4.5441.
[9] C. Yue, W. Liu, L. Zhang, T. Zhang, Y. Chen, Fracture toughness and toughening mechanisms in a (ZrB2–SiC) composite reinforced with boron nitride nanotubes and boron nitride nanoplatelets, Scr. Mater. 68 (2013) 579–582. https://doi.org/10.1016/j.scriptamat.2012.12.005.
[10] S. Jafari, M. Bavand-Vandchali, M. Mashhadi, A. Nemati, Effects of HfB2 addition on pressureless sintering behavior and microstructure of ZrB2-SiC composites, Int. J. Refract. Met. Hard Mater. 94 (2021) 105371. https://doi.org/10.1016/j.ijrmhm.2020.105371.
[11] W.-W. Wu, W.-L. Xiao, M. Estili, G.-J. Zhang, Y. Sakka, Microstructure and mechanical properties of ZrB2–SiC–BN composites fabricated by reactive hot pressing and reactive spark plasma sintering, Scr. Mater. 68 (2013) 889–892. https://doi.org/10.1016/j.scriptamat.2013.02.022.
[12] T.R. Paul, M.K. Mondal, M. Mallik, Abrasive wear performance and wear map of ZrB2-MoSi2-SiCw composites, J. Eur. Ceram. Soc. 41 (2021) 3227–3251. https://doi.org/10.1016/j.jeurceramsoc.2021.01.005.
[13] M. Mallik, S. Roy, K.K. Ray, R. Mitra, Effect of SiC content, additives and process parameters on densification and structure–property relations of pressureless sintered ZrB2–SiC composites, Ceram. Int. 39 (2013) 2915–2932. https://doi.org/10.1016/j.ceramint.2012.09.066.
[14] S.A.A. Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Ablation resistance of graphite coated by spark plasma sintered ZrB2–SiC based composites, Bol. Soc. Esp. Cerám. Vidr. 61 (2022) 604–610. https://doi.org/10.1016/j.bsecv.2021.05.004.
[15] M. Mashhadi, H. Khaksari, S. Safi, Pressureless sintering behavior and mechanical properties of ZrB2–SiC composites: effect of SiC content and particle size, J. Mater. Res. Technol. 4 (2015) 416–422. https://doi.org/10.1016/j.jmrt.2015.02.004.
[16] A. Sabahi Namini, S.A. Delbari, M. Shahedi Asl, Q. Van Le, M. Shokouhimehr, Characterization of reactive spark plasma sintered (Zr,Ti)B2–ZrC–SiC composites, J. Taiwan Inst. Chem. Eng. 119 (2021) 187–195. https://doi.org/10.1016/j.jtice.2021.02.020.
[17] S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Mechanical properties of sintered ZrB2–SiC ceramics, J. Eur. Ceram. Soc. 31 (2011) 893–901. https://doi.org/10.1016/j.jeurceramsoc.2010.11.013.
[18] P. Sengupta, S.S. Sahoo, A. Bhattacharjee, S. Basu, I. Manna, Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite, J. Alloys Compd. 850 (2021) 156668. https://doi.org/10.1016/j.jallcom.2020.156668.
[19] Z. Bahararjmand, M.A. Khalilzadeh, F. Saberi-Movahed, T.H. Lee, J. Wang, et al., Role of Si3N4 on microstructure and hardness of hot-pressed ZrB2−SiC composites, Synth. Sinter. 1 (2021) 34–40. https://doi.org/10.53063/synsint.2021.1113.
[20] E. Padovano, C. Badini, S. Biamino, M. Pavese, W.S. Yang, P. Fino, Pressureless sintering of ZrB2-SiC composite laminates using boron and carbon as sintering aids, Adv. Appl. Ceram. 112 (2013) 478–486. https://doi.org/10.1179/1743676113Y.0000000119.
[21] D. Vedel, O. Grigoriev, P. Mazur, A. Osipov, M. Brodnikovskyi, L. Silvestroni, Effect of Mo2C addition on the mechanical properties and oxidation resistance of ZrB2-SiC ceramics, J. Alloys Compd. 879 (2021) 160398. https://doi.org/10.1016/j.jallcom.2021.160398.
[22] Y. Yan, Z. Huang, S. Dong, D. Jiang, Pressureless sintering of high-density ZrB2-SiC ceramic composites, J. Am. Ceram. Soc. 89 (2006) 3589–3592. https://doi.org/10.1111/j.1551-2916.2006.01270.x.
[23] H. Zhang, Y. Yan, Z. Huang, X. Liu, D. Jiang, Properties of ZrB2-SiC ceramics by pressureless sintering, J. Am. Ceram. Soc. 92 (2009) 1599–1602. https://doi.org/10.1111/j.1551-2916.2009.03039.x.
[24] A. Sharma, D.B. Karunakar, Effect of SiC and TiC addition on microstructural and mechanical characteristics of microwave sintered ZrB2 based hybrid composites, Ceram. Int. 47 (2021) 26455–26464. https://doi.org/10.1016/j.ceramint.2021.06.058.
[25] J.-H. Yuan, Q.-Y. Liu, Y. You, L.-Y. Zeng, M.-W. Bai, et al., Effect of ZrB2 powders on densification, microstructure, mechanical properties and thermal conductivity of ZrB2-SiC ceramics, Ceram. Int. 47 (2021) 15843–15848. https://doi.org/10.1016/j.ceramint.2021.02.158.
[26] S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Pressureless Sintering of ZrB2–SiC Ceramics, Am. Ceram. Soc. 32 (2008) 26–32. https://doi.org/10.1111/j.1551-2916.2007.02006.x.
[27] M. Zhu, Y. Wang, Pressureless sintering ZrB2-SiC ceramics at low temperatures, Mater. Lett. 63 (2009) 2035–2037. https://doi.org/10.1016/j.matlet.2009.06.041.
[28] G. Li, W. Han, B. Wang, Effect of BN grain size on microstructure and mechanical properties of the ZrB2–SiC–BN composites, Mater. Des. 32 (2011) 401–405. https://doi.org/10.1016/j.matdes.2010.05.051.
[29] H. Wu, W. Zhang, Fabrication and properties of ZrB2–SiC–BN machinable ceramics, J. Eur. Ceram. Soc. 30 (2010) 1035–1042. https://doi.org/10.1016/j.jeurceramsoc.2009.09.022.
[30] S. Haghgooye Shafagh, S. Jafargholinejad, S. Javadian, Beneficial effect of low BN additive on densification and mechanical properties of hot-pressed ZrB2–SiC composites, Synth. Sinter. 1 (2021) 69–75. https://doi.org/10.53063/synsint.2021.1224.
[31] N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, M. Shahedi Asl, Role of h-BN content on microstructure and mechanical properties of hot-pressed ZrB2–SiC composites, Ceram. Int. 46 (2020) 21533–21541. https://doi.org/10.1016/j.ceramint.2020.05.255.
[32] Y. Chen, D. Zhao, F. Qi, W.W. Liu, Scratch behavior of boron nitride nanotube/boron nitride nanoplatelet hybrid reinforced ZrB2-SiC composites, Ceram. Int. 44 (2018) 3277–3281. https://doi.org/10.1016/j.ceramint.2017.11.100.
[33] W.W. Wu, M. Estili, T. Nishimura, G.J. Zhang, Y. Sakka, Machinable ZrB2-SiC-BN composites fabricated by reactive spark plasma sintering, Mater. Sci. Eng. A. 582 (2013) 41–46. https://doi.org/10.1016/j.msea.2013.05.079.
[34] J. Zou, G.J. Zhang, Z.J. Shen, J. Binner, Ultra-low temperature reactive spark plasma sintering of ZrB2-hBN ceramics, J. Eur. Ceram. Soc. 36 (2016) 3637–3645. https://doi.org/10.1016/j.jeurceramsoc.2016.01.044.
[35] J. Zou, G.J. Zhang, Z.Y. Fu, In-situ ZrB2- hBN ceramics with high strength and low elasticity, J. Mater. Sci. Technol. 48 (2020) 186–193. https://doi.org/10.1016/j.jmst.2020.01.061.
[36] X. Liu, C. Wei, W. Ji, S. Li, P. Wang, L. Zhou, Oxidation behaviour of laminated BN/ZrB2–SiC ceramics, Ceram. Int. 44 (2018) 8374–8379. https://doi.org/10.1016/j.ceramint.2018.02.029.
[37] Y. Bai, M. Sun, M. Li, S. Fan, L. Cheng, Comparative evaluation of two different methods for thermal shock resistance of laminated ZrB2-SiCw/BN ceramics, Ceram. Int. 44 (2018) 19686–19694. https://doi.org/10.1016/j.ceramint.2018.07.221.
[38] J. Watts, G. Hilmas, W.G. Fahrenholtz, D. Brown, B. Clausen, Measurement of thermal residual stresses in ZrB2–SiC composites, J. Eur. Ceram. Soc. 31 (2011) 1811–1820. https://doi.org/10.1016/j.jeurceramsoc.2011.03.024.
[39] O.N. Grigoriev, A.V. Stepanenko, V.B. Vinokurov, I.P. Neshpor, T. Mosina, L. Silvestroni, ZrB2–SiC ceramics: Residual stresses and mechanical properties, J. Eur. Ceram. Soc. 41 (2021) 4720–4727. https://doi.org/10.1016/j.jeurceramsoc.2021.02.053.

Cited By

Crossref Google Scholar
Pressureless sinterability study of ZrB2–SiC composites containing hexagonal BN and phenolic resin additives
Submitted
2021-06-01
Available online
2021-06-27
How to Cite
FarahBakhsh, I., Antiochia, R., & Jang, H. W. (2021). Pressureless sinterability study of ZrB2–SiC composites containing hexagonal BN and phenolic resin additives. Synthesis and Sintering, 1(2), 99-104. https://doi.org/10.53063/synsint.2021.1231

Most read articles by the same author(s)