Effects of carbon nano-additives on characteristics of TiC ceramics prepared by field-assisted sintering

  • Shapour Jafargholinejad 1
  • Soheyl Soleymani 2
  • 1 Department of Mechanical Engineering, York University, Toronto, ON, Canada
  • 2 Imperial Oil,602 Christina Street S., Sarnia, Ontario, Canada


Five carbonaceous nano-additives (graphite, graphene, carbon black, carbon nanotubes, and diamond) had different impacts on the sinterability, microstructural evolution, and properties of titanium carbide. In this research, the sintering by spark plasma was employed to produce the monolithic TiC and carbon-doped ceramics under the sintering parameters of 1900 ºC, 10 min, 40 MPa. The carbon black additive had the best performance in densifying the TiC, thanks to its fine particle size, as well as its high chemical reactivity with TiO2 surface oxide. By contrast, the incorporation of nano-diamonds resulted in a considerable decline in the relative density of TiC owing to the graphitization phenomenon, together with the gas production at high temperatures. Although carbon precipitation from the TiC matrix occurred in all samples, some of the added carbonaceous phases promoted this phenomenon, while the others hindered it to some extent. Amongst the introduced additives, carbon black had the most contribution to grain refining, so that a roughly halved average grain size was attained in comparison with the undoped specimen. The highest values of hardness (3233 HV0.1 kg), thermal conductivity (25.1 W/mK), and flexural strength (658 MPa) secured for the ceramic incorporated by 5 wt% nano carbon black.


Download data is not yet available.
Keywords: Titanium carbide, Carbon additive, Nanomaterials, Spark plasma sintering, Characterization


[1] F. Behboudi, M. Ghassemi Kakroudi, N.P. Vafa, M. Faraji, S.S. Milani, Molten salt synthesis of in-situ TiC coating on graphite flakes, Ceram. Int. 47 (2021) 8161–8168. https://doi.org/10.1016/j.ceramint.2020.11.172.
[2] N. Sadeghi, H. Aghajani, M.R. Akbarpour, Microstructure and tribological properties of in-situ TiC-C/Cu nanocomposites synthesized using different carbon sources (graphite, carbon nanotube and graphene) in the Cu-Ti-C system, Ceram. Int. 44 (2018) 22059–22067. https://doi.org/10.1016/j.ceramint.2018.08.316.
[3] W. Handoko, F. Pahlevani, I. Emmanuelawati, V. Sahajwalla, Transforming automotive waste into TiN and TiC ceramics, Mater. Lett. 176 (2016) 17–20. https://doi.org/10.1016/j.matlet.2016.04.066.
[4] Y. Ma, C. Bao, S. Song, J. Lei, Effects of TiC addition on microstructures, mechanical properties and fracture behaviors of porous titanium carbide ceramics, Ceram. Int. 44 (2018) 19919–19925. https://doi.org/10.1016/j.ceramint.2018.07.255.
[5] C. Magnus, T. Kwamman, W.M. Rainforth, Dry sliding friction and wear behaviour of TiC-based ceramics and consequent effect of the evolution of grain buckling on wear mechanism, Wear. 422–423 (2019) 54–67. https://doi.org/10.1016/j.wear.2019.01.026.
[6] M. Zhang, M. Li, J. Chi, S. Wang, L. Ren, et al., Microstructure evolution, recrystallization and tribological behavior of TiC/WC composite ceramics coating, Vacuum. 166 (2019) 64–71. https://doi.org/10.1016/j.vacuum.2019.04.049.
[7] X. Zhou, Z. Liu, Y. Li, Y. Li, P. Li, et al., SiC ceramics joined with an in-situ reaction gradient layer of TiC/Ti3SiC2 and interface stress distribution simulations, Ceram. Int. 44 (2018) 15785–15794. https://doi.org/10.1016/j.ceramint.2018.05.255.
[8] J.X. Xue, J.X. Liu, G.J. Zhang, H.B. Zhang, T. Liu, et al., Improvement in mechanical/physical properties of TiC-based ceramics sintered at 1500 °C for inert matrix fuels, Scr. Mater. 114 (2016) 5–8. https://doi.org/10.1016/j.scriptamat.2015.11.024.
[9] Y. Ma, C. Bao, L. Han, J. Chen, Study on Microstructures and Properties of Porous TiC Ceramics Fabricated by Powder Metallurgy, J. Mater. Eng. Perform. 26 (2017) 636–43. https://doi.org/10.1007/s11665-016-2472-y.
[10] A. Yazdani, M. Soltanieh, H. Aghajani, S. Rastegari, Deposition of Nano Sized Titanium Nitride on H11 Tool Steel Using Active Screen Plasma Nitriding Method, J. Nano. Res. 11 (2010) 79–84. https://doi.org/10.1007/s11665-016-2472-y.
[11] W. Gao, Y. Zhou, X. Han, S. Li, Z. Huang, Preparation and microstructure of 3D framework TiC–TiB2 ceramics and their reinforced steel matrix composites, Ceram. Int. 47 (2021) 2329–2337. https://doi.org/10.1016/j.ceramint.2020.09.075.
[12] Y. Gu, J.X. Liu, Y. Wang, J.X. Xue, X.G. Wang, et al., Corrosion behavior of TiC–SiC composite ceramics in molten FLiNaK salt, J. Eur. Ceram. Soc. 37 (2017) 2575–2582. https://doi.org/10.1016/j.jeurceramsoc.2017.02.020.
[13] A. Baux, L. Nouvian, K. Arnaud, S. Jacques, T. Piquero, et al., Synthesis and properties of multiscale porosity TiC-SiC ceramics, J. Eur. Ceram. Soc. 39 (2019) 2601–2616. https://doi.org/10.1016/j.jeurceramsoc.2019.02.031.
[14] M.S. Oskooie, M.S. Motlagh, H. Aghajani, Surface properties and mechanism of corrosion resistance enhancement in a high temperature nitrogen ion implanted medical grade Ti, Surf. Coatings Technol. 291 (2016) 356–364. https://doi.org/10.1016/j.surfcoat.2016.02.032.
[15] L.K. Foong, B.H. Jume, C. Xu, Densification behavior and mechanical properties of hot-pressed TiC–WC ceramics, Ceram. Int. 46 (2020) 28316–28323. https://doi.org/10.1016/j.ceramint.2020.07.335.
[16] R. Eatemadi, Z. Balak, Investigating the effect of SPS‎ parameters on densification ‎and fracture toughness of ZrB2-SiC nanocomposite‎, Ceram. Int. 45 (2019) 4763–4770. https://doi.org/10.1016/j.ceramint.2018.11.169.
[17] Z. Balak, Shrinkage, hardness and fracture toughness of ternary ZrB2–SiC-HfB2 composite with different amount of HfB2, Mater. Chem. Phys. 235 (2019) 121706. https://doi.org/10.1016/j.matchemphys.2019.05.094.
[18] K. Kavakeb, Z. Balak, H. Kafashan, Densification and flexural strength of ZrB2–30 vol% SiC with different amount of HfB2, Int. J. Refract. Met. Hard Mater. 83 (2019) 104971. https://doi.org/10.1016/j.ijrmhm.2019.104971.
[19] E. Akbari, M. Ghassemi Kakroudi, V. Shahedifar, Investigation of production parameters in fracture behavior of hot‐pressed Al2O3–SiC/graphite fibrous monolithic ceramics: Fibers orientation and cell boundary fraction, Int. J. Appl. Ceram. Technol. 16 (2019) 1329–1336. https://doi.org/10.1111/ijac.13171.
[20] E. Akbari, M. Ghassemi Kakroudi, V. Shahedifar, H. Ghiasi, The influence of different SiC amounts on the microstructure, densification and mechanical properties of hot‐pressed Al2O3–SiC composites, Int. J. Appl. Ceram. Technol. 17 (2019) 491–500. https://doi.org/10.1111/ijac.13406.
[21] A. Yazdani, M. Soltanieh, H. Aghajani, Structural and mechanical evaluation of deposited nano structured TiN coating using active screen plasma nitriding technique, Eur. Phys. J. Appl. Phys. 65 (2014) 20801. https://doi.org/10.1051/epjap/2014130095.
[22] L. Liu, B. Wang, X. Li, Q. He, L. Xu, et al., Liquid phase assisted high pressure sintering of dense TiC nanoceramics, Ceram. Int. 44 (2018) 17972–17977. https://doi.org/10.1016/j.ceramint.2018.06.274.
[23] M.S. Shakeri, H. Aghajani, Modeling of stress relaxation process, case study: Shape setting heat treatment of a Ni rich-NiTi alloy, J. Alloys Compd. 574 (2013) 119–123. https://doi.org/10.1016/j.jallcom.2013.03.284.
[24] Y. Tan, H. Cai, X. Cheng, Z. Ma, Z. Xu, Z. Zhou, Microstructural and mechanical properties of in-situ micro-laminated TiC/Ti composite synthesised, Mater. Lett. 228 (2018) 1–4. https://doi.org/10.1016/j.matlet.2018.05.069.
[25] Y. Liu, Y. Li, F. Luo, X. Su, J. Xu, et al., Mechanical, dielectric and microwave absorption properties of TiC/cordierite composite ceramics, J. Mater. Sci. Mater. Electron. 28 (2017) 12115–12121. https://doi.org/10.1007/s10854-017-7025-0.
[26] T.P. Nguyen, Y. Pazhouhanfar, S.A. Delbari, Q.V. Le, S. Shaddel, et al., Characterization of spark plasma sintered TiC ceramics reinforced with graphene nano-platelets, Ceram. Int. 46 (2020) 18742–18749. https://doi.org/10.1016/j.ceramint.2020.04.189.
[27] M. Fattahi, A. Babapoor, S.A. Delbari, Z. Ahmadi, A. Sabahi Namini, M. Shahedi Asl, Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition, Ceram. Int. 46 (2020) 12400–12408. https://doi.org/10.1016/j.ceramint.2020.01.291.
[28] V.H. Nguyen, Y. Pazhouhanfar, S.A. Delbari, S. Shaddel, A. Babapoor, et al., Beneficial role of carbon black on the properties of TiC ceramics, Ceram. Int. 46 (2020) 23544–23555. https://doi.org/10.1016/j.ceramint.2020.06.125.
[29] C.C. Jiang, T. Goto, T. Hirai, Microhardness of non-stoichiometric TiCx, plates prepared by chemical vapour deposition, J. Less. Common. Met. 163 (1990) 339–346. https://doi.org/10.1016/0022-5088(90)90600-O.
[30] M. Shahedi Asl, Z. Ahmadi, A. Sabahi Namini, A. Babapoor, A. Motallebzadeh, Spark plasma sintering of TiC–SiCw ceramics, Ceram. Int. 45 (2019) 19808–19821. https://doi.org/10.1016/j.ceramint.2019.06.236.
[31] D. Vallauri, I.C. Atías Adrián, A. Chrysanthou, TiC–TiB2 composites: A review of phase relationships, processing and properties, J. Eur. Ceram. Soc. 28 (2008) 1697–1713. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011.
[32] L.J. De Oliveira, S.C. Cabral, M Filgueira, Study hot pressed Fe-diamond composites graphitization, Int. J. Refract. Met. Hard Mater.35 (2012) 228–234. https://doi.org/10.1016/j.ijrmhm.2012.03.015.
[33] W.Z. Shao, V.V. Ivanov, L. Zhen, Y.S. Cui, Y. Wang, A study on graphitization of diamond in copper–diamond composite materials, Mater. Lett. 58 (2003) 146–149. https://doi.org/10.1016/S0167-577X(03)00433-6.
[34] S. Shaddel, A. Sabahi Namini, Y. Pazhouhanfar, S.A. Delbari, M. Fattahi, M. Shahedi Asl, A microstructural approach to the chemical reactions during the spark plasma sintering of novel TiC–BN ceramics, Ceram. Int. 46 (2020) 15982–15990. https://doi.org/10.1016/j.ceramint.2020.03.148.
[35] A. Babapoor, M. Shahedi Asl, Z. Ahmadi, A. Sabahi Namini, Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide, Ceram. Int. 44 (2018) 14541–14546. https://doi.org/10.1016/j.ceramint.2018.05.071.

Cited By

Crossref Google Scholar
Effects of carbon nano-additives on characteristics of TiC ceramics prepared by field-assisted sintering
How to Cite
Jafargholinejad , S., & Soleymani, S. (2021). Effects of carbon nano-additives on characteristics of TiC ceramics prepared by field-assisted sintering. Synthesis and Sintering, 1(1), 62-68. https://doi.org/10.53063/synsint.2021.1123

Most read articles by the same author(s)