Silver nanowires: recent advances in synthesis, transparent conductive coatings, and EMI shielding applications

  • Ali Borchloo 1
  • Reza Shoja-Razavi 1
  • Hamed Naderi-Samani 1
  • 1 Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran

Abstract

Indium tin oxide (ITO) is a broadly utilized transparent conductor, although it possesses several limitations such as high cost and brittleness. This paper investigates silver nanowires (AgNWs) as suitable material due to their improved electrical conductivity, flexibility, and transparency. We investigated several techniques for creating AgNWs, including template, chemical, polyol, and electrochemical approaches. The polyol method is highlighted as very cost-effective and efficient; however, it produces nanoparticle byproducts. We explore changes to the polyol technique that aim to improve yield and purity. The review examines how AgNWs are made, talking about nucleation, phase transitions of silver atoms, and the formation of pentagonal grains. These characteristics show how effectively the polyol approach works for generating high-quality AgNWs on a large scale. We investigated the relationship between AgNW concentration of, the additive's characteristics, and the surface tension and viscosity of the resultant ink, with a focus on how these variables influence different coating processes. The study reviews the process of converting AgNWs into conductive inks for use in transparent conductive films (TCFs), with applications including transparent heaters, touch panels, sensors, solar cell electrodes, and electromagnetic interference (EMI) shielding devices. The research overview concludes with a discussion of potential future directions and the promising role of AgNWs in advancing TCF technologies.

Downloads

Download data is not yet available.
Keywords: Silver nanowires, Transparent coatings, Polyol method, Conductive inks, EMI shielding

References

[1] A. Borchloo, R. Shoja-Razavi, H. Naderi-Samani, Synthesis and characterization of silver nanowires with high aspect ratio for transparent coating applications, Synth. Sinter. 4 (2024) 167–190. https://doi.org/10.53063/synsint.2024.43236.
[2] J. Krantz, M. Richter, S. Spallek, E. Spiecker, C.J. Brabec, Solution-Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin-Film Solar Cells, Adv. Funct. Mater. 21 (2011) 4784–4787. https://doi.org/10.1002/adfm.201100457.
[3] S. Huang, Q. Zhang, F. Yang, D. Thrithamarassery Gangadharan, P. Li, et al., A facile way for scalable fabrication of silver nanowire network electrodes for high-performance and foldable smart windows, J. Mater. Chem. A. 8 (2020) 8620–8628. https://doi.org/10.1039/c9ta14030a.
[4] Y. Sun, Y. Xia, Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process, Adv. Mater. 14 (2002) 833. https://doi.org/10.1002/1521-4095(20020605)14:11%3C833::aid-adma833%3E3.0.co;2-k.
[5] W. Tsou, S.-M. Kao, Overview of EMI Development, English as a Medium of Instruction in Higher Education, Springer, Singapore. (2017) 3–18. https://doi.org/10.1007/978-981-10-4645-2_1.
[6] M.K. Francis, B.K. Sahu, P.B. Bhargav, B.C.N. Ahmed, A. Das, S. Dhara, Ag nanowires based SERS substrates with very high enhancement factor, Phys. E: Low-Dimens. Syst. Nanostructures. 137 (2022) 115080. https://doi.org/10.1016/j.physe.2021.115080.
[7] T.K. Lahane, J. Agrawal, V. Singh, Optimization of polyol synthesized silver nanowires for transparent conducting electrodes application, Mater. Today. 59 (2022) 257–263. https://doi.org/10.1016/j.matpr.2021.11.108.
[8] H. Jeong, S. Park, J. Lee, P. Won, S. Ko, D. Lee, Fabrication of Transparent Conductive Film with Flexible Silver Nanowires Using Roll‐to‐Roll Slot‐Die Coating and Calendering and Its Application to Resistive Touch Panel, Adv. Electron. Mater. 4 (2018) 1800243. https://doi.org/10.1002/aelm.201800243.
[9] D. Tan, C. Jiang, Q. Li, S. Bi, J. Song, Silver nanowire networks with preparations and applications: a review, J. Mater. Sci: Mater. Electron. 31 (2020) 15669–15696. https://doi.org/10.1007/s10854-020-04131-x.
[10] J. Kwon, Y.D. Suh, J. Lee, P. Lee, S. Han, et al., Recent progress in silver nanowire-based flexible/wearable optoelectronics, J. Mater. Chem. C. 6 (2018) 7445–7461. https://doi.org/10.1039/c8tc01024b.
[11] S.-M. Yang, H.-K. Yen, K.-C. Lu, Synthesis, and Characterization of Indium Tin Oxide Nanowires with Surface Modification of Silver Nanoparticles by Electrochemical Method, Nanomaterials. 12 (2022) 897. https://doi.org/10.3390/nano12060897.
[12] J. Wei, X. Li, F. Bian, J. Zeng, J. Hu, et al., Synthesis of high purity silver nanowires through a silver chloride-mediated polyol method, Inorg. Chem. Commun. 146 (2022) 110164. https://doi.org/10.1016/j.inoche.2022.110164.
[13] B. Wiley, Y. Sun, Y. Xia, Synthesis of Silver Nanostructures with Controlled Shapes and Properties, Accounts of Chemical Research. 40 (2007) 1067–1076. https://doi.org/10.1021/ar7000974.
[14] J.-J. Zhu, Q.-F. Qiu, H. Wang, J.-R. Zhang, J.-M. Zhu, Z.-Q. Chen, Synthesis of silver nanowires by a sonoelectrochemical method, Inorg. Chem. Commun. 5 (2002) 242–244. https://doi.org/10.1016/s1387-7003(02)00351-9.
[15] J. Choi, G. Sauer, K. Nielsch, R.B. Wehrspohn, U. Gösele, Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio, Chem Mater. 15 (2003) 776–779. https://doi.org/10.1021/cm0208758.
[16] Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y. Xia, Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone), Chem Mater. 14 (2002) 4736–4745. https://doi.org/10.1021/cm020587b.
[17] C.-C. Huang, S. Gupta, C.-Y. Lo, N.-H. Tai, Highly transparent and excellent electromagnetic interference shielding hybrid films composed of sliver-grid/(silver nanowires and reduced graphene oxide), Mater. Lett. 253 (2019) 152–155. https://doi.org/10.1016/j.matlet.2019.06.058.
[18] S. Subburaj, B. Arumugam, S.M. Chen, T.W. Chen, A. Seetharam, S.K. Ramaraj, Polyol synthesis of Ag Nanowires as an electrochemical sensor for the quantification of Carcinogenic Hydrazine, Int. J. Electrochem. Sci. 16 (2021) 210773. https://doi.org/10.20964/2021.07.74.
[19] H. Wang, Y. Wang, X. Chen, Synthesis of uniform silver nanowires from AgCl seeds for transparent conductive films via spin-coating at variable spin-speed, Colloids Surf. A: Physicochem. Eng. Asp. 565 (2019) 154–161. https://doi.org/10.1016/j.colsurfa.2018.11.050.
[20] B. Li, S. Ye, I.E. Stewart, S. Alvarez, B.J. Wiley, Synthesis and Purification of Silver Nanowires To Make Conducting Films with a Transmittance of 99%, Nano Lett. 15 (2015) 6722–6726. https://doi.org/10.1021/acs.nanolett.5b02582.
[21] D. Kumar, Kavita, K. Singh, V. Verma, H.S. Bhatti, Microwave-assisted synthesis and characterization of silver nanowires by polyol process, Appl. Nanosci. 5 (2014) 881–890. https://doi.org/10.1007/s13204-014-0386-2.
[22] J.W. Park, D.K. Shin, J. Ahn, J.Y. Lee, Thermal property of transparent silver nanowire films, Semicond. Sci. Technol. 29 (2013) 015002–015002. https://doi.org/10.1088/0268-1242/29/1/015002.
[23] Y. Zhan, C. Santillo, Y. Meng, M. Lavorgna, Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding, J. Mater. Chem. C. 11 (2023) 859–892. https://doi.org/10.1039/d2tc03821h.
[24] L. Zhang, T. Song, L.-X. Shi, N. Wen, Z. Wu, et al., Recent progress for silver nanowires conducting film for flexible electronics, J. Nanostructure Chem. 11 (2021) 323–341. https://doi.org/10.1007/s40097-021-00436-3.
[25] H. Li, Q. Chen, G. Zhang, Z. Zhang, J. Fang, et al., Stable, highly conductive and orthogonal silver nanowire networks via zwitterionic treatment, J. Mater. Chem. A. 11 (2022) 158–166. https://doi.org/10.1039/D2TA07406K.
[26] Y. Zhu, Y. Deng, P. Yi, L. Peng, X. Lai, Z. Lin, Flexible Transparent Electrodes Based on Silver Nanowires: Material Synthesis, Fabrication, Performance, and Applications, Adv. Mater. Technol. 4 (2019) 1900413. https://doi.org/10.1002/admt.201900413.
[27] Y. Guo, Y. Hu, X. Luo, S. Lin, J. Hu, Y. Liu, Investigation into the role of poly(vinylpyrrolidone) in the growth of high aspect ratio silver nanowires, Inorg. Chem. Commun. 128 (2021) 108558. https://doi.org/10.1016/j.inoche.2021.108558.
[28] S. Fahad, H. Yu, L. Wang, Y. Wang, T. Lin, et al., Synthesis of AgNWs Using High Molecular Weight PVP As a Capping Agent and Their Application in Conductive Thin Films, J. Electron. Mater. 50 (2021) 2789–2799. https://doi.org/10.1007/s11664-021-08770-6.
[29] S. Fahad, H. Yu, L. Wang, N. Zain-ul-Abdin, M. Haroon, et al., Recent progress in the synthesis of silver nanowires and their role as conducting materials, J. Mater. Sci. 54 (2018) 997–1035. https://doi.org/10.1007/s10853-018-2994-9.
[30] P. Zhang, I. Wyman, J. Hu, S. Lin, Z. Zhong, et al., Silver nanowires: Synthesis technologies, growth mechanism, and multifunctional applications, Mater. Sci. Eng: B. 223 (2017) 1–23. https://doi.org/10.1016/j.mseb.2017.05.002.
[31] H. Mao, J. Feng, X. Ma, C. Wu, X. Zhao, One-dimensional silver nanowires synthesized by self-seeding polyol process, J. Nanoparticle Res. 14 (2012) 887. https://doi.org/10.1007/s11051-012-0887-4.
[32] A.B.V. Kiran Kumar, C. wan Bae, L. Piao, S.-H. Kim, Silver nanowire-based flexible electrodes with improved properties: High conductivity, transparency, adhesion, and low haze, Mater. Res. Bull. 48 (2013) 2944–2949. https://doi.org/10.1016/j.materresbull.2013.04.035.
[33] G. Zhu, D. Chen, Solvothermal fabrication of uniform silver nanowires, J. Mater. Sci: Mater. Electron. 23 (2012) 2035–2041. https://doi.org/10.1007/s10854-012-0699-4.
[34] D. Fu, R. Yang, Y. Wang, R. Wang, F. Hua, Silver nanowire synthesis and applications in composites: progress and prospects, Adv. Mater. Technol. 7 (2022) 2200027. https://doi.org/10.1002/admt.202200027.
[35] J. Junaidi, M. Wahyudi Saputra, R. Marjunus, S. Sembiring, S. Hadi, The Quenching and Sonication Effect on the Mechanical Strength of Silver Nanowires Synthesized Using the Polyol Method, Molecules. 26 (2021) 2167–2167. https://doi.org/10.3390/molecules26082167.
[36] Y. Won, A. Kim, W. Yang, S. Jeong, J. Moon, A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%, NPG Asia Mater. 6 (2014) e132–e132. https://doi.org/10.1038/am.2014.88.
[37] X. Feng, X. Wang, B. Zhang, J. Gu, C. Xu, S. Zhang, Flexible transparent conductive films based on silver nanowires by ultrasonic spraying process, J. Mater. Sci.: Mater. Electron. 33 (2022) 25939–25949. https://doi.org/10.1007/s10854-022-09284-5.
[38] C. Vitelaru, A.C. Parau, M. Dinu, I. Pana, L.R. Constantin, et al., Transparent Silver Coatings with Copper Addition for Improved Conductivity by Combined DCMS and HiPIMS Process, Metals. 12 (2022) 1264. https://doi.org/10.3390/met12081264.
[39] S. Ye, A.R. Rathmell, Z. Chen, I. Stewart, B.J. Wiley, Metal Nanowire Networks: The Next Generation of Transparent Conductors, Adv. Mater. 26 (2014) 6670–6687. https://doi.org/10.1002/adma.201402710.
[40] T. Muhmood, F. Ahmad, X. Hu, X. Yang, Silver nanowires: a focused review of their synthesis, properties, and major factors limiting their commercialization, Nano Futures. 6 (2022) 032006–032006. https://doi.org/10.1088/2399-1984/ac8388.
[41] Y. Sun, B. Gates, B. Mayers, Y. Xia, Crystalline Silver Nanowires by Soft Solution Processing, Nano Lett. 2 (2002) 165–168. https://doi.org/10.1021/nl010093y.
[42] R. Sahoo, S. Ramaprabhu, S. Venkatachalam, Silver Nanowires Coated Nitrocellulose Paper for High-Efficiency Electromagnetic Interference Shielding, ACS Omega. 7 (2022) 41426–41436. https://doi.org/10.1021/acsomega.2c05204.
[43] X. Wu, Z. Zhou, Y. Wang, J. Li, Syntheses of Silver Nanowires Ink and Printable Flexible Transparent Conductive Film: A Review, Coatings. 10 (2020) 865. https://doi.org/10.3390/coatings10090865.
[44] D. Tan, C. Jiang, Q. Li, S. Bi, X. Wang, J. Song, Development and current situation of flexible and transparent EM shielding materials, J. Mater. Sci: Mater. Electron. 32 (2021) 25603–25630. https://doi.org/10.1007/s10854-021-05409-4.
[45] S. Wang, H. Liu, Y. Pan, F. Xie, Y. Zhang, et al., Performance Enhancement of Silver Nanowire-Based Transparent Electrodes by Ultraviolet Irradiation, Nanomaterials. 12 (2022) 2956–2956. https://doi.org/10.3390/nano12172956.
[46] R. Wang, S. Xiong, Preparation and optical properties of AgNWs/WO3:Eu3+ composite film, J. Mater. Sci. 57 (2022) 20210–20223. https://doi.org/10.1007/s10853-022-07912-3.
[47] A. Kumar, M. Kumar, M.S. Goyat, D.K. Avasthi, A review of the latest developments in the production and applications of Ag-nanowires as transparent electrodes, Mater. Today Commun. 33 (2022) 104433. https://doi.org/10.1016/j.mtcomm.2022.104433.
[48] H. Ha, J.Y. Cheong, T.G. Yun, B. Hwang, Polymeric Protection for Silver Nanowire-Based Transparent Conductive Electrodes: Performance and Applications, Inorganics. 11 (2023) 409–409. https://doi.org/10.3390/inorganics11100409.
[49] M. Vaseem, Z. Akhter, W. Li, E. Yarali, T.D. Anthopoulos, A. Shamim, High-conductivity screen-printable silver nanowire Ink for optically transparent flexible radio frequency electronics, Flex. Print. Electron. 7 (2022) 044001. https://doi.org/10.1088/2058-8585/ac97a4.
[50] S.B. Chu, D. Ko, J. Jung, S. Jo, D.C. Hyun, et al., Characterization of silver nanowire-based transparent electrodes obtained using different drying methods, Nanomaterials. 12 (2022) 461. https://doi.org/10.3390/nano12030461.
[51] S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, et al., Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics, Adv. Funct. Mater. 25 (2015) 3114–3121. https://doi.org/10.1002/adfm.201500628.
[52] H. Sim, S. Bok, B. Kim, M. Kim, G. Lim, et al., Organic‐Stabilizer‐Free Polyol Synthesis of Silver Nanowires for Electrode Applications, Angew. Chem. Int. Ed. 55 (2016) 11814–11818. https://doi.org/10.1002/anie.201604980.
[53] A.-T. Pham, X.-Q. Nguyen, D.-H. Tran, V.N. Phan, T.-T. Duong, D.-C. Nguyen, Enhancement of the electrical properties of silver nanowire transparent conductive electrodes by atomic layer deposition coating with zinc oxide, Nanotechnology. 27 (2016) 335202–335202. https://doi.org/10.1088/0957-4484/27/33/335202.
[54] C. Amicucci, H. Ha, P. Matteini, B. Hwang, Facile fabrication of silver-nanowire-based chips using dry-film photoresist for wearable optical detection, Fash. Text. 9 (2022) 20. https://doi.org/10.1186/s40691-022-00297-6.
[55] X.J. Xu, G.T. Fei, X.W. Wang, Z. Jin, W.H. Yu, L.D. Zhang, Synthetic control of large-area, ordered silver nanowires with different diameters, Mater. Lett. 61 (2007) 19–22. https://doi.org/10.1016/j.matlet.2006.03.143.
[56] J.H. Park, G.-T. Hwang, S. Kim, J. Seo, H.-J. Park, et al., Flash-Induced Self-Limited Plasmonic Welding of Silver Nanowire Network for Transparent Flexible Energy Harvester, Adv. Mater. 29 (2016) 1603473. https://doi.org/10.1002/adma.201603473.
[57] J. Weigang, Z. Xiaohong, W. Shikang, Wet Chemical Synthesis of Ag Nanowires Array at Room Temperature, Chem. Lett. 34 (2005) 510–511. https://doi.org/10.1246/cl.2005.510.
[58] X.-Z. Xiang, W.-Y. Gong, M.-S. Kuang, L. Wang, Progress in application and preparation of silver nanowires, Rare Met. 35 (2016) 289–298. https://doi.org/10.1007/s12598-016-0695-6.
[59] W. Li, H. Zhang, S. Shi, J. Xu, X. Qin, et al., Recent progress in silver nanowire networks for flexible organic electronics, J. Mater. Chem. C. 8 (2020) 4636–4674. https://doi.org/10.1039/c9tc06865a.
[60] C. Ma, Y.-F. Liu, Y.-G. Bi, X.-L. Zhang, D. Yin, et al., Recent progress in post-treatment of silver nanowire electrodes for optoelectronic device applications, Nanoscale. 13 (2021) 12423–12437. https://doi.org/10.1039/d1nr02917g.
[61] W.-B. Zhao, J.-J. Zhu, H.-Y. Chen, Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template, J. Cryst. Growth. 258 (2003) 176–180. https://doi.org/10.1016/s0022-0248(03)01504-5.
[62] Y. Sun, Silver nanowires – unique templates for functional nanostructures, Nanoscale. 2 (2010) 1626. https://doi.org/10.1039/c0nr00258e.
[63] S. Hemmati, D.P. Barkey, N. Gupta, R. Banfield, Synthesis and Characterization of Silver Nanowire Suspensions for Printable Conductive Media, ECS J. Solid State Sci. Technol. 4 (2015) P3075–P3079. https://doi.org/10.1149/2.0121504jss.
[64] K.E. Korte, S.E. Skrabalak, Y. Xia, Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process, J. Mater. Chem. 18 (2008) 437–441. https://doi.org/10.1039/b714072j.
[65] M.R. Johan, N.A.K. Aznan, S.T. Yee, I.H. Ho, S.W. Ooi, et al., Synthesis and Growth Mechanism of Silver Nanowires through Different Mediated Agents (CuCl2and NaCl) Polyol Process, J. Nanomater. 2014 (2014) 1–7. https://doi.org/10.1155/2014/105454.
[66] R. Karimi-Chaleshtori, A.H. Nassajpour-Esfahani, M.R. Saeri, P. Rezai, A. Doostmohammadi, Silver nanowire-embedded PDMS with high electrical conductivity: nanowires synthesis, composite processing and electrical analysis, Mater. Today Chem. 21 (2021) 100496. https://doi.org/10.1016/j.mtchem.2021.100496.
[67] P. Zhang, Y. Wei, M. Ou, Z. Huang, S. Lin, et al., Behind the role of bromide ions in the synthesis of ultrathin silver nanowires, Mater. Lett. 213 (2018) 23–26. https://doi.org/10.1016/j.matlet.2017.10.128.
[68] H. Moon, P. Won, S.Y. Lee, S.H. Ko, Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel, Nanotechnology. 27 (2016) 295201–295201. https://doi.org/10.1088/0957-4484/27/29/295201.
[69] E.-J. Lee, M.-H. Chang, Y.-S. Kim, J.-Y. Kim, High-pressure polyol synthesis of ultrathin silver nanowires: Electrical and optical properties, APL Mater. 1 (2013) 042118. https://doi.org/10.1063/1.4826154.
[70] K.K. Caswell, C.M. Bender, C.J. Murphy, Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires, Nano Lett. 3 (2003) 667–669. https://doi.org/10.1021/nl0341178.
[71] S. Ayyappan, Nanoparticles of nickel and silver produced by the polyol reduction of the metal salts intercalated in montmorillonite, Solid State Ion. 84 (1996) 271–281. https://doi.org/10.1016/0167-2738(96)00021-5.
[72] J. Xu, J. Hu, C. Peng, H. Liu, Y. Hu, A simple approach to the synthesis of silver nanowires by the hydrothermal process in the presence of Gemini surfactant, J. Colloid. Interface Sci. 298 (2006) 689–693. https://doi.org/10.1016/j.jcis.2005.12.047.
[73] L.-Y. Meng, B. Wang, M.-G. Ma, K.-L. Lin, The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials, Mater. Today Chem. 1–2 (2016) 63–83. https://doi.org/10.1016/j.mtchem.2016.11.003.
[74] M. Mustaqim Rosli, A. Aziz, A. Umar, M. Nurdin, A. Ali Umar, Propylene Glycol Directed Synthesis of Silver Nanowires for Transparent Conducting Electrode Application, J. Electron. Mater. 51 (2022) 5150–5158. https://doi.org/10.1007/s11664-022-09762-w.
[75] H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding, Prog. Mater. Sci. 103 (2019) 319–373. https://doi.org/10.1016/j.pmatsci.2019.02.003.
[76] Y. Mou, C.H. Chen, H. Wang, Q. Sun, J. Liu, Y. Peng, Facile preparation of stable reactive silver ink for highly conductive and flexible electrodes, Appl. Surf. Sci. 475 (2019) 75–82. https://doi.org/10.1016/j.apsusc.2018.12.261.
[77] D. Li, X. Liu, X. Chen, W. Lai, W. Huang, A Simple Strategy towards Highly Conductive Silver‐Nanowire Inks for Screen‐Printed Flexible Transparent Conductive Films and Wearable Energy‐Storage Devices, Adv. Mater. Technol. 4 (2019) 1900196. https://doi.org/10.1002/admt.201900196.
[78] Q. Huang, K.N. Al-Milaji, H. Zhao, Inkjet Printing of Silver Nanowires for Stretchable Heaters, ACS Appl. Nano Mater. 1 (2018) 4528–4536. https://doi.org/10.1021/acsanm.8b00830.
[79] L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui, Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes, ACS Nano. 4 (2010) 2955–2963. https://doi.org/10.1021/nn1005232.
[80] W. Lee, K.D. Kihm, W. Lee, P. Won, S. Han, et al., Boosted thermal conductance of polycrystalline graphene by spin-coated silver nanowires, Int. J. Heat Mass Transf. 134 (2019) 547–553. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.052.
[81] Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang, et al., Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding, ACS Appl. Mater. Interfaces. 12 (2019) 2826–2834. https://doi.org/10.1021/acsami.9b17513.
[82] H. Yang, S. Bai, T. Chen, Y. Zhang, H. Wang, X. Guo, Facile fabrication of large-scale silver nanowire-PEDOT: PSS composite flexible transparent electrodes for flexible touch panels, Mater. Res. Express. 6 (2019) 086315. https://doi.org/10.1088/2053-1591/ab20d5.
[83] S. Zhang, Z. He, G. Zhou, B.-M. Jung, T.-H. Kim, et al., High conductive free-written thermoplastic polyurethane composite fibers utilized as weight-strain sensors, Compos. Sci. Technol. 189 (2020) 108011. https://doi.org/10.1016/j.compscitech.2020.108011.
[84] G.-J. Zhu, P.-G. Ren, H. Guo, Y.-L. Jin, D.-X. Yan, Z.-M. Li, Highly Sensitive and Stretchable Polyurethane Fiber Strain Sensors with Embedded Silver Nanowires, ACS Appl. Mater. Interfaces. 11 (2019) 23649–23658. https://doi.org/10.1021/acsami.9b08611.
[85] S. Peng, S. Wu, Y. Yu, B. Xia, N.H. Lovell, C.H. Wang, Multimodal Capacitive and Piezoresistive Sensor for Simultaneous Measurement of Multiple Forces, ACS Appl. Mater. Interfaces. 12 (2020) 22179–22190. https://doi.org/10.1021/acsami.0c04448.
[86] M. Zhu, X. Yan, X. Li, L. Dai, J. Guo, et al., Flexible, Transparent, and Hazy Composite Cellulosic Film with Interconnected Silver Nanowire Networks for EMI Shielding and Joule Heating, ACS Appl. Mater. Interfaces. 14 (2022) 45697–45706. https://doi.org/10.1021/acsami.2c13035.
[87] A. Kumar, M.O. Shaikh, C.-H. Chuang, Silver nanowire synthesis and strategies for fabricating transparent conducting electrodes, Nanomaterials. 11 (2021) 693. https://doi.org/10.3390/nano11030693.

Cited By

Crossref Google Scholar
Silver nanowires: recent advances in synthesis, transparent conductive coatings, and EMI shielding applications
Submitted
2024-09-09
Available online
2024-12-12
How to Cite
Borchloo, A., Shoja-Razavi, R., & Naderi-Samani, H. (2024). Silver nanowires: recent advances in synthesis, transparent conductive coatings, and EMI shielding applications. Synthesis and Sintering, 4(4), 256-281. https://doi.org/10.53063/synsint.2024.44247

Most read articles by the same author(s)