Effect of calcination atmosphere and Fe3+ content on NiFexAl2-xO4 nano pigments synthesized via a polyacrylamide gel method

  • Rayehe Tavakolipour 1
  • Amir Abbas Nourbakhsh 2
  • 1 Department of Materials Engineering, Naghshejahan Institute of Higher Education, Baharestan, Isfahan, Iran
  • 2 Department of Materials Science and Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran

Abstract

In this research, NiFexAl2-xO4 pigments (x=0, 0.3, 0.7, and 1.5) were synthesized using a polyacrylamide gel method, and the effects of calcination atmosphere and the dopant amount on the formed phases and optical properties were investigated. The obtained pigments' physical, optical, and microstructural properties were clarified using the XRD, UV-Vis spectroscopy, and FESEM techniques. The phase analysis showed that the nickel carbide was formed in the reducing atmosphere instead of the spinel phase. So, the rest of the samples were prepared in an oxidizing atmosphere. The pigments that were obtained had a spherical morphology and a narrow particle size distribution due to the growth inhibitor role of the polyacrylamide network. The iron ions entered both tetrahedral and octahedral sites of the nickel aluminate structure, acted as the main chromophore, and turned the color from cyan to brown. Further addition of iron led to the darkening of the brown color.

Downloads

Download data is not yet available.
Keywords: Nickel aluminate, Spinel pigments, Polyacrylamide, Doping, Calcination atmosphere

References

[1] R. Tavakolipour, R. Pournajaf, E. Grazenaite, Synthesis and doping of high-temperature resistant spinel nano pigments: A review, Synth. Sinter. 4 (2024) 17–28. https://doi.org/10.53063/synsint.2024.41191.
[2] Y.S. Han, J.B. Li, X.S. Ning, B. Chi, Temperature dependence of the cation distribution in nickel aluminate spinel from thermodynamics and X-rays, J. Am. Ceram. Soc. 88 (2005) 3455–3457. https://doi.org/10.1111/j.1551-2916.2005.00603.x.
[3] G.B. Kunde, G.D. Yadav, Green strategy for the synthesis of mesoporous, free-standing MAl2O4 (M = Fe, Co, Ni, Cu) spinel films by sol–gel method, Mater. Sci. Eng: B. 271 (2021) 115244. https://doi.org/10.1016/j.mseb.2021.115244.
[4] M. Dalpasquale, F.Q. Mariani, M. Müller, F.J. Anaissi, Citrus pectin as a template for synthesis of colorful aluminates, Dyes Pigments. 125 (2016) 124–131. https://doi.org/10.1016/j.dyepig.2015.10.015.
[5] V. Elakkiya, R. Abhishekram, S. Sumathi, Copper doped nickel aluminate: Synthesis, characterisation, optical and colour properties, Chin. J. Chem. Eng. 27 (2019) 2596–2605. https://doi.org/10.1016/j.cjche.2019.01.008.
[6] Y.S. Han, J.B. Li, X.S. Ning, B. Chi, Effect of preparation temperature on the lattice parameter of nickel aluminate spinel, J. Am. Ceram. Soc. 87 (2004) 1347–1349. https://doi.org/10.1111/j.1151-2916.2004.tb07733.x.
[7] Y.S. Han, J.B. Li, X.S. Ning, X.Z. Yang, B. Chi, Study on NiO excess in preparing NiAl2O4, Mater. Sci. Eng: A. 369 (2004) 241–244. https://doi.org/10.1016/j.msea.2003.11.026.
[8] P. Jeevanandam, Y. Koltypin, A. Gedanken, Preparation of nanosized nickel aluminate spinel by a sonochemical method, Mater. Sci. Eng: B. 90 (2002) 125–132. https://doi.org/10.1016/S0921-5107(01)00928-X.
[9] M.M. Amini, L. Torkian, Preparation of nickel aluminate spinel by microwave heating, Mat. Lett. 57 (2002) 639–642. https://doi.org/10.1016/S0167-577X(02)00845-5.
[10] L. Gama, M.A. Ribeiro, B.S. Barros, R.H.A. Kiminami, I.T. Weber, A.C.F.M. Costa, Synthesis and characterization of the NiAl2O4, CoAl2O4 and ZnAl2O4 spinels by the polymeric precursors method, J. Alloys Compd. 483 (2009) 453–455. https://doi.org/10.1016/j.jallcom.2008.08.111.
[11] M. Hasan, J. Drazin, S. Dey, R.H.R. Castro, Synthesis of stoichiometric nickel aluminate spinel nanoparticles, Am. Mineral. 100 (2015) 652–657. https://doi.org/10.2138/am-2015-4997.
[12] M. Gabrovska, D. Nikolova, M. Shopska, L. Bilyarska, R. Edreva-Kadjieva, et al., Ni–Al Layered Double Hydroxides as Precursors of Ceramic Pigments, Proceedings of the III Advanced Ceramics and Applications Conference, Atlantis Press, Paris. (2016) 205–220. https://doi.org/10.2991/978-94-6239-157-4_15.
[13] M. Gil-Calvo, C. Jiménez-González, B. de Rivas, J.I. Gutiérrez-Ortiz, R. López-Fonseca, Effect of Ni/Al molar ratio on the performance of substoichiometric NiAl2O4 spinel-based catalysts for partial oxidation of methane, Appl. Catal. B. 209 (2017) 128–138. https://doi.org/10.1016/j.apcatb.2017.02.063.
[14] M.K. Nazemi, S. Sheibani, F. Rashchi, V.M. Gonzalez-Delacruz, A. Caballero, Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis, Adv. Powder Technol. 23 (2012) 833–838. https://doi.org/10.1016/j.apt.2011.11.004.
[15] P. Hasin, N. Nattamon, R. Barni, A. Laobuthee, Nickel-aluminium complex: a simple and effective precursor for nickel aluminate (NiAl2O4) spinel, Maejo Int. J. Sci. Technol. 2 (2008) 140–149.
[16] M. Paul, N. Pal, A. Bhaumik, Mesoporous nickel-aluminum mixed oxide: A promising catalyst in hydride-transfer reactions, Eur. J. Inorg. Chem. (2010) 5129–5134. https://doi.org/10.1002/ejic.201000732.
[17] A. Tirsoaga, D. Visinescu, B. Jurca, A. Ianculescu, O. Carp, Eco-friendly combustion-based synthesis of metal aluminates MAl2O4 (M = Ni, Co), J. Nanoparticle Res. 13 (2011) 6397–6408. https://doi.org/10.1007/s11051-011-0392-1.
[18] N.M. Deraz, Synthesis and Characterization of Nano-Sized Nickel Aluminate Spinel Crystals, Int. J. Electrochem. Sci. 8 (2013) 5203–5212. https://doi.org/10.1016/S1452-3981(23)14674-8.
[19] S. Jayasree, A. Manikandan, S.A. Antony, A.M. Uduman Mohideen, C. Barathiraja, Magneto-Optical and Catalytic Properties of Recyclable Spinel NiAl 2O4 Nanostructures Using Facile Combustion Methods, J. Supercond. Nov. Magn. 29 (2016) 253–263. https://doi.org/10.1007/s10948-015-3249-5.
[20] N. Bayal, P. Jeevanandam, Synthesis of metal aluminate nanoparticles by sol-gel method and studies on their reactivity, J. Alloys Compd. 516 (2012) 27–32. https://doi.org/10.1016/j.jallcom.2011.11.080.
[21] M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, NiAl2O4 nanoparticles: synthesis and characterization through modify sol–gel method and its photocatalyst application, J. Mater. Sci: Mater. Electron. 26 (2015) 7745–7750. https://doi.org/10.1007/s10854-015-3419-z.
[22] M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Different morphologies fabrication of NiAl2O4 nanostructures with the aid of new template and its photocatalyst application, J. Mater. Sci: Mater. Electron. 28 (2017) 2415–2420. https://doi.org/10.1007/s10854-016-5812-7.
[23] S. Komeili, A. Taeb, M. Takht Ravanchi, M. Rahimi Fard, The properties of nickel aluminate nanoparticles prepared by sol–gel and impregnation methods, Res. Chem. Intermed. 42 (2016) 7909–7921. https://doi.org/10.1007/s11164-016-2568-x.
[24] F. Meyer, R. Hempelmann, S. Mathur, M. Veith, Microemulsion mediated sol-gel synthesis of nano-scaled MAl2O4 (M = Co, Ni, Cu) spinels from single-source heterobimetallic alkoxide precursors, J. Mater. Chem. 9 (1999) 1755–1763. https://doi.org/10.1039/a900014c.
[25] C. Ragupathi, J.J. Vijaya, P. Surendhar, L.J. Kennedy, Comparative investigation of nickel aluminate (NiAl2O4) nano and microstructures for the structural, optical and catalytic properties, Polyhedron. 72 (2014) 1–7. https://doi.org/10.1016/j.poly.2014.01.013.
[26] K. Shih, J.O. Leckie, Nickel aluminate spinel formation during sintering of simulated Ni-laden sludge and kaolinite, J. Eur. Ceram. Soc. 27 (2007) 91–99. https://doi.org/10.1016/j.jeurceramsoc.2006.04.176.
[27] D.F.L. Horsth, J.O. Primo, M. Dalpasquale, C. Bittencourt, F.J. Anaissi, Colored aluminates pigments obtained from metallic aluminum waste, an opportunity in the circular economy, Clean. Eng. Technol. 5 (2021) 100313. https://doi.org/10.1016/j.clet.2021.100313.
[28] A. Douy, P. Odier, The polyacrylamide gel: A novel route to ceramic and glassy oxide powders, Mater. Res. Bull. 9 (1989) 1119–1126. https://doi.org/10.1016/0025-5408(89)90069-X.
[29] H. Wang, L. Gao, W. Li, Q. Li, Preparation of nanoscale α-Al2O3 powder by the polyacrylamide gel method, Nanostruct. Mater. 11 (1999) 1263–1267. https://doi.org/10.1016/S0965-9773(99)00417-1.
[30] A. Nair, A. Kurian, S. Sumathi, Photocatalytic degradation of organic pollutants using yttrium and copper co-doped nickel aluminate, Res. Sq. (2024). https://doi.org/10.21203/rs.3.rs-5295270/v1.
[31] E. Regulska, J. Breczko, A. Basa, A.T. Dubis, Rare-earth metals-doped nickel aluminate spinels for photocatalytic degradation of organic pollutants, Catalysts. 10 (2020) 1–13. https://doi.org/10.3390/catal10091003.
[32] P.S. Patil, R.S. Dhivare, S.R. Mirgane, B.G. Pawar, T.R. Mane, Cobalt-Doped Nickel Aluminate Nanomaterials Synthesis, Characterization, and Catalytic Properties, Macromol. Symp. 393 (2020) 2000163. https://doi.org/10.1002/masy.202000163.
[33] R. Vladoiu, A. Mandes, V. Dinca, E. Matei, S. Polosan, Synthesis of Cobalt–Nickel Aluminate Spinels Using the Laser-Induced Thermionic Vacuum Arc Method and Thermal Annealing Processes, Nanomaterials. 12 (2022) 3895. https://doi.org/10.3390/nano12213895.
[34] S. Srinivas, Y.S. Vidya, H.C. Manjunatha, Upendra, R. Munirathnam, et al., Photoluminescence and supercapacitor potential of eco-friendly synthesized NiAl2O4 nanoparticles, Ceram. Int. (2025). https://doi.org/10.1016/j.ceramint.2025.02.203.
[35] W. Tibermacine, M. Omari, Structural and electrochemical properties of Fe-doped NiAl2O4 oxides, J. Fundam. Appl. Sci. 11 (2019) 227–244.
[36] J. Gilabert, M.D. Palacios, V. Sanz, S. Mestre, Effects of composition and furnace temperature on (Ni, Co) (Cr, Al)2O4 pigments synthesized by solution combustion route, Int. J. Appl. Ceram. Technol. 15 (2018) 179–190. https://doi.org/10.1111/ijac.12761.
[37] D. Gingasu, O. Oprea, G. Marinescu, J.M. Calderon Moreno, D.C. Culita, et al., Structural, Morphological, and Optical Properties of Single and Mixed Ni-Co Aluminates Nanoparticles, Inorganics (Basel). 11 (2023) 371. https://doi.org/10.3390/inorganics11090371.
[38] A. Kale, S. Gubbala, R.D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique, J. Magn. Magn. Mater. 277 (2004) 350–358. https://doi.org/10.1016/j.jmmm.2003.11.015.

Cited By

Crossref Google Scholar
Effect of calcination atmosphere and Fe3+ content on NiFexAl2-xO4 nano pigments synthesized via a polyacrylamide gel method
Submitted
2024-02-26
Available online
2025-03-28
How to Cite
Tavakolipour, R., & Nourbakhsh, A. A. (2025). Effect of calcination atmosphere and Fe3+ content on NiFexAl2-xO4 nano pigments synthesized via a polyacrylamide gel method. Synthesis and Sintering, 5(1), 67-72. https://doi.org/10.53063/synsint.2025.51208

Most read articles by the same author(s)