Characterization of hot-pressed biodegradable zinc-based nanocomposite implant materials reinforced with 10 wt% Mg, WE43, and AZ91

  • Onur Fevzi Kevenlik 1
  • Shanli Salahi 2
  • Yiğit Yalçın 2
  • Hanifi Çinici 2
  • Recep Çalın 3
  • 1 Department of Defense Technologies, Kırıkkale University, 71450, Kırıkkale, Turkey
  • 2 Department of Metallurgical and Materials Engineering, Gazi University, 06500, Ankara, Turkey
  • 3 Department of Metallurgical and Materials Engineering, Kırıkkale University, 71450, Kırıkkale, Turkey

Abstract

Compared to permanent orthopedic implants for load-bearing applications, biodegradable implants eliminate the necessity for surgical removal after the healing process. Furthermore, magnesium alloy powder reinforced zinc matrix implant materials have been produced to enhance the mechanical properties, biocompatibility, and a proper degradation rate with the growth rate of new bones. This study aims to fabricate Zn-10 wt% Mg, Zn-10 wt% WE43, Zn-10 wt% AZ91, and alloys along with pure Zn sample for control, using the powder metallurgy production method. In this context, hot pressing was applied to samples at 200 °C and 300 °C temperatures, under a constant pressure of 400 MPa to optimize the fabrication parameters. Scanning Electron Microscope (SEM), Energy Dispersive Spectrometry (EDS), Vickers macro- and micro-hardness test (HV), and X-Ray Diffraction Spectroscopy (XRD) analyses were performed to investigate the influence of press temperatures on the microstructure, elemental components, and mechanical properties of the fabricated samples. The microstructures of the zinc matrix nanocomposite samples reinforced with magnesium alloys predominantly consist of MgZn2, Mg2Zn11, and MgO phases dispersed within the refined zinc matrix. The obtained results indicate that Zn Mg alloy nanocomposites hold significant potential as biodegradable orthopedic implant materials; however, it is possible to further improve the properties of the material by optimizing the production parameters.

Downloads

Download data is not yet available.
Keywords: Zn-Mg alloy, Nanocomposite, Powder metallurgy, Biodegradability, Mechanical properties

References

[1] H. Hermawan, Biodegradable Metals: State of the Art, Springer, Berlin, Heidelberg. (2012) 13–22. https://doi.org/10.1007/978-3-642-31170-3_2.
[2] Y. Yun, Z. Dong, N. Lee, Y. Liu, D. Xue, et al., Revolutionizing biodegradable metals, Mater. Today. 12 (2009) 22–32. https://doi.org/10.1016/S1369-7021(09)70273-1.
[3] M. Moravej, D. Mantovani, Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities, Int. J. Mol. Sci. 12 (2011) 4250–4270. https://doi.org/10.3390/ijms12074250.
[4] H. Gong, J. Agustin, D. Wootton, J.G. Zhou, Biomimetic design and fabrication of porous chitosan–gelatin liver scaffolds with hierarchical channel network, J. Mater. Sci. Mater. Med. 25 (2014) 113–120. https://doi.org/10.1007/s10856-013-5061-8.
[5] P. Suomalainen, A.-S. Moisala, A. Paakkala, P. Kannus, T. Järvelä, Comparison of tunnel placements and clinical results of single-bundle anterior cruciate ligament reconstruction before and after starting the use of double-bundle technique, Knee Surgery, Sport. Traumatol. Arthrosc. 21 (2013) 646–653. https://doi.org/10.1007/s00167-012-1981-y.
[6] R. Hänsch, R.R. Mendel, Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl), Curr. Opin. Plant Biol. 12 (2009) 259–266. https://doi.org/10.1016/j.pbi.2009.05.006.
[7] H. Tapiero, K.D. Tew, Trace elements in human physiology and pathology: zinc and metallothioneins, Biomed. Pharmacother. 57 (2003) 399–411. https://doi.org/10.1016/S0753-3322(03)00081-7.
[8] D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomater. 7 (2011) 3515–3522. https://doi.org/10.1016/j.actbio.2011.05.008.
[9] L.M. Plum, L. Rink, H. Haase, The Essential Toxin: Impact of Zinc on Human Health, Int. J. Environ. Res. Public Health. 7 (2010) 1342–1365. https://doi.org/10.3390/ijerph7041342.
[10] H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, et al., Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr, Sci. Rep. 5 (2015) 10719. https://doi.org/10.1038/srep10719.
[11] H. Li, Y. Zheng, L. Qin, Progress of biodegradable metals, Prog. Nat. Sci. Mater. Int. 24 (2014) 414–422. https://doi.org/10.1016/j.pnsc.2014.08.014.
[12] P.K. Bowen, J. Drelich, J. Goldman, Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents, Adv. Mater. 25 (2013) 2577–2582. https://doi.org/10.1002/adma.201300226.
[13] E.R. Shearier, P.K. Bowen, W. He, A. Drelich, J. Drelich, et al., In Vitro Cytotoxicity, Adhesion, and Proliferation of Human Vascular Cells Exposed to Zinc, ACS Biomater. Sci. Eng. 2 (2016) 634–642. https://doi.org/10.1021/acsbiomaterials.6b00035.
[14] P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, et al., Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn‐Alloys, Adv. Healthc. Mater. 5 (2016) 1121–1140. https://doi.org/10.1002/adhm.201501019.
[15] E. Jablonská, D. Vojtěch, M. Fousová, J. Kubásek, J. Lipov, et al., Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy, Mater. Sci. Eng. C. 68 (2016) 198–204. https://doi.org/10.1016/j.msec.2016.05.114.
[16] J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, T. Ruml, Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys, Mater. Sci. Eng. C. 58 (2016) 24–35. https://doi.org/10.1016/j.msec.2015.08.015.
[17] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials. 27 (2006) 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003.
[18] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, et al., Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci. 12 (2008) 63–72. https://doi.org/10.1016/j.cossms.2009.04.001.
[19] C.K. Seal, K. Vince, M.A. Hodgson, Biodegradable surgical implants based on magnesium alloys – A review of current research, IOP Conf. Ser. Mater. Sci. Eng. 4 (2009) 012011. https://doi.org/10.1088/1757-899X/4/1/012011.
[20] R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert, Progress and Challenge for Magnesium Alloys as Biomaterials, Adv. Eng. Mater. 10 (2008) B3–B14. https://doi.org/10.1002/adem.200800035.
[21] A. Krause, N. von der Höh, D. Bormann, C. Krause, F.-W. Bach, et al., Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae, J. Mater. Sci. 45 (2010) 624–632. https://doi.org/10.1007/s10853-009-3936-3.
[22] M.S. Dambatta, S. Izman, H. Hermawan, D. Kurniawan, Influence of Heat Treatment Cooling Mediums on the Degradation Property of Biodegradable Zn-3Mg Alloy, Adv. Mater. Res. 845 (2013) 7–11. https://doi.org/10.4028/www.scientific.net/AMR.845.7.
[23] D. Zhang, G. Shi, X. Zhao, F. Qi, Microstructure evolution and mechanical properties of Mg-x%Zn-1%Mn (x=4, 5, 6, 7, 8, 9) wrought magnesium alloys, Trans. Nonferrous Met. Soc. China. 21 (2011) 15–25. https://doi.org/10.1016/S1003-6326(11)60672-9.
[24] H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr, Mater. Des. 83 (2015) 95–102. https://doi.org/10.1016/j.matdes.2015.05.089.
[25] J. Čapek, E. Jablonská, J. Lipov, T.F. Kubatík, D. Vojtěch, Preparation and characterization of porous zinc prepared by spark plasma sintering as a material for biodegradable scaffolds, Mater. Chem. Phys. 203 (2018) 249–258. https://doi.org/10.1016/j.matchemphys.2017.10.008.
[26] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, et al., Corrosion fatigue behaviors of two biomedical Mg alloys – AZ91D and WE43 – In simulated body fluid, Acta Biomater. 6 (2010) 4605–4613. https://doi.org/10.1016/j.actbio.2010.07.026.
[27] H. Gong, K. Wang, R. Strich, J.G. Zhou, In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy, J. Biomed. Mater. Res. Part B Appl. Biomater. 103 (2015) 1632–1640. https://doi.org/10.1002/jbm.b.33341.
[28] S.A.M.Y. Kolawole, J.O. Aweda, F. Iqbal, A. Ali, Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application, Int. J. Mater. Metall. Eng. 13 (2019) 558–563. https://doi.org/10.5281/zenodo.3593236.
[29] T. Truglas, J. Duchoslav, C. Riener, M. Arndt, C. Commenda, et al., Correlative characterization of Zn-Al-Mg coatings by electron microscopy and FIB tomography, Mater. Charact. 166 (2020) 110407. https://doi.org/10.1016/j.matchar.2020.110407.
[30] Y. Zhang, Q. Li, T. Guo, S. Li, Effect of Y Content on Properties of Extruded Zn-1.5Mg-xY Alloys for Medical Applications, Mater. Res. 22 (2019) e20190004. https://doi.org/10.1590/1980-5373-mr-2019-0004.
[31] P. Gogola, Z. Gabalcová, M. Kusý, H. Suchánek, The Effect of Sn Addition on Zn-Al-Mg Alloy; Part I: Microstructure and Phase Composition, Materials (Basel). 14 (2021) 5404. https://doi.org/10.3390/ma14185404.
[32] U. Tasci, T.A. Yilmaz, B. Bostan, Investigation of microstructure, wear and transverse rupture strength of WE43/nano B4C composites produced by powder metallurgy method, Tribol. Int. 180 (2023) 108231. https://doi.org/10.1016/j.triboint.2023.108231.
[33] C. Gül, S. Albayrak, H. Çinici, Characterization of Tantalum Oxide Sol–Gel-coated AZ91 Mg Alloys, Trans. Indian Inst. Met. 73 (2020) 1249–1256. https://doi.org/10.1007/s12666-020-01976-y.
[34] H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, et al., Alloying design of biodegradable zinc as promising bone implants for load-bearing applications, Nat. Commun. 11 (2020) 401. https://doi.org/10.1038/s41467-019-14153-7.
[35] I. Pospíšilová, D. Vojtěch, Zinc Alloys for Biodegradable Medical Implants, Mater. Sci. Forum 782 (2014) 457–460. https://doi.org/10.4028/www.scientific.net/MSF.782.457.
[36] J. Madhavi, Comparison of average crystallite size by X-ray peak broadening and Williamson–Hall and size–strain plots for VO2+ doped ZnS/CdS composite nanopowder, SN Appl. Sci. 1 (2019) 1509. https://doi.org/10.1007/s42452-019-1291-9.
[37] H. Li, J. Huang, P. Zhang, Q. Zhang, Investigation on tribological behaviors of biodegradable pure Zn and Zn-X (Li, Cu, Ge) binary alloys, J. Mater. Sci. Mater. Med. 32 (2021) 149. https://doi.org/10.1007/s10856-021-06625-4.

Cited By

Crossref Google Scholar
Characterization of hot-pressed biodegradable zinc-based nanocomposite implant materials reinforced with 10 wt% Mg, WE43, and AZ91
Submitted
2025-01-31
Available online
2025-03-09
How to Cite
Kevenlik, O. F., Salahi, S., Yalçın, Y., Çinici, H., & Çalın, R. (2025). Characterization of hot-pressed biodegradable zinc-based nanocomposite implant materials reinforced with 10 wt% Mg, WE43, and AZ91. Synthesis and Sintering, 5(1), 60-66. https://doi.org/10.53063/synsint.2025.51269