Evolution of red ceramic pigments: from hazardous compounds to environmentally friendly alternatives

  • Rayehe Tavakolipour 1
  • Yueming Li 2
  • Maryam Hosseini Zori 3
  • Maria Ines Basso Bernardi 4
  • Kun Li 5
  • Aušra Čiuladienė 6
  • Eva Miguel 7
  • 1 Department of Materials Engineering, Naghshejahan Institute of Higher Education, Baharestan, Isfahan, Iran
  • 2 School of Materials Science and Engineering, Jingdezhen Ceramic University; Jingdezhen 333403, China
  • 3 Department of Inorganic Pigments and Glazes, Institute for Color Science and Technology (ICST), Iran Ministry of Science, Research and Technology, PO Box: 1668814811, Tehran, Iran
  • 4 Sao Carlos Institute of Physics, University of Sao Paulo - USP, Sao Carlos - SP, Brazil
  • 5 School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, Postal code: 723001, Shaanxi, China
  • 6 The Wroblewski Library of the Lithuanian Academy of Sciences, Document Conservation and Restoration Department, Žygimantų str. 1, Vilnius, LT 01102, Lithuania
  • 7 Ceramic Technology Department, Escola Superior de Ceràmica de L’Alcora (ESCAL-ISEACV), 12110 L’Alcora, Spain

Abstract

Synthesis of red ceramic pigments is a challenging task in the ceramic industry. Most classic reds are based on severely toxic materials including lead, arsenic, mercury, selenium, and cadmium, which are forbidden in many countries. On the other hand, the red color is super sensitive to the synthesis parameters, heat treatment conditions (atmosphere and temperature), particle size, etc. Therefore, achieving a bright true red shade and its stability at high temperatures is crucial. There has been a massive attempt to find a sustainable high-temperature resistant alternative for these hazardous compounds. Iron oxide is one of the first red pigments in history, but it cannot produce a bright red shade and its color is mostly red-brown. Ce2S3 is another red pigment with a beautiful red color. But it cannot stand the temperature above 350 °C in an oxidizing atmosphere. Doping lanthanides in the perovskites or entrapping the toxic beautiful chromophores in the core-shell structures are among the strategies to achieve safe bright red pigments. This review outlines the recent progress of hazardous classic reds to environmentally friendly ceramic red pigments. Various compounds and dopants, applied to develop sustainable reds, from simple iron-oxides to composites, solid solutions, core-shell structures, or even purified wastes have been covered in this review.

Downloads

Download data is not yet available.
Keywords: Red ceramic pigments, Cerium-based pigments, Core-shell, Environmental-friendly, Lanthanides, Hematite

References

[1] B. Bae, N. Takeuchi, S. Tamura, N. Imanaka, Environmentally friendly orange pigments based on hexagonal perovskite-type compounds and their high NIR reflectivity, Dyes Pigm. 147 (2017) 523–528. https://doi.org/10.1016/j.dyepig.2017.08.015.
[2] G. Pfaff, Inorganic Pigments, 2nd ed., De Gruyter, Darmstadt. (2023). https://doi.org/10.1515/9783110743920.
[3] S. Divya, S. Das, New red pigments based on Li3AlMnO5 for NIR reflective cool coatings, Ceram. Int. 47 (2021) 30381–30390. https://doi.org/10.1016/j.ceramint.2021.07.218.
[4] D. Mićović, M.C. Pagnacco, P. Banković, J. Maletaškić, B. Matović, et al., The influence of short thermal treatment on structure, morphology and optical properties of Er and Pr doped ceria pigments: Comparative study, Proc. Appl. Ceram. 13 (2019) 310–321. https://doi.org/10.2298/PAC1903310M.
[5] V. James, P. Prabhakar Rao, S. Sameera, S. Divya, Multiferroic based reddish brown pigments: Bi1-xM xFeO3 (M=Y and La) for coloring applications, Ceram. Int. 40 (2014) 2229–2235. https://doi.org/10.1016/j.ceramint.2013.07.141.
[6] E.B. Faulkner, R.J. Schwartz, High performance pigments, Wiley-VCH. (2009).
[7] H. Hashimoto, J. Kiyohara, A. Isozaki, Y. Arakawa, T. Fujii, et al., Bright Yellowish-Red Pigment Based on Hematite/Alumina Composites with a Unique Porous Disk-like Structure, ACS Omega. 5 (2020) 4330–4337. https://doi.org/10.1021/acsomega.9b04297.
[8] O. Opuchovic, G. Kreiza, J. Senvaitiene, K. Kazlauskas, A. Beganskiene, A. Kareiva, Sol-gel synthesis, characterization and application of selected sub-microsized lanthanide (Ce, Pr, Nd, Tb) ferrites, Dyes Pigm. 118 (2015) 176–182. https://doi.org/10.1016/j.dyepig.2015.03.017.
[9] M. Hosseini-Zori, E. Taheri-Nassaj, A.R. Mirhabibi, Effective factors on synthesis of the hematite-silica red inclusion pigment, Ceram. Int. 34 (2008) 491–496. https://doi.org/10.1016/j.ceramint.2006.11.012.
[10] H.F. Liu, W.B. Dai, H. Wang, L.K. Zeng, Y.M. Wang, Study on the preparation of the CdSxSe1−x@ZrSiO4 red ceramic pigments and its properties, J. Solgel Sci. Technol .75 (2015) 198–205. https://doi.org/10.1007/s10971-015-3689-1.
[11] C. Molinari, S. Conte, C. Zanelli, M. Ardit, G. Cruciani, M. Dondi, Ceramic pigments and dyes beyond the inkjet revolution: From technological requirements to constraints in colorant design, Ceram. Int. 46 (2020) 21839–21872. https://doi.org/10.1016/j.ceramint.2020.05.302.
[12] A. Amat, F. Rosi, C. Miliani, P. Sassi, M. Paolantoni, S. Fantacci, A combined theoretical and experimental investigation of the electronic and vibrational properties of red lead pigment, J. Cult. Herit. 46 (2020) 374–381. https://doi.org/10.1016/j.culher.2020.04.014.
[13] A. Abel, The history of dyes and pigments, Colour Design, Elsevier. (2012) 557–587. https://doi.org/10.1016/b978-0-08-101270-3.00024-2.
[14] E. Gliozzo, C. Ionescu, Pigments—Lead-based whites, reds, yellows and oranges and their alteration phases, Archaeol. Anthropol. Sci. 14 (2022) 17. https://doi.org/10.1007/s12520-021-01407-z.
[15] Z. She, M. Yang, T. Luo, X. Feng, J. Wei, X. Hu, Lead release and species transformation of commercial minium pigments in aqueous phase under UV-irradiation, Chemosphere. 269 (2021) 128769. https://doi.org/10.1016/j.chemosphere.2020.128769.
[16] E. Gliozzo, Pigments — Mercury-based red (cinnabar-vermilion) and white (calomel) and their degradation products, Archaeol. Anthropol. Sci. 13 (2021) 210. https://doi.org/10.1007/s12520-021-01402-4.
[17] R. Nöller, Cinnabar reviewed: Characterization of the red pigment and its reactions, Stud. Conserv. 60 (2015) 79–87. https://doi.org/10.1179/2047058413Y.0000000089.
[18] E. Gliozzo, L. Burgio, Pigments—Arsenic-based yellows and reds, Archaeol. Anthropol. Sci. 14 (2022) 4. https://doi.org/10.1007/s12520-021-01431-z.
[19] A. Čiuladienė, A. Kareiva, R. Raudonis, From model to artefact: Versatile characterization of cinnabar, red lead and realgar red paints for rubrics and miniatures, Chemija. 31 (2020) 238–246.
[20] S.J.S. Flora, Arsenic: Chemistry, Occurrence, and Exposure, Handbook of Arsenic Toxicology, Elsevier Inc. (2015) 1–49. https://doi.org/10.1016/B978-0-12-418688-0.00001-0.
[21] I.D. Rae, Arsenic: its chemistry, its occurrence in the earth and its release into industry and the environment, ChemTexts. 6 (2020) 25. https://doi.org/10.1007/s40828-020-00118-7.
[22] V.M. Nurchi, A.B. Djordjevic, G. Crisponi, J. Alexander, G. Bjørklund, J. Aaseth, Arsenic toxicity: Molecular targets and therapeutic agents, Biomolecules. 10 (2020) 235. https://doi.org/10.3390/biom10020235.
[23] L. Liu, Z. Zhang, M. Zhang, X. Yang, C. Liu, G. Qiu, Mechanism of arsenic release from realgar oxidation in the presence of dissolved oxygen: Effect of reactive oxygen species and light-induced transformation, Geochim. Cosmochim. Acta. 339 (2022) 58–69. https://doi.org/10.1016/j.gca.2022.10.037.
[24] A. Čiuladienė, A. Luckutė, J. Kiuberis, A. Kareiva, Investigation of the chemical composition of red pigments and binding media, Chemija. 29 (2018) 243–256. https://doi.org/10.6001/chemija.v29i4.3840.
[25] H. Liu, S. Zhang, X. Qu, H. Fu, L. Zuo, Molybdenum doping leads to faster photo-dissolution of 2 commercial Molybdate Red pigment than chrome yellow 3 pigment under sunlight irradiation, SSRN. (2024). https://doi.org/https://dx.doi.org/10.2139/ssrn.4880639.
[26] L. Erkens, H. Hamers, R. Hermans, E. Claeys, M. Bijnens, Lead chromates: A review of the state of the art in 2000, Surf. Coat. Int. B: Coat. Trans. 84 (2001) 169–176. https://doi.org/10.1007/BF02700395.
[27] Y. Marinova, J.M. Hohemberger, E. Cordoncillo, P. Escribano, J.B. Carda, Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments, J. Eur. Ceram. Soc. 23 (2003) 213–220. https://doi.org/10.1016/S0955-2219(02)00182-6.
[28] J. Wu, K. Li, X. Xu, Y. Zhang, X. Xu, X. Lao, Research and development of cadmium sulphoselenide red pigment, J. Wuhan Univ. Technol. Mater. Sci. Ed. 30 (2015) 1247–1254. https://doi.org/10.1007/s11595-015-1303-6.
[29] J. Wu, K. Li, X. Xu, J. Yu, X. Li, J. Tian, In situ synthesis of spherical CdS1-xSex red pigment used for ceramic ink-jet printing, Mater. Chem. Phys. 203 (2018) 193–201. https://doi.org/10.1016/j.matchemphys.2017.09.070.
[30] A. Turner, Cadmium pigments in consumer products and their health risks, Sci. Total Environ. 657 (2019) 1409–1418. https://doi.org/10.1016/j.scitotenv.2018.12.096.
[31] H. Liu, K. Liu, H. Fu, R. Ji, X. Qu, Sunlight mediated cadmium release from colored microplastics containing cadmium pigment in aqueous phase, Environ. Pollut. 263 (2020) 114484. https://doi.org/10.1016/j.envpol.2020.114484.
[32] K. Li, Q. Luo, R. Bai, Y. Li, C. Tang, et al., Synthesis and Characterization of Hydrothermal Synthesized Ultra-Red CdS1−xSe x Pigment, Trans. Indian Ceram. Soc. 82 (2023) 259–264. https://doi.org/10.1080/0371750X.2023.2236658.
[33] Y. Chen, X. Ren, K. Zhang, L. Wang, Structure and optical property of CdS1−xSex/CdS nanocomposite prepared by a simple and low cost approach, Mater. Sci. Eng: B. 243 (2019) 183–188. https://doi.org/10.1016/j.mseb.2019.04.011.
[34] C.A. Vanderhyde, S.D. Sartale, J.M. Patil, K.P. Ghoderao, J.P. Sawant, R.B. Kale, Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures, Solid State Sci. 48 (2015) 186–192. https://doi.org/10.1016/j.solidstatesciences.2015.08.007.
[35] Y. Chen, Y. Ou-Yang, A novel approach to the synthesis of CdS1-xSex solid solution at room temperature, Mater. Sci. Eng: B. 142 (2007) 112–115. https://doi.org/10.1016/j.mseb.2007.06.013.
[36] Y. Chen, C. Li, X. Ren, K. Zhang, L. Wang, Photoluminescence and Crystallinity of High Quality CdS1−xSex Synthesized in Ammonium Water Medium, J. Electron. Mater. 50 (2021) 4145–4154. https://doi.org/10.1007/s11664-021-08953-1.
[37] K.V. Khot, S.S. Mali, N.B. Pawar, R.R. Kharade, R.M. Mane, et al., Simplistic construction of cadmium sulfoselenide thin films via a hybrid chemical process for enhanced photoelectrochemical performance, RSC Adv. 5 (2015) 40283–40296. https://doi.org/10.1039/c4ra16311g.
[38] M. Ardit, G. Cruciani, M. Dondi, C. Zanelli, Pigments Based on Perovskite, Perovskites and Related Mixed Oxides, Wiley. (2016) 259–288. https://doi.org/10.1002/9783527686605.ch12.
[39] G. Baldi, N. Dolen, A. Barzanti, V. Faso, Synthesis of a New Class of Red Pigments Based on Perovskite - Type Lattice AxB(2-x-y)CryO3 with 0.90https://doi.org/10.4028/www.scientific.net/KEM.264-268.1545.
[40] M. Jansen, H.P. Letschert, Inorganic Yellow‐Red Pigments Without Toxic Metals, Nature. 404 (2000) 980–982. https://doi.org/10.1038/35010082.
[41] C. Gargori, R. Galindo, M. Llusar, S. Cerro, A. García, G. Monrós, New Chromium-Calcium Titanate Red Ceramic Pigment, Adv. Sci. Technol. 68 (2010) 208–212. https://doi.org/10.4028/www.scientific.net/AST.68.208.
[42] F. Matteucci, M. Dondi, G. Cruciani, G. Baldi, A. Barzanti, Colouring mechanism of red ceramic pigments based on perovskite structure, Key Eng. Mater. 264–268 (2004) 1549–1552. https://doi.org/10.4028/www.scientific.net/kem.264-268.1549.
[43] M. Shirpour, M.A.F. Sani, A. Mirhabibi, Synthesis and study of a new class of red pigments based on perovskite YAlO3 structure, Ceram. Int. 33 (2007) 1427–1433. https://doi.org/10.1016/j.ceramint.2006.04.023.
[44] S. Ahmadi, A. Aghaei, B.E. Yekta, Effective parameters for synthesis of chromium doped YAlO3 red pigment, Pigm. Resin Technol. 44 (2015) 1–6. https://doi.org/10.1108/PRT-02-2014-0013.
[45] G.N. Marques, T.P. Oliveira, M.M. Teixeira, A.V. Lot, M.F. do Nascimento, et al., Synthesis of yttrium aluminate doped with Cr3+ using MgF2–Na2B4O7 as mineralizers to obtain red pigments for ceramic tiles application, Ceram. Int. 46 (2020) 27940–27950. https://doi.org/10.1016/j.ceramint.2020.07.287.
[46] E. Miguel, G. Paulo-Redondo, J.B. Carda Castelló, I. Nebot-Díaz, Comparative Study of the Synthesis of a Red Ceramic Pigment Using Microwave Heat Treatment, Colorants. 2 (2023) 518–532. https://doi.org/10.3390/colorants2030025.
[47] S. Blasco-Zarzoso, H. Beltrán-Mir, E. Cordoncillo, Sustainable inorganic pigments with high near-infra-red reflectance based on Fe3+ doped YAlO3 for high temperature applications, J. Alloys Compd. 960 (2023) 170695. https://doi.org/10.1016/j.jallcom.2023.170695.
[48] K. Yamaguchi, Y. Shobu, R. Oka, T. Masui, Color Controllable Inorganic Pigments with Ce3+ as a Color Source, Inorg. Chem. 62 (2023) 15392–15402. https://doi.org/10.1021/acs.inorgchem.3c01292.
[49] E. Miguel, J.B. Carda Castelló, I. Nebot-Díaz, Development of Red Ceramic Pigments with Perovskite Structure Prepared through a Traditional Route, Eng. 4 (2023) 159–173. https://doi.org/10.3390/eng4010010.
[50] Y. Chen, J. Zou, Cr and Mg co-doped YAlO3 red cool pigments with high NIR reflectance and infrared emissivity for sustainable energy-saving applications, Ceram. Int. 49 (2023) 13717–13727. https://doi.org/10.1016/j.ceramint.2022.12.250.
[51] Y. Chen, J. Zou, H. Lin, P. Zhang, Enhancing colour and solar reflective performances for Cr-doped YAlO3 red pigment by tailoring chemical defects with the aid of CaCO3 and Na2B4O7 mineralizers, J. Alloys Compd. 932 (2023) 167652. https://doi.org/10.1016/j.jallcom.2022.167652.
[52] M. Fortuño-Morte, P. Serna-Gallén, H. Beltrán-Mir, E. Cordoncillo, A new series of environment-friendly reddish inorganic pigments based on AFeO3 (A = Ln, Y) with high NIR solar reflectance, J. Materiomics. 7 (2021) 1061–1073. https://doi.org/10.1016/j.jmat.2021.02.002.
[53] M. Fortuño-Morte, P. Serna-Gallén, H. Beltrán-Mir, E. Cordoncillo, The influence of Ca2+ and Zn2+ doping on the development of sustainable pigments based on GdFeO3 perovskite: From a reddish colour towards a pure black, Ceram. Int. 48 (2022) 21469–21478. https://doi.org/10.1016/j.ceramint.2022.04.111.
[54] A. Čiuladienė, A. Beganskienė, J. Senvaitienė, A. Kareiva, Study of the red iron paints for rubrics and miniatures: Accelerated aging and analytical data, Medziagotyra. 27 (2021) 77–83. https://doi.org/10.5755/j02.ms.25190.
[55] N. Mufti, T. Atma, A. Fuad, E. Sutadji, Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand, AIP Conf Proc, American Institute of Physics Inc. (2014) 165–169. https://doi.org/10.1063/1.4897129.
[56] H. Hashimoto, K. Higuchi, H. Inada, Y. Okazaki, T. Takaishi, H. Asoh, Well-Dispersed α-Fe2O3 Particles for Lead-Free Red Overglaze Enamels through Hydrothermal Treatment, ACS Omega. 1 (2016) 9–13. https://doi.org/10.1021/acsomega.6b00040.
[57] . R.A. Candeia, M.I.B. Bernardi, E. Longo, I.M.G. Santos, A.G. Souza, Synthesis and characterization of spinel pigment CaFe2O 4 obtained by the polymeric precursor method, Mater. Lett. 58 (2004) 569–572. https://doi.org/10.1016/S0167-577X(03)00563-9.
[58] Y. Lu, W. Dong, W. Wang, J. Ding, Q. Wang, et al., Optimal synthesis of environment-friendly iron red pigment from natural nanostructured clay minerals, Nanomaterials. 8 (2018) 925. https://doi.org/10.3390/nano8110925.
[59] M. Quddus, M. Rahman, J. Khanam, B. Biswas, N. Sharmin, et al., Synthesis and Characterization of Pigment Grade Red Iron Oxide from Mill Scale, Int. Res. J. Pure Appl. Chem. 16 (2018) 1–9. https://doi.org/10.9734/irjpac/2018/42935.
[60] T.E.R. Fiuza, J.F.M. Borges, J.B.M. da Cunha, S.R.M. Antunes, A.V.C. de Andrade, et al., Iron-based inorganic pigments from residue: Preparation and application in ceramic, polymer, and paint, Dyes Pigm. 148 (2018) 319–328. https://doi.org/10.1016/j.dyepig.2017.09.025.
[61] I. Nurhasanah, Y. Astuti, P. Triadiyaksa, Precipitation Synthesis of CeO2 Nanopowder Pigment, J. Rekayasa Kim. Lingkung. 18 (2023) 29–36. https://doi.org/10.23955/rkl.v18i1.28648.
[62] L.A. Gonzaga, V.T. Santana, M.I.B. Bernardi, J. Hrubý, P. Neugebauer, A. Mesquita, CeO2 and CeO2:Pr nanocrystalline powders prepared by the polymeric precursor method: Yellow and red pigments with tunable color, J. Am. Ceram. Soc. 103 (2020) 6280–6288. https://doi.org/10.1111/jace.17339.
[63] L.S. Kumari, P.P. Rao, S. Sameera, P. Koshy, Synthesis and optical properties of Ce 0.95Pr 0.05-xM xO 2 (M = Mn, Si) as potential ecological red pigments for coloration of plastics, Ceram. Int. 38 (2012) 4009–4016. https://doi.org/10.1016/j.ceramint.2012.01.057.
[64] S. Radhika, K.J. Sreeram, B. Unni Nair, Effective synthesis route for red-brown pigments based on Ce-Pr-Fe-O and their potential application for near infrared reflective surface coating, J. Chem. Sci. 126 (2014) 65–73. https://doi.org/10.1007/s12039-013-0559-7.
[65] S.T. Aruna, S. Ghosh, K.C. Patil, Combustion synthesis and properties of Ce1−xPrxO2−δ red ceramic pigments, Int. J. Inorg. Mater. 3 (2001) 387–392. https://doi.org/10.1016/S1466-6049(01)00020-4.
[66] M. Llusar, L. Vitásková, P. Šulcová, M.A. Tena, J.A. Badenes, G. Monrós, Red ceramic pigments of terbium-doped ceria prepared through classical and non-conventional coprecipitation routes, J. Eur. Ceram. Soc. 30 (2010) 37–52. https://doi.org/10.1016/j.jeurceramsoc.2009.08.005.
[67] Y. Li, X. Li, Z. Li, Z. Wang, Y. Hong, F. Song, Preparation, characterization, and properties of a Ba2+–Sm3+ co-doped γ-Ce2S3 red pigment, Solid State Sci. 106 (2020) 106332. https://doi.org/10.1016/j.solidstatesciences.2020.106332.
[68] R.M.A. Khalil, M.I. Hussain, M. Imran, F. Hussain, N. Saeed, et al., First-principles simulation of structural, electronic and optical properties of cerium trisulfide (Ce2S3) compound, J. Electron. Mater. 50 (2021) 1637–1643. https://doi.org/10.1007/s11664-020-08478-z.
[69] G. Chen, Z. Zhu, H. Liu, Y. Wu, C. Zhu, Preparation of SiO2 coated Ce2S3 red pigment with improved thermal stability, J. Rare Earths. 31 (2013) 891–896. https://doi.org/10.1016/S1002-0721(12)60375-5.
[70] Y.Q. Gao, Y.M. Li, Z.M. Wang, Z.Y. Shen, Z.X. Xie, Preparations and characterizations of γ-Ce2S3 red pigments from Pr-doped CeO2 with improved thermal stabilities, Appl. Phys. A: Mater. Sci. Proc. 124 (2018) 151. https://doi.org/10.1007/s00339-018-1588-3.
[71] X. Li, Y. Li, F. Song, Z. Wang, Y. Hong, Z. Li, Study of K+ doping on structure and properties of γ-Ce2S3, J. Rare Earths. 38 (2020) 776–783. https://doi.org/10.1016/j.jre.2019.05.007.
[72] X. Li, Y.M. Li, Z.M. Wang, Y. Hong, Z.K. Li, Influence of Ba2+ doping on the properties and thermal stability of γ-Ce2S3, Appl. Phys. A: Mater. Sci. Proc. 125 (2019) 518. https://doi.org/10.1007/s00339-019-2798-z.
[73] X. Li, Y. Li, Z. Li, Z. Wang, Y. Hong, F. Song, Preparation and properties of Ba2+-Y3+ co-doped gamma-Ce2S3 red pigment, Mater. Ceram. 71 (2019) 378–388.
[74] F. Song, Y. Li, Y. Yu, Z. Shen, Z. Wang, X. Li, Engineering the crystal structure of γ-[Li]-Ce2S3 red pigments for enhanced thermal stability, J. Solid State Chem. 282 (2020) 121110. https://doi.org/10.1016/j.jssc.2019.121110.
[75] Y. Li, Q. Liu, F. Song, Z. Wang, Z. Shen, Y. Hong, Effect of Sr2+ and Dy3+ co-doping on coloration and temperature stabilization of a γ-Ce2S3 red pigment, J. Rare Earths. 38 (2020) 213–218. https://doi.org/10.1016/j.jre.2019.02.015.
[76] F. Wu, X. Li, Y. Li, F. Song, Z. Wang, Z. Shen, Low-temperature combustion synthesis method to prepare Na+-doped ultrafine micron-sized γ-Ce2S3 bright red pigments, J Solid State Chem. 299 (2021) 122146. https://doi.org/10.1016/j.jssc.2021.122146.
[77] D. Wang, Y. Zhao, S. Yu, Synthesis of γ-Ce2S3 colorant under low temperature and its coloring properties for PE and PVC, J. Rare Earths. 35 (2017) 1042–1046. https://doi.org/10.1016/S1002-0721(17)61011-1.
[78] S. Yu, D. Wang, X. Gao, H. Su, Effects of the precursor size on the morphologies and properties of γ-Ce2S3 as a pigment, J. Rare Earths. 32 (2014) 540–544. https://doi.org/10.1016/S1002-0721(14)60105-8.
[79] W.-X. Mao, W. Zhang, Z.-X. Chi, R.-W. Lu, A.-M. Cao, L.-J. Wan, Core–shell structured Ce2S3 @ZnO and its potential as a pigment, J. Mater. Chem. A: Mater. 3 (2015) 2176–2180. https://doi.org/10.1039/C4TA05797J.
[80] Y. Li, S. Le, Z. Wang, Y. Hong, K. Li, Q. Pu, Preparation and characterization of the Sr2+-doped γ-Ce2S3@c-SiO2 red pigments exhibiting improved temperature and acid stability, Appl. Surf. Sci. 508 (2020) 145266. https://doi.org/10.1016/j.apsusc.2020.145266.
[81] Y.M. Li, S.G. Liu, F.S. Song, Z.M. Wang, Z.Y. Shen, Z.X. Xie, Preparation and thermal stability of silica layer multicoated γ-Ce2S3 red pigment microparticles, Surf. Coat. Technol. 345 (2018) 70–75. https://doi.org/10.1016/j.surfcoat.2018.04.023.
[82] F. Song, Y. Li, Y. Yu, Z. Shen, Z. Wang, In situ construction of pomegranate-like γ-[Li]-Ce2S3@ c-SiO2 as high-temperature and acid tolerant red pigment, Appl. Surf. Sci. 554 (2021) 149643. https://doi.org/10.1016/j.apsusc.2021.149643.
[83] F. Wu, X. Li, Y. Li, Z. Wang, Y. Hong, et al., Design and preparation of a type of γ-Ce2S3@c-SiO2-coated red pigment with a plum pudding mosaic structure: The effect of pre-sintering temperature on pigment properties, Microporous Mesoporous Mater. 311 (2021). https://doi.org/10.1016/j.micromeso.2020.110699.
[84] Y.Q. Gao, Y.M. Li, Z.M. Wang, Z.Y. Shen, Z.X. Xie, Preparation of γ-Ce2S3@ZrO2 red pigment by hydrolysis combined hydrothermal two steps method, Key Eng. Mater. 768 (2018) 172–178. https://doi.org/10.4028/www.scientific.net/KEM.768.172.
[85] S. Zhang, M. Ye, S. Chen, A. Han, Y. Zang, Synthesis and characterization of mica/γ-Ce2−xYxS3 composite red pigments with UV absorption and high NIR reflectance, Ceram. Int. 42 (2016) 16023–16030. https://doi.org/10.1016/j.ceramint.2016.07.111.
[86] Y. Li, Y. Gao, Z. Wang, Z. Shen, Y. Hong, F. Song, Synthesis and characterization of aluminum-based γ-Ce2S3 composite red pigments by microemulsion method, J. Alloys Compd. 812 (2020) 152100. https://doi.org/10.1016/j.jallcom.2019.152100.
[87] B. Lei, W. Qin, G. Kang, C. Peng, J. Wu, Modeling and evaluation for encapsulation efficiency of zircon-based heteromorphic encapsulation pigments, Dyes Pigm. 112 (2015) 245–254. https://doi.org/10.1016/j.dyepig.2014.07.010.
[88] J.M. Rincón, Pigment zircon-cadmium for ceramics, Conference: SECV, Trans. J. Br. Ceram. Soc. (1981)
[89] W. Qin, K. Wang, Y. Zhang, Preparation of submicron CdSxSe1-x@ZrSiO4 inclusion pigment and its application in ink-jet printing, J. Eur. Ceram. Soc. 41 (2021) 7878–7885. https://doi.org/10.1016/j.jeurceramsoc.2021.08.008.
[90] B.E. Yekta, M. Tamizifar, N. Rahimi, Synthesis of a Zircon-Cadmium Sulfo Selenide Pigment by a Sol-Gel Technique, J. Ceram. Soc. Jpn. 115 (2007) 757–760. https://doi.org/10.2109/jcersj2.115.757.
[91] F. Zhao, Y. Gao, H. Luo, Reactive formation of Zircon inclusion pigments by deposition and subsequent annealing of a Zirconia and silica double shell, Langmuir. 25 (2009) 13295–13297. https://doi.org/10.1021/la903197t.
[92] E. Zumaquero, M.J. Orts, V. Sanz, S. Mestre, Iron zircon pigment synthesis: Proposal of a mixing index for the raw materials mixtures, Bol. Soc. Esp. Ceram. Vidr. 56 (2017) 177–185. https://doi.org/10.1016/j.bsecv.2017.01.003.
[93] H. Heydari, R. Naghizadeh, H.R. samimbanihashemi, M. Hosseini Zori, Synthesis and characterisation of hematite-zircon nanocomposite by sol - Gel method, Adv. Mat. Res. 829 (2014) 544–548. https://doi.org/10.4028/www.scientific.net/AMR.829.544.
[94] M. Hosseini-Zori, Substitution of a fraction of zircon by cristobalite in nano hematite encapsulated pigment and examination of glaze application, J. Adv. Ceram. 2 (2013) 149–156. https://doi.org/10.1007/s40145-013-0054-0.
[95] M. Hosseini-Zori, Microstructure of nanoscale hematite encapsulated by zircon and cristobalite in ceramic pigment and examination of glazes application, J. Adv. Microsc. Res. 8 (2013) 61–66. https://doi.org/10.1166/jamr.2013.1138.
[96] Y. Wang, Q. Wang, Q. Chang, Y. Wang, Y. Zhao, et al., Chromatic study on the coloration mechanism of iron zircon pigment, Mater. Chem. Phys. 235 (2019) 121740. https://doi.org/10.1016/j.matchemphys.2019.121740.
[97] L.M. Schabbach, F. Bondioli, M.C. Fredel, Color prediction with simplified Kubelka-Munk model in glazes containing Fe2O3-ZrSiO4 coral pink pigments, Dyes Pigm. 99 (2013) 1029–1035. https://doi.org/10.1016/j.dyepig.2013.08.009.
[98] M. Cannio, F. Bondioli, Mechanical activation of raw materials in the synthesis of Fe2O3-ZrSiO4 inclusion pigment, J. Eur. Ceram. Soc. 32 (2012) 643–647. https://doi.org/10.1016/j.jeurceramsoc.2011.10.008.
[99] H. Liu, X. Zeng, X. Zhang, R. Liu, W. Liu, et al. An Integrated Liquid Approach To The Synthesis of CdSxSe1-x@ZrSiO4 Ceramic Pigments For Commercial Ink-Jet Printing. Preprint. (2021). https://doi.org/https://doi.org/10.21203/rs.3.rs-479432/v1.
[100] F. Andreola, L. Barbieri, F. Bondioli, Agricultural waste in the synthesis of coral ceramic pigment, Dyes Pigm. 94 (2012) 207–211. https://doi.org/10.1016/j.dyepig.2012.01.007.
[101] H. Gao, P. Wei, H. Liu, M. Long, H. Fu, X. Qu, Sunlight-Mediated Lead and Chromium Release from Commercial Lead Chromate Pigments in Aqueous Phase, Environ. Sci. Technol. 53 (2019) 4931–4939. https://doi.org/10.1021/acs.est.8b06839.
[102] K. Elert, M. Pérez Mendoza, C. Cardell, Direct evidence for metallic mercury causing photo-induced darkening of red cinnabar tempera paints, Commun. Chem. 4 (2021) 174. https://doi.org/10.1038/s42004-021-00610-2.
[103] E. Makarewicz, P. Cysewski, A. Michalik, D. Ziółkowska, Properties of acid or alkali treated cadmium pigments, Dyes Pigm. 96 (2013) 338–348. https://doi.org/10.1016/j.dyepig.2012.08.004.
[104] M. Hosseini-Zori, E. Taheri-Nassaj, Nano encapsulation of hematite into silica matrix as a red inclusion ceramic pigment, J. Alloys Compd. 510 (2011) 83–86. https://doi.org/10.1016/j.jallcom.2011.08.086.
[105] F. Matteucci, C.L. Neto, M. Dondi, G. Cruciani, G. Baldi, A.O. Boschi, Colour development of red perovskite pigment Y(Al, Cr)O3 in various ceramic applications, Adv. Appl. Ceram. 105 (2006) 99–106. https://doi.org/10.1179/174367606X103042.
[106] W. Hajjaji, C. Zanelli, M.P. Seabra, M. Dondi, J.A. Labrincha, Cr-doped perovskite and rutile pigments derived from industrial by-products, Chem. Eng. J. 171 (2011) 1178–1184. https://doi.org/10.1016/j.cej.2011.05.021.
[107] C. Gargori, S. Cerro, R. Galindo, A. García, M. Llusar, G. Monrós, Iron and chromium doped perovskite (CaMO 3 M = Ti, Zr) ceramic pigments, effect of mineralizer, Ceram. Int. 38 (2012) 4453–4460. https://doi.org/10.1016/j.ceramint.2012.02.019.
[108] Y. Lu, W. Dong, W. Wang, Q. Wang, A. Hui, A. Wang, A comparative study of different natural palygorskite clays for fabricating cost-efficient and eco-friendly iron red composite pigments, Appl. Clay Sci. 167 (2019) 50–59. https://doi.org/10.1016/j.clay.2018.10.008.
[109] M. Müller, J.C. Villalba, F.Q. Mariani, M. Dalpasquale, M.Z. Lemos, et al., Synthesis and characterization of iron oxide pigments through the method of the forced hydrolysis of inorganic salts, Dyes Pigm. 120 (2015) 271–278. https://doi.org/10.1016/j.dyepig.2015.04.026.
[110] J. Khanam, M.R. Hasan, B. Biswas, S.A. Jahan, N. Sharmin, et al., Development of ceramic grade red iron oxide pigment from waste iron source, Heliyon. 9 (2023) e12854. https://doi.org/10.1016/j.heliyon.2023.e12854.
[111] O. Opuchovic, A. Kareiva, Historical hematite pigment: Synthesis by an aqueous sol-gel method, characterization and application for the colouration of ceramic glazes, Ceram. Int. 41 (2015) 4504–4513. https://doi.org/10.1016/j.ceramint.2014.11.145.

Cited By

Crossref Google Scholar
Evolution of red ceramic pigments: from hazardous compounds to environmentally friendly alternatives
Submitted
2024-02-08
Available online
2024-06-29
How to Cite
Tavakolipour, R., Li, Y., Hosseini Zori, M., Basso Bernardi, M. I., Li, K., Čiuladienė, A., & Miguel, E. (2024). Evolution of red ceramic pigments: from hazardous compounds to environmentally friendly alternatives. Synthesis and Sintering, 4(2), 130-153. https://doi.org/10.53063/synsint.2024.42206

Most read articles by the same author(s)