Role of Si3N4 on microstructure and hardness of hot-pressed ZrB2−SiC composites

  • Zahra Bahararjmand 1
  • Mohammad A. Khalilzadeh 2
  • Farshad Saberi-Movahed 3
  • Tae Hyung Lee 4
  • Jinghan Wang 4
  • Sea-hoon Lee 5
  • Ho Won Jang 4
  • 1 Department of Biophysics, Istanbul University-Cerrahpasa, Istanbul, Turkey
  • 2 Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina, 27695-8005, United States
  • 3 Department of Materials Science and Engineering٫ North Carolina State University, Raleigh, North Carolina, 27695-8005, United States
  • 4 Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
  • 5 Division of Powder/Ceramics Research, Korea Institute of Materials Science, Changwon, 51508, Republic of Korea

Abstract

The impact of Si3N4 content on the hardness and microstructural developments of ZrB2-SiC material has been investigated thoroughly in the present investigation. Having prepared the raw materials in a jar mill, the ZrB2-SiC samples containing various amounts of Si3N4 were hot-pressed at 1850 °C. Furthermore, XRD, FESEM, and HRTEM were utilized to evaluate the microstructure of samples. The formation of in-situ h-BN was proved by the mentioned methods. Also, it was shown that the Vickers hardness of ZrB2-SiC increases up to 20 GPa in presence of 4.5 wt% Si3N4 which is 3 GPa more than the sample without Si3N4. Results show that the positive effect of increased relative density on hardness is more than the negative effect of h-BN soft phase formation.

Downloads

Download data is not yet available.
Keywords: Hot-pressing, ZrB2-SiC-Si3N4, Microstructure, Hardness

References

[1] K. Shugart, Oxidation Behavior of Zirconium Diboride Silicone Carbide Based Materials at Ultra-High Temperatures, PhD Thesis, University of Virginia, Charlottesville, Virginia. (2014). https://doi.org/10.18130/V3K51P.
[2] R.V. Krishnarao, G. Madhusudhan Reddy, Gas tungsten arc welding of ZrB2–SiC based ultra high temperature ceramic composites, Def. Technol. 11 (2015) 188–196. https://doi.org/10.1016/j.dt.2015.03.002.
[3] M. Jaberi Zamharir, M. Shahedi Asl, M. Ghassemi Kakroudi, N. Pourmohammadie Vafa, M. Jaberi Zamharir, Significance of hot pressing parameters and reinforcement size on sinterability and mechanical properties of ZrB2–25vol% SiC UHTCs, Ceram. Int. 41 (2015) 9628–9636. https://doi.org/10.1016/j.ceramint.2015.04.027.
[4] Q. Liu, W. Han, P. Hu, Microstructure and mechanical properties of ZrB2–SiC nanocomposite ceramic, Scr. Mater. 61 (2009) 690–692. https://doi.org/10.1016/j.scriptamat.2009.05.041.
[5] S. Guo, J. Yang, H. Tanaka, Y. Kagawa, Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles, Compos. Sci. Technol. 68 (2008) 3033–3040. https://doi.org/10.1016/j.compscitech.2008.06.021.
[6] Y. Cao, H. Zhang, F. Li, L. Lu, S. Zhang, Preparation and characterization of ultrafine ZrB2–SiC composite powders by a combined sol–gel and microwave boro/carbothermal reduction method, Ceram. Int. 41 (2015) 7823–7829. https://doi.org/10.1016/j.ceramint.2015.02.117.
[7] X. Deng, S. Du, H. Zhang, F. Li, J. Wang, et al., Preparation and characterization of ZrB2–SiC composite powders from zircon via microwave-assisted boro/carbothermal reduction, Ceram. Int. 41 (2015) 14419–14426. https://doi.org/10.1016/j.ceramint.2015.07.077.
[8] S. Guo, Thermal and electrical properties of hot-pressed short pitch-based carbon fiber-reinforced ZrB2–SiC matrix composites, Ceram. Int. 39 (2013) 5733–5740. https://doi.org/10.1016/j.ceramint.2012.12.091.
[9] M. Shahedi Asl, M. Ghassemi Kakroudi, A processing-microstructure correlation in ZrB2–SiC composites hot-pressed under a load of 10 MPa, Univers. J. Mater. Sci. 3 (2015) 14–21. https://doi.org/10.13189/ujms.2015.030103.
[10] M. Khoeini, A. Nemati, M. Zakeri, M. Tamizifar, H. Samadi, Comprehensive study on the effect of SiC and carbon additives on the pressureless sintering and microstructural and mechanical characteristics of new ultra-high temperature ZrB2 ceramics, Ceram. Int. 41 (2015) 11456–11463. https://doi.org/10.1016/j.ceramint.2015.05.110.
[11] R.V. Krishnarao, Z. Alam, D.K. Das, V.V. Bhanu Prasad, G. Madhusudan Reddy, Pressureless sintering of (ZrB2–SiC–B4C) composites with (Y2O3+Al2O3) additions, Int. J. Refract. Met. Hard Mater. 52 (2015) 55–65. https://doi.org/10.1016/j.ijrmhm.2015.05.013.
[12] Z. Liu, C. Wei, P. Wang, S. Li, X. Ma, Z. Zhang, Enhanced mechanical properties of laminated ZrB2–SiC ceramics with porous Si3N4 interface, Ceram. Int. 46 (2020) 17003–17009. https://doi.org/10.1016/j.ceramint.2020.03.285.
[13] B.R. Golla, S.K. Thimmappa, Comparative study on microstructure and oxidation behaviour of ZrB2-20 vol% SiC ceramics reinforced with Si3N4/Ta additives, J. Alloys Compd. 797 (2019) 92–100. https://doi.org/10.1016/j.jallcom.2019.05.097.
[14] S.K. Thimmappa, B.R. Golla, V. Bhanu Prasad, B. Majumdar, B. Basu, Phase stability, hardness and oxidation behaviour of spark plasma sintered ZrB2-SiC-Si3N4 composites, Ceram. Int. 45 (2019) 9061–9073. https://doi.org/10.1016/j.ceramint.2019.01.243.
[15] Z. Ahmadi, B. Nayebi, M. Shahedi Asl, M. Ghassemi Kakroudi, I. Farahbakhsh, Sintering behavior of ZrB2–SiC composites doped with Si3N4: A fractographical approach, Ceram. Int. 43 (2017) 9699–9708. https://doi.org/10.1016/j.ceramint.2017.04.144.
[16] J. Zou, G.-J. Zhang, C.-F. Hu, T. Nishimura, Y. Sakka, et al., High-temperature bending strength, internal friction and stiffness of ZrB2–20vol% SiC ceramics, J. Eur. Ceram. Soc. 32 (2012) 2519–2527. https://doi.org/10.1016/j.jeurceramsoc.2012.01.035.
[17] N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, M. Shahedi Asl, Advantages and disadvantages of graphite addition on the characteristics of hot-pressed ZrB2–SiC composites, Ceram. Int. 46 (2020) 8561–8566. https://doi.org/10.1016/j.ceramint.2019.12.086.
[18] M. Shahedi Asl, A. Sabahi Namini, S.A. Delbari, Q. Van Le, M. Shokouhimehr, M. Mohammadi, A TEM study on the microstructure of spark plasma sintered ZrB2-based composite with nano-sized SiC dopant, Prog. Nat. Sci. Mater. Int. 31 (2021) 47–54. https://doi.org/10.1016/j.pnsc.2020.11.010.
[19] Z. Ahmadi, B. Nayebi, M. Shahedi Asl, M. Ghassemi Kakroudi, Fractographical characterization of hot pressed and pressureless sintered AlN-doped ZrB2–SiC composites, Mater. Charact. 110 (2015) 77–85. https://doi.org/10.1016/j.matchar.2015.10.016.
[20] M. Shahedi Asl, M. Ghassemi Kakroudi, R. Abedi Kondolaji, H. Nasiri, Influence of graphite nano-flakes on densification and mechanical properties of hot-pressed ZrB2–SiC composite, Ceram. Int. 41 (2015) 5843–5851. https://doi.org/10.1016/j.ceramint.2015.01.014.
[21] M. Shahedi Asl, M. Ghassemi Kakroudi, Characterization of hot-pressed graphene reinforced ZrB2–SiC composite, Mater. Sci. Eng. A. 625 (2015) 385–392. https://doi.org/10.1016/j.msea.2014.12.028.
[22] M. Shahedi Asl, F. Golmohammadi, M. Ghassemi Kakroudi, M. Shokouhimehr, Synergetic effects of SiC and Csf in ZrB2-based ceramic composites. Part I: densification behavior, Ceram. Int. 42 (2016) 4498–4506. https://doi.org/10.1016/j.ceramint.2015.11.139.
[23] M. Shahedi Asl, B. Nayebi, Z. Ahmadi, P. Pirmohammadi, M. Ghassemi Kakroudi, Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2–SiC composites, Mater. Charact. 102 (2015) 137–145. https://doi.org/10.1016/j.matchar.2015.03.002.
[24] Z. Zhang, Y. Liu, Y. Yang, B.I. Yakobson, Growth Mechanism and Morphology of Hexagonal Boron Nitride, Nano Lett. 16 (2016) 1398–1403. https://doi.org/10.1021/acs.nanolett.5b04874.
[25] M.S. Bresnehan, M.J. Hollander, M. Wetherington, K. Wang, T. Miyagi, et al., Prospects of direct growth boron nitride films as substrates for graphene electronics, J. Mater. Res. 29 (2014) 459–471. https://doi.org/10.1557/jmr.2013.323.
[26] I. Farahbakhsh, Z. Ahmadi, M. Shahedi Asl, Densification, microstructure and mechanical properties of hot pressed ZrB2 –SiC ceramic doped with nano-sized carbon black, Ceram. Int. 43 (2017) 8411–8417. https://doi.org/10.1016/j.ceramint.2017.03.188.
[27] T. Ohtsuka, H. Mabuchi, H. Tsuda, K. Morii, Fabrication of Si3N4/SiC Composite Ceramics by Reactive Hot-Pressing from Elemental Powders, J. Japan Soc. Powder Powder Metall. 45 (1998) 321–325. https://doi.org/10.2497/jjspm.45.321.
[28] I.G. Talmy, J.A. Zaykoski, M.M. Opeka, High-Temperature Chemistry and Oxidation of ZrB2 Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi 2, J. Am. Ceram. Soc. 91 (2008) 2250–2257. https://doi.org/10.1111/j.1551-2916.2008.02420.x.
[29] M. Mallik, K.K. Ray, R. Mitra, Effect of Si3N4 Addition on Compressive Creep Behavior of Hot-Pressed ZrB2-SiC Composites, J. Am. Ceram. Soc. 97 (2014) 2957–2964. https://doi.org/10.1111/jace.13022.
[30] L. fa, Z. dongmei, S. xiaolei, Z. wancheng, Properties of hot-pressed of SiC/Si3N4 nanocomposites, Mater. Sci. Eng. A. 458 (2007) 7–10. https://doi.org/10.1016/j.msea.2007.01.126.
[31] M. Shahedi Asl, B. Nayebi, M. Shokouhimehr, TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite, Ceram. Int. 44 (2018) 15269–15273. https://doi.org/10.1016/j.ceramint.2018.05.170.
[32] M. Shahedi Asl, A statistical approach towards processing optimization of ZrB2–SiC–graphite nanocomposites. Part I: Relative density, Ceram. Int. 44 (2018) 6935–6939. https://doi.org/10.1016/j.ceramint.2018.01.122.

Cited By

Crossref Google Scholar
Role of Si3N4 on microstructure and hardness of hot-pressed ZrB2−SiC composites
Submitted
2021-03-15
Available online
2021-04-10
How to Cite
Bahararjmand, Z., Khalilzadeh, M. A., Saberi-Movahed, F., Lee, T. H., Wang, J., Lee, S.- hoon, & Jang, H. W. (2021). Role of Si3N4 on microstructure and hardness of hot-pressed ZrB2−SiC composites. Synthesis and Sintering, 1(1), 34-40. https://doi.org/10.53063/synsint.2021.1113

Most read articles by the same author(s)