Beneficial effect of low BN additive on densification and mechanical properties of hot-pressed ZrB2–SiC composites

  • Saber Haghgooye Shafagh 1
  • Shapour Jafargholinejad 2
  • Siyamak Javadian 3
  • 1 Department of Mechanical Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
  • 2 Department of Mechanical Engineering, York University, Toronto, ON, Canada
  • 3 Saskpower Queen Elizabeth Power Station, 2211 Spadina Cres. W., Saskatoon, SK, S7M 5V5, Canada

Abstract

The incorporation of 1 wt% hexagonal BN (hBN) into ZrB2–30 vol% SiC could noticeably better the fracture toughness, hardness, and consolidation behavior of this composite. This research intended to scrutinize the effects of various amounts of hBN (0–5 wt%) on different characteristics of ZrB2–SiC materials. The hot-pressing method under 10 MPa at 1900 °C for 120 min was employed to sinter all designed specimens. Afterward, the as-sintered samples were characterized using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and Vickers technique. The hBN addition up to 1 wt% improved relative density, leading to a near fully dense sample; however, the incorporation of 5 wt% of such an additive led to a composite containing more than 5% remaining porosity. The highest Vickers hardness of 23.8 GPa and fracture toughness of 5.7 MPa.m1/2 were secured for the sample introduced by only 1 wt% hBN. Ultimately, breaking large SiC grains, crack bridging, crack deflection, crack branching, and crack arresting were introduced as the chief toughening mechanisms in the ZrB2–SiC–hBN system.

Downloads

Download data is not yet available.
Keywords: Ultrahigh temperature ceramics, Hot-pressing, Microstructure, Mechanical properties

References

[1] O. Popov, J. Vleugels, E. Zeynalov, V. Vishnyakov, Reactive hot pressing route for dense ZrB2-SiC and ZrB2-SiC-CNT ultra-high temperature ceramics, J. Eur. Ceram. Soc. 40 (2020) 5012–5019. https://doi.org/10.1016/j.jeurceramsoc.2020.07.039.
[2] Z. Balak, M. Zakeri, M.R. Rahimipur, E. Salahi, H. Nasiri, Effect of open porosity on flexural strength and hardness of ZrB2-based composites, Ceram. Int. 41 (2015) 8312–8319. https://doi.org/10.1016/j.ceramint.2015.02.143.
[3] R. Eatemadi, Z. Balak, Investigating the effect of SPS‎ parameters on densification ‎and fracture toughness of ZrB2-SiC nanocomposite‎, Ceram. Int. 45 (2019) 4763–4770. https://doi.org/10.1016/j.ceramint.2018.11.169.
[4] X. Ren, H. Chu, K. Wu, A. Zhang, M. Huang, et al., Effect of the ZrB2 content on the oxygen blocking ability of ZrB2-SiC coating at 1973K, J. Eur. Ceram. Soc. 41 (2021) 1059–1070. https://doi.org/10.1016/j.jeurceramsoc.2020.10.036.
[5] M. Shahedi Asl, A. Sabahi Namini, S.A. Delbari, Q.V. Le, M. Shokouhimehr, M. Mohammadi, A TEM study on the microstructure of spark plasma sintered ZrB2-based composite with nano-sized SiC dopant, Prog. Nat. Sci. Mater. Int. 31 (2021) 47–54. https://doi.org/10.1016/j.pnsc.2020.11.010.
[6] X. Pan, C. Li, Y. Niu, X. Zhong, L. Huang, et al., Effect of Yb2O3 addition on oxidation/ablation behaviors of ZrB2-MoSi2 composite coating under different environment, Corros. Sci. 175 (2020) 108882. https://doi.org/10.1016/j.corsci.2020.108882.
[7] R. Hassan, R. Kundu, K. Balani, Oxidation behaviour of coarse and fine SiC reinforced ZrB2 at re-entry and atmospheric oxygen pressures, Ceram. Int. 46 (2020) 11056–11065. https://doi.org/10.1016/j.ceramint.2020.01.125.
[8] A.D. Stanfield, G.E. Hilmas, W.G. Fahrenholtz, Effects of Ti, Y, and Hf additions on the thermal properties of ZrB2, J. Eur. Ceram. Soc. 40 (2020) 3824–3828. https://doi.org/10.1016/j.jeurceramsoc.2020.04.011.
[9] T.P. Nguyen, M. Ghassemi Kakroudi, M. Shahedi Asl, Z. Ahmadi, A. Sabahi Namini, et al., Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites, Ceram. Int. 46 (2020) 19209–19216. https://doi.org/10.1016/j.ceramint.2020.04.258.
[10] A. Vinci, L. Zoli, P. Galizia, D. Sciti, Influence of Y2O3 addition on the mechanical and oxidation behaviour of carbon fibre reinforced ZrB2/SiC composites, J. Eur. Ceram. Soc. 40 (2020) 5067–5075. https://doi.org/10.1016/j.jeurceramsoc.2020.06.043.
[11] H.J. Ding, X.G. Wang, J.F. Xia, W.C. Bao, G.J. Zhang, et al., Effect of solid solution and boron vacancy on the microstructural evolution and high temperature strength of W-doped ZrB2 ceramics, J. Alloys Compd. 827 (2020) 154293. https://doi.org/10.1016/j.jallcom.2020.154293.
[12] H. Aghajani, E. Hadavand, N.S. Peighambardoust, S. Khameneh asl, Electro spark deposition of WC–TiC–Co–Ni cermet coatings on St52 steel, Surf. Interfaces 18 (2020) 100392. https://doi.org/10.1016/j.surfin.2019.100392.
[13] Z. Balak, M. Azizieh, H. Kafashan, M. Shahedi Asl, Z. Ahmadi, Optimization of effective parameters on thermal shock resistance of ZrB2-SiC-based composites prepared by SPS: using Taguchi design, Mater. Chem. Phys. 196 (2017) 333–340. https://doi.org/10.1016/j.matchemphys.2017.04.062.
[14] Z. Balak, Shrinkage, hardness and fracture toughness of ternary ZrB2–SiC-HfB2 composite with different amount of HfB2, Mater. Chem. Phys. 235 (2019) 121706. https://doi.org/10.1016/j.matchemphys.2019.05.094.
[15] S.K. Kashyap, R. Mitra, Densification behavior involving creep during spark plasma sintering of ZrB2-SiC based ultra-high temperature ceramic composites, Ceram. Int. 46 (2020) 5028–5036. https://doi.org/10.1016/j.ceramint.2019.10.246.
[16] S.A. Akbarpour Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Effect of HfB2 and WC additives on the ablation resistance of ZrB2–SiC composite coating manufactured by SPS, Ceram. Int. 46 (2020) 25106–25112. https://doi.org/10.1016/j.ceramint.2020.06.297.
[17] X. Zhao, Z. Chen, H. Wang, Z. Zhang, G. Shao, et al., The influence of additive and temperature on thermal shock resistance of ZrB2 based composites fabricated by Spark Plasma Sintering, Mater. Chem. Phys. 240 (2020) 122061. https://doi.org/10.1016/j.matchemphys.2019.122061.
[18] T.P. Nguyen, M. Shahedi Asl, S.A. Delbari, A. Sabahi Namini, Q.V. Le, et al., Electron microscopy investigation of spark plasma sintered ZrO2 added ZrB2–SiC composite, Ceram. Int. 46 (2020) 19646–19649. https://doi.org/10.1016/j.ceramint.2020.04.292.
[19] Z. Balak, M. Zakeri, Effect of HfB2 on microstructure and mechanical properties of ZrB2–SiC-based composites, Int. J. Refract. Met. Hard Mater. 54 (2016) 127–137. https://doi.org/10.1016/j.ijrmhm.2015.07.011.
[20] P. Sengupta, S.S. Sahoo, A. Bhattacharjee, S. Basu, I. Manna, Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite, J. Alloys Compd. 850 (2021) 156668. https://doi.org/10.1016/j.jallcom.2020.156668.
[21] V.H. Nguyen, A. Sabahi Namini, S.A. Delbari, Q.V. Le, M. Shahedi Asl, et al., A survey on spark plasma sinterability of CNT-added TiC ceramics, Int. J. Refract. Met. Hard Mater. (2021) 105471. https://doi.org/10.1016/j.ijrmhm.2021.105471.
[22] N. Sadeghi, M.R. Akbarpour, H. Aghajani, A novel two-step mechanical milling approach and in-situ reactive synthesis to fabricate TiC/Graphene layer/Cu nanocomposites and investigation of their mechanical properties, Mater. Sci. Eng. A. 734 (2018) 164–170. https://doi.org/10.1016/j.msea.2018.07.101.
[23] Z. Balak, M. Zakeri, Application of Taguchi L32 orthogonal design to optimize flexural strength of ZrB2-based composites prepared by spark plasma sintering, Int. J. Refract. Met. Hard Mater. 55 (2016) 58–67. https://doi.org/10.1016/j.ijrmhm.2015.11.009.
[24] P. Vaziri, Z. Balak, Improved mechanical properties of ZrB2-30 vol% SiC using zirconium carbide additive, Int. J. Refract. Met. Hard Mater. 83 (2019) 104958. https://doi.org/10.1016/j.ijrmhm.2019.05.004.
[25] C. Xia, M. Shahedi Asl, A. Sabahi Namini, Z. Ahmadi, S.A. Delbari, et al., Enhanced fracture toughness of ZrB2–SiCw ceramics with graphene nano-platelets, Ceram. Int. 46 (2020) 24906–24915. https://doi.org/10.1016/j.ceramint.2020.06.275.
[26] S. Sun, Y. Liu, Z. Ma, S. Zhu, C. Hong, et al., Fabrication of ZrB2-SiC powder with a eutectic phase for sintering or plasma spraying, Powder Technol. 372 (2020) 506–518. https://doi.org/10.1016/j.powtec.2020.06.019.
[27] T.D. Le, K. Hirota, M. Kato, H. Miyamoto, M. Yuasa, T. Nishimura, Fabrication of dense ZrB2/B4C composites using pulsed electric current pressure sintering and evaluation of their high-temperature bending strength, Ceram. Int. 46 (2020) 18478–18486. https://doi.org/10.1016/j.ceramint.2020.04.153.
[28] J. Zou, G.J. Zhang, Z.Y. Fu, In-situ ZrB2-hBN ceramics with high strength and low elasticity, J. Mater. Sci. Technol. 48 (2020) 186–193. https://doi.org/10.1016/j.jmst.2020.01.061.
[29] A. Razmjou, M. Asadnia, E. Hosseini, A. Habibnejad Korayem, V. Chen, Design principles of ion selective nanostructured membranes for the extraction of lithium ions, Nat. Commun. 10 (2019) 5793. https://doi.org/10.1038/s41467-019-13648-7.
[30] H. Karimi-Maleh, B.G. Kumar, S. Rajendran, J. Qin, S. Vadivel, et al., Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration, J. Mol. Liq. 314 (2020) 113588. https://doi.org/10.1016/j.molliq.2020.113588.
[31] H. Karimi Maleh, F. Karimi, M. Alizadeh, A.L. Sanati, Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems, Chem. Rec. 20 (2020) 682–692. https://doi.org/10.1002/tcr.201900092.
[32] N. Sadeghi, H. Aghajani, M.R. Akbarpour, Microstructure and tribological properties of in-situ TiC-C/Cu nanocomposites synthesized using different carbon sources (graphite, carbon nanotube and graphene) in the Cu-Ti-C system, Ceram. Int. 44 (2018) 22059–22067. https://doi.org/10.1016/j.ceramint.2018.08.316.
[33] F. Tahernejad Javazmi, M. Shabani-Nooshabadi, H. Karimi Maleh, 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor, Compos. Part B Eng. 172 (2019) 666–670. https://doi.org/10.1016/j.compositesb.2019.05.065.
[34] A. Razmjou, M. Asadnia, O. Ghaebi, H.C. Yang, M. Ebrahimi Warkiani, et al., Preparation of Iridescent 2D Photonic Crystals by Using a Mussel-Inspired Spatial Patterning of ZIF-8 with Potential Applications in Optical Switch and Chemical Sensor, ACS Appl. Mater. Interfaces. 9 (2017) 38076–38080. https://doi.org/10.1021/acsami.7b13618.
[35] V.H. Nguyen, S.A. Delbari, M. Shahedi Asl, A. Sabahi Namini, M. Ghassemi Kakroudi, et al., Role of hot-pressing temperature on densification and microstructure of ZrB2–SiC ultrahigh temperature ceramics, Int. J. Refract. Met. Hard Mater. 93 (2020) 105355. https://doi.org/10.1016/j.ijrmhm.2020.105355.
[36] C. Xia, S.A. Delbari, Z. Ahmadi, M. Shahedi Asl, M. Ghassemi Kakroudi, et al., Electron microscopy study of ZrB2–SiC–AlN composites: Hot-pressing vs. pressureless sintering, Ceram. Int. 46 (2020) 29334–29338. https://doi.org/10.1016/j.ceramint.2020.08.054.
[37] V.H. Nguyen, S.A. Delbari, Z. Ahmadi, M. Shahedi Asl, M. Ghassemi Kakroudi, et al., TEM characterization of hot-pressed ZrB2-SiC-AlN composites, Results Phys. 19 (2020) 103348. https://doi.org/10.1016/j.rinp.2020.103348.
[38] V.H. Nguyen, M. Shahedi Asl, S.A. Delbari, Q.V. Le, A. Sabahi Namini, et al., Effects of SiC on densification, microstructure and nano-indentation properties of ZrB2–BN composites, Ceram. Int. 47 (2020) 9873–9880. https://doi.org/10.1016/j.ceramint.2020.12.129.
[39] W.W. Wu, M. Estili, T. Nishimura, G.J. Zhang, Y. Sakka, Machinable ZrB2-SiC-BN composites fabricated by reactive spark plasma sintering, Mater. Sci. Eng. A. 582 (2013) 41–46. https://doi.org/10.1016/j.msea.2013.05.079.
[40] S. Jafari, M. Bavand Vandchali, M. Mashhadi, A. Nemati, Effects of HfB2 addition on pressureless sintering behavior and microstructure of ZrB2-SiC composites, Int. J. Refract. Met. Hard Mater. 94 (2021) 105371. https://doi.org/10.1016/j.ijrmhm.2020.105371.
[41] S. Mandal, A. Pramanick, S. Chakraborty, P. Pratim Dey, Phase determination of ZrB2-B4C ceramic composite material using XRD and rietveld refinement analysis, Mater. Today Proc. 33 (2020) 5664–5666. https://doi.org/10.1016/j.matpr.2020.04.124.
[42] H. Karimi Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, et al., A novel electrochemical epinine sensor using amplified CuO nanoparticles and a n -hexyl-3-methylimidazolium hexafluorophosphate electrode, New J. Chem. 43 (2019) 2362–2367. https://doi.org/10.1039/C8NJ05581E.
[43] Z. Taherian, A. Khataee, Y. Orooji, Facile synthesis of yttria-promoted nickel catalysts supported on MgO-MCM-41 for syngas production from greenhouse gases, Renew. Sustain. Energy Rev. 134 (2020) 110130. https://doi.org/10.1016/j.rser.2020.110130.
[44] A. Yazdani, M. Soltanieh, H. Aghajani, Structural and mechanical evaluation of deposited nano structured TiN coating using active screen plasma nitriding technique, Eur. Phys. J. Appl. Phys. 65 (2014) 20801. https://doi.org/10.1051/epjap/2014130095.
[45] H. Karimi Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing, Mater. Chem. Phys. 250 (2020) 123042. https://doi.org/10.1016/j.matchemphys.2020.123042.
[46] M. Ahmadi, H. Aghajani, Suspension characterization and electrophoretic deposition of Yttria-stabilized Zirconia nanoparticles on an iron-nickel based superalloy, Ceram. Int. 43 (2017) 7321–7328. https://doi.org/10.1016/j.ceramint.2017.03.035.
[47] N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, M. Shahedi Asl, Role of h-BN content on microstructure and mechanical properties of hot-pressed ZrB2–SiC composites, Ceram. Int. 46 (2020) 21533–21541. https://doi.org/10.1016/j.ceramint.2020.05.255.

Cited By

Crossref Google Scholar
Beneficial effect of low BN additive on densification and mechanical properties of hot-pressed ZrB2–SiC composites
Submitted
2021-04-20
Available online
2021-05-08
How to Cite
Haghgooye Shafagh, S., Jafargholinejad, S., & Javadian, S. (2021). Beneficial effect of low BN additive on densification and mechanical properties of hot-pressed ZrB2–SiC composites. Synthesis and Sintering, 1(2), 69-75. https://doi.org/10.53063/synsint.2021.1224

Most read articles by the same author(s)