Solid-solution phase formation rules for high entropy alloys: A thermodynamic perspective

  • Samaneh Mamnooni 1
  • Ehsan Borhani 1
  • Hassan Heydari 2
  • 1 Department of New Science and Technology, Nanomaterials Group, Semnan University, Semnan, Iran
  • 2 Department of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran

Abstract

To save time and money before starting the production of a high entropy alloy (HEA), it is important to predict the possibility of HEA formation and the probable final microstructure using the solid solution phase formation thermodynamic rules. In this research, a step-by-step calculation of thermodynamic parameters is conducted to predict the possibility of formation and determine the final properties such as ∆Hmix­, ∆Smix, δr, δχ, Ω, VEC, and Tm for three Ni20Co20Cu15Fe20Mn25, Ni35Co20Cu5Fe5Mn35, and Ni5Co5Cu35Fe35Mn20 HEAs. Based on the obtained results, it is not possible to form a HEA with a solid solution structure for the Ni35Co20Cu5Fe5Mn35 and Ni5Co5Cu35Fe35Mn20 systems due to a low ∆Smix value of 11.28 J.mol-1.K-1. Based on the calculated values of ∆Hmix­, intermetallic compound formation and segregation are predicted for Ni35Co20Cu5Fe5Mn35 and Ni5Co5Cu35Fe35Mn20, respectively.

Downloads

Download data is not yet available.
Keywords: High entropy alloy, Thermodynamic parameters, Solid solution, Phase formation, Segregation, Intermetallic compound

References

[1] Y. Zhang, X. Yang, P. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM. 64 (2012) 830–838. https://doi.org/10.1007/s11837-012-0366-5.
[2] S.-Z. Lu, A. Hellawell, Modification of Al-Si alloys: Microstructure, thermal analysis, and mechanisms, JOM. 47 (1995) 38–40. https://doi.org/10.1007/BF03221405.
[3] A. Shamsipoor, B. Mousavi, M.S. Shakeri, Synthesis and sintering of Fe-32Mn-6Si shape memory alloys prepared by mechanical alloying, Synth. Sinter. 2 (2022) 1–8. https://doi.org/10.53063/synsint.2022.2185.
[4] M.S. Kumar, S.R. Begum, M. Vasumathi, C.C. Nguyen, Q. Van Le, Influence of molybdenum content on the microstructure of spark plasma sintered titanium alloys, Synth. Sinter. 1 (2021) 41–47. https://doi.org/10.53063/synsint.2021.1114.
[5] S.-W. Kim, J.K. Hong, Y.-S. Na, J.-T. Yeom, S.E. Kim, Development of TiAl alloys with excellent mechanical properties and oxidation resistance, Mater. Des. (1980–2015) 54 (2014) 814–819. https://doi.org/10.1016/j.matdes.2013.08.083.
[6] T. Zhang, J. Zhu, T. Yang, J. Luan, H. Kong, et al., A new α+ β Ti-alloy with refined microstructures and enhanced mechanical properties in the as-cast state, Scr. Mater. 207 (2022) 114260. https://doi.org/10.1016/j.scriptamat.2021.114260.
[7] M. Akhlaghi, E. Salahi, S.A. Tayebifard, G. Schmidt, Role of SPS temperature and holding time on the properties of Ti3AlC2-doped TiAl composites, Synth. Sinter. 2 (2022) 138–145. https://doi.org/10.53063/synsint.2022.2383.
[8] H. Zhou, Z. Zhang, C. Liu, Q. Wang, Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy, Mater. Sci. Eng: A. 445 (2007) 1–6. https://doi.org/10.1016/j.msea.2006.04.028.
[9] H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr, Mater. Des. 83 (2015) 95–102. https://doi.org/10.1016/j.matdes.2015.05.089.
[10] L.-C. Zhang, L.-Y. Chen, L. Wang, Surface modification of titanium and titanium alloys: technologies, developments, and future interests, Adv. Eng. Mater. 22 (2020) 1901258. https://doi.org/10.1002/adem.201901258.
[11] T. Chen, T. Shun, J. Yeh, M. Wong, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol. 188 (2004) 193–200. https://doi.org/10.1016/j.surfcoat.2004.08.023.
[12] C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition, Metall. Mater. Trans. A. 35 (2004) 1465–1469. https://doi.org/10.1007/s11661-004-0254-x.
[13] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303. https://doi.org/10.1002/adem.200300567.
[14] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A. 35 (2004) 2533–2536. https://doi.org/10.1007/s11661-006-0234-4.
[15] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater. 6 (2004) 74–78. https://doi.org/10.1002/adem.200300507.
[16] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng: A. 375 (2004) 213–218. https://doi.org/10.1016/j.msea.2003.10.257.
[17] J. Qiao, E.-W. Huang, F. Jiang, T. Ungár, G. Csiszár, et al., Resolving ensembled microstructural information of bulk-metallic-glass-matrix composites using synchrotron X-ray diffraction, Appl. Phys. Lett. 97 (2010) 171910. https://doi.org/10.1063/1.3506694.
[18] K. Zhao, X. Xia, H. Bai, D. Zhao, W. Wang, Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature, Appl. Phys. Lett. 98 (2011) 141913. https://doi.org/10.1063/1.3575562.
[19] H. Lou, X. Wang, F. Xu, S. Ding, Q. Cao, et al., 73 mm-diameter bulk metallic glass rod by copper mould casting, Appl. Phys. Lett. 99 (2011) 051910. https://doi.org/10.1063/1.3621862.
[20] Y. Zhou, Y. Zhang, F. Wang, G. Chen, Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1− x solid-solution alloys, Appl. Phys. Lett. 92 (2008) 241917. https://doi.org/10.1063/1.2938690.
[21] X. Wang, Y. Zhang, Y. Qiao, G. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics. 15 (2007) 357–362. https://doi.org/10.1016/j.intermet.2006.08.005.
[22] Y. Zhou, Y. Zhang, Y. Wang, G. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett. 90 (2007) 181904. https://doi.org/10.1063/1.2734517.
[23] O. Senkov, G. Wilks, D. Miracle, C. Chuang, P. Liaw, Refractory high-entropy alloys, Intermetallics. 18 (2010) 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014.
[24] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308–6317. https://doi.org/10.1016/j.actamat.2011.06.041.
[25] D. Miracle, B. Majumdar, K. Wertz, S. Gorsse, New strategies and tests to accelerate discovery and development of multi-principal element structural alloys, Scr. Mater. 127 (2017) 195–200. https://doi.org/10.1016/j.scriptamat.2016.08.001.
[26] D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one, Acta Mater. 100 (2015) 90–97. https://doi.org/10.1016/j.actamat.2015.08.050.
[27] S. Varalakshmi, M. Kamaraj, B. Murty, Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying, J. Alloys Compd. 460 (2008) 253–257. https://doi.org/10.1016/j.jallcom.2007.05.104.
[28] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat. 31 (2006) 633–648. https://doi.org/10.3166/ACSM.31.633-648.
[29] G. Laplanche, A. Kostka, O. Horst, G. Eggeler, E. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater. 118 (2016) 152–163. https://doi.org/10.1016/j.actamat.2016.07.038.
[30] A.S. Sharma, S. Yadav, K. Biswas, B. Basu, High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement, Mater. Sci. Eng: R: Rep. 131 (2018) 1–42. https://doi.org/10.1016/j.mser.2018.04.003.
[31] S. Mamnooni, E. Borhani, H. Heydari, Is synthesizing a Cu35Co35Ni20Ti5Al5 high-entropy alloy beyond the rules of solid-solution formation?, Synth. Sinter. 3 (2023) 226–233. https://doi.org/10.53063/synsint.2023.34177.
[32] A.L. Greer, Confusion by design, Nature. 366 (1993) 303–304. https://doi.org/10.1038/366303a0.
[33] S. Mamnooni, E. Borhani, M. Shahedi Asl, Nanocrystalline Ni25Co20Cu10Fe25Mn20 High-Entropy Alloys Prepared by Mechanical Alloying, JOM. (2024) 1–12. https://doi.org/10.1007/s11837-024-06474-w.
[34] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A. 36 (2005) 881–893. https://doi.org/10.1007/s11661-005-0283-0.
[35] Y. Zhou, Y. Zhang, Y. Wang, G. Chen, Microstructure and compressive properties of multicomponent Alx (TiVCrMnFeCoNiCu) 100− x high-entropy alloys, Mater. Sci. Eng: A. 454 (2007) 260–265. https://doi.org/10.1016/j.msea.2006.11.049.
[36] R. Sonkusare, A. Swain, M. Rahul, S. Samal, N. Gurao, et al., Establishing processing-microstructure-property paradigm in complex concentrated equiatomic CoCuFeMnNi alloy, Mater. Sci. Eng: A. 759 (2019) 415–429. https://doi.org/10.1016/j.msea.2019.04.096.
[37] R. Wang, K. Zhang, C. Davies, X. Wu, Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication, J. Alloys Compd. 694 (2017) 971–981. https://doi.org/10.1016/j.jallcom.2016.10.138.
[38] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, et al., Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A. 36 (2005) 1263–1271. https://doi.org/10.1007/s11661-005-0218-9.
[39] Y. Chen, T. Duval, U. Hung, J. Yeh, H. Shih, Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel, Corros. Sci. 47 (2005) 2257–2279. https://doi.org/10.1016/j.corsci.2004.11.008.
[40] G.D. Sathiaraj, P.P. Bhattacharjee, C.-W. Tsai, J.-W. Yeh, Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy, Intermetallics. 69 (2016) 1–9. https://doi.org/10.1016/j.intermet.2015.10.005.
[41] Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater. Sci. 102 (2019) 296–345. https://doi.org/10.1016/j.pmatsci.2018.12.003.
[42] S. Sinha, S. Nene, M. Frank, K. Liu, R. Mishra, et al., Microstructural evolution and deformation behavior of Ni-Si-and Co-Si-containing metastable high entropy alloys, Metall. Mater. Trans. A. 50 (2019) 179–190. https://doi.org/10.1007/s11661-018-4968-6.
[43] Z. Lyu, X. Fan, C. Lee, S.-Y. Wang, R. Feng, P.K. Liaw, Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review, J. Mater. Res. 33 (2018) 2998–3010. https://doi.org/10.1557/jmr.2018.273.
[44] Z. Wu, M.C. Troparevsky, Y. Gao, J.R. Morris, G.M. Stocks, H. Bei, Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys, Curr. Opin. Solid State Mater. Sci. 21 (2017) 267–284. https://doi.org/10.1016/j.cossms.2017.07.001.
[45] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001.
[46] M.-H. Tsai, J.-W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (2014) 107–123. https://doi.org/10.1080/21663831.2014.912690.
[47] T.-T. Shun, L.-Y. Chang, M.-H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys, Mater. Charact. 70 (2012) 63–67. https://doi.org/10.1016/j.matchar.2012.05.005.
[48] T.-T. Shun, L.-Y. Chang, M.-H. Shiu, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys, Mater. Sci. Eng: A. 556 (2012) 170–174. https://doi.org/10.1016/j.msea.2012.06.075.
[49] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511. https://doi.org/10.1016/j.actamat.2016.08.081.
[50] H. Heydari, M. Tajally, A. Habibolahzadeh, Computational analysis of novel AlLiMgTiX light high entropy alloys, Mater. Chem. Phys. 280 (2022) 125834. https://doi.org/10.1016/j.matchemphys.2022.125834.
[51] S. Guo, C. Ng, J. Lu, C. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505. https://doi.org/10.1063/1.3587228.
[52] G. Sheng, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci: Mater. Int. 21 (2011) 433–446. https://doi.org/10.1016/S1002-0071(12)60080-X.
[53] V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, N. Mukhopadhyay, Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy, J. Alloys Compd. 757 (2018) 87–97. https://doi.org/10.1016/j.jallcom.2018.05.057.
[54] Y. Dong, Y. Lu, L. Jiang, T. Wang, T. Li, Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys, Intermetallics. 52 (2014) 105–109. https://doi.org/10.1016/j.intermet.2014.04.001.
[55] S. Mamnooni, E. Borhani, M.S. Asl, Feasibility of using Ni25Co20Cu10Fe25Mn20 high entropy alloy as a novel sintering aid in ZrB2 ceramics, Ceram. Int. (2024). https://doi.org/10.1016/j.ceramint.2024.03.102.

Cited By

Crossref Google Scholar
Solid-solution phase formation rules for high entropy alloys: A thermodynamic perspective
Submitted
2023-11-29
Available online
2024-03-29
How to Cite
Mamnooni, S., Borhani, E., & Heydari, H. (2024). Solid-solution phase formation rules for high entropy alloys: A thermodynamic perspective. Synthesis and Sintering, 4(1), 65-78. https://doi.org/10.53063/synsint.2024.41192

Most read articles by the same author(s)