Characterization of nano-hydroxyapatite synthesized from eggshells for absorption of heavy metals

  • Leyla Karamzadeh 1
  • Esmaeil Salahi 1
  • Iman Mobasherpour 1
  • Armin Rajabi 2
  • Masomeh Javaheri 1
  • 1 Department of Ceramic, Materials and Energy Research Center, Karaj, Iran
  • 2 Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Malaysia

Abstract

This paper presents the synthesis of nano-hydroxyapatite using the deposition process on eggshells as a cost-effective starting material. This study investigates the potential of nano-hydroxyapatite as an effective adsorbent for heavy metals. Various analytical techniques, including X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Fourier transform infrared (FTIR), surface area measurement (BET), and scanning electron microscopy (SEM), were used to characterize its composition and microstructure. The main objective of this study is to evaluate the suitability of synthesized hydroxyapatite as a heavy metal adsorbent in aqueous solutions. The attained results showed that hydroxyapatite with particle size in the range of nanometers and a specific area of 150 m2/g, and the necessary properties for absorption, was successfully processed. The results showed that the prepared samples had a uniform mesopore distribution between 2 to 3 nm and an explicit size of 9 nm.

Downloads

Download data is not yet available.
Keywords: Nano-hydroxyapatite, Eggshells, Synthesis, Adsorbent, Mesopores

References

[1] H. Ben Slama, A. Chenari Bouket, Z. Pourhassan, F.N. Alenezi, A. Silini, et al., Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods, Appl. Sci. 11 (2021) 6255. https://doi.org/10.3390/app11146255.
[2] A.J. Bora, R.K. Dutta, Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH, J. Water Process Eng. 31 (2019) 100839. https://doi.org/10.1016/j.jwpe.2019.100839.
[3] A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, et al., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxicol. Environ. Saf. 148 (2018) 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034.
[4] J. Gardeatorresdey, J. Peraltavidea, G. Delarosa, J. Parsons, Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy, Coord. Chem. Rev. 249 (2005) 1797–1810. https://doi.org/10.1016/j.ccr.2005.01.001.
[5] S.M. Wong, M.Z.A. Zulkifli, D. Nordin, Y.H. Teow, Synthesis of cellulose/nano-hydroxyapatite composite hydrogel absorbent for removal of heavy metal ions from palm oil mill effluents, J. Polym. Environ. 29 (2021) 4106–4119. https://doi.org/10.1007/s10924-021-02183-6.
[6] M. Breida, S. Alami Younssi, A. Bouazizi, B. Achiou, M. Ouammou, M. El Rhazi, Nitrate removal from aqueous solutions by γ-Al2O3 ultrafiltration membranes, Heliyon. 4 (2018) e00498. https://doi.org/10.1016/j.heliyon.2017.e00498.
[7] S. Hube, M. Eskafi, K.F. Hrafnkelsdóttir, B. Bjarnadóttir, M.Á. Bjarnadóttir, et al., Direct membrane filtration for wastewater treatment and resource recovery: A review, Sci. Total Environ. 710 (2020) 136375. https://doi.org/10.1016/j.scitotenv.2019.136375.
[8] S.S. Lam, R.K. Liew, C.K. Cheng, N. Rasit, C.K. Ooi, et al., Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent, J. Environ. Manage. 213 (2018) 400–408. https://doi.org/10.1016/j.jenvman.2018.02.092.
[9] D.T.C. Nguyen, H.T.N. Le, T.T. Nguyen, T.T.T. Nguyen, R.K. Liew, et al., Engineering conversion of Asteraceae plants into biochars for exploring potential applications: A review, Sci. Total Environ. 797 (2021) 149195. https://doi.org/10.1016/j.scitotenv.2021.149195.
[10] P.N.Y. Yek, R.K. Liew, M.S. Osman, C.L. Lee, J.H. Chuah, et al., Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon, J. Environ. Manage. 236 (2019) 245–253. https://doi.org/10.1016/j.jenvman.2019.01.010.
[11] J.-B. Tarkwa, N. Oturan, E. Acayanka, S. Laminsi, M.A. Oturan, Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism, Environ. Chem. Lett. 17 (2019) 473–479. https://doi.org/10.1007/s10311-018-0773-0.
[12] S. Pan, J. Shen, Z. Deng, X. Zhang, B. Pan, Metastable nano-zirconium phosphate inside gel-type ion exchanger for enhanced removal of heavy metals, J. Hazard. Mater. 423 (2022) 127158. https://doi.org/10.1016/j.jhazmat.2021.127158.
[13] Z.-J. Fu, S.-K. Jiang, X.-Y. Chao, C.-X. Zhang, Q. Shi, et al., Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane, Water Res. 222 (2022) 118888. https://doi.org/10.1016/j.watres.2022.118888.
[14] M.C. Benalia, L. Youcef, M.G. Bouaziz, S. Achour, H. Menasra, Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization, Arab. J. Sci. Eng. 47 (2022) 5587–5599. https://doi.org/10.1007/s13369-021-05525-7.
[15] A. Kumar, H.-W. Song, S. Mishra, W. Zhang, Y.-L. Zhang, et al., Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review, Chemosphere. 318 (2023) 137894. https://doi.org/10.1016/j.chemosphere.2023.137894.
[16] B. Karwowska, E. Sperczyńska, Organic matter and heavy metal ions removal from surface water in processes of oxidation with ozone, UV irradiation, coagulation and adsorption, Water. 14 (2022) 3763. https://doi.org/10.3390/w14223763.
[17] U.Y. Qazi, A. Ikhlaq, A. Akram, O.S. Rizvi, F. Javed, et al., Novel vertical flow wetland filtration combined with Co-zeotype material based catalytic ozonation process for the treatment of municipal wastewater, Water. 14 (2022) 3361. https://doi.org/10.3390/w14213361.
[18] M. Noman, M. Shahid, T. Ahmed, M.B.K. Niazi, S. Hussain, et al., Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents, Environ. Pollut. 257 (2020) 113514. https://doi.org/10.1016/j.envpol.2019.113514.
[19] S. Shaheen, Z. Saeed, A. Ahmad, M. Pervaiz, U. Younas, et al., Green synthesis of graphene-based metal nanocomposite for electro and photocatalytic activity; recent advancement and future prospective, Chemosphere. 311 (2023) 136982. https://doi.org/10.1016/j.chemosphere.2022.136982.
[20] S.J. Olusegun, N.D.S. Mohallem, Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles, Environ. Pollut. 260 (2020) 114019. https://doi.org/10.1016/j.envpol.2020.114019.
[21] A.N. Módenes, G. Bazarin, C.E. Borba, P.P.P. Locatelli, F.P. Borsato, et al., Tetracycline adsorption by tilapia fish bone-based biochar: Mass transfer assessment and fixed-bed data prediction by hybrid statistical-phenomenological modeling, J. Clean. Prod. 279 (2021) 123775. https://doi.org/10.1016/j.jclepro.2020.123775.
[22] H. Wang, L. Shan, Q. Lv, S. Cai, G. Quan, J. Yan, Production of hierarchically porous carbon from natural biomass waste for efficient organic contaminants adsorption, J. Clean. Prod. 263 (2020) 121352. https://doi.org/10.1016/j.jclepro.2020.121352.
[23] S. George, D. Mehta, V.K. Saharan, Application of hydroxyapatite and its modified forms as adsorbents for water defluoridation: an insight into process synthesis, Rev. Chem. Eng. 36 (2020) 369–400. https://doi.org/10.1515/revce-2017-0101.
[24] G. Ciobanu, M. Harja, L. Rusu, A.M. Mocanu, C. Luca, Acid Black 172 dye adsorption from aqueous solution by hydroxyapatite as low-cost adsorbent, Korean J. Chem. Eng. 31 (2014) 1021–1027. https://doi.org/10.1007/s11814-014-0040-4.
[25] D. Ghahremani, I. Mobasherpour, E. Salahi, M. Ebrahimi, S. Manafi, L. Keramatpour, Potential of nano crystalline calcium hydroxyapatite for Tin(II) removal from aqueous solutions: Equilibria and kinetic processes, Arab. J. Chem. 10 (2017) S461–S471. https://doi.org/10.1016/j.arabjc.2012.10.006.
[26] A. Ashokan, V. Rajendran, T.S. Sampath Kumar, G. Jayaraman, Eggshell derived hydroxyapatite microspheres for chromatographic applications by a novel dissolution - precipitation method, Ceram. Int. 47 (2021) 18575–18583. https://doi.org/10.1016/j.ceramint.2021.03.183.
[27] S. Sultana, M.S. Hossain, M. Mahmud, M. Bin Mobarak, M.H. Kabir, et al., UV-assisted synthesis of hydroxyapatite from eggshells at ambient temperature: cytotoxicity, drug delivery and bioactivity, RSC Adv. 11 (2021) 3686–3694. https://doi.org/10.1039/D0RA09673C.
[28] D. Shi, H. Tong, M. Lv, D. Luo, P. Wang, et al., Optimization of hydrothermal synthesis of hydroxyapatite from chicken eggshell waste for effective adsorption of aqueous Pb(II), Environ. Sci. Pollut. Res. 28 (2021) 58189–58205. https://doi.org/10.1007/s11356-021-14772-y.
[29] N.A.S. Mohd Pu’ad, J. Alipal, H.Z. Abdullah, M.I. Idris, T.C. Lee, Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method, Mater. Today Proc. 42 (2021) 172–177. https://doi.org/10.1016/j.matpr.2020.11.276.
[30] A. Laca, A. Laca, M. Díaz, Eggshell waste as catalyst: A review, J. Environ. Manage. 197 (2017) 351–359. https://doi.org/10.1016/j.jenvman.2017.03.088.
[31] V. Trakoolwannachai, P. Kheolamai, S. Ummartyotin, Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material, Compos. B: Eng. 173 (2019) 106974. https://doi.org/10.1016/j.compositesb.2019.106974.
[32] S.-C. Wu, H.-C. Hsu, H.-F. Wang, S.-P. Liou, W.-F. Ho, Synthesis and Characterization of Nano-Hydroxyapatite Obtained from Eggshell via the Hydrothermal Process and the Precipitation Method, Molecules. 28 (2023) 4926. https://doi.org/10.3390/molecules28134926.
[33] S.-W. Lee, S.-G. Kim, C. Balázsi, W.-S. Chae, H.-O. Lee, Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 113 (2012) 348–355. https://doi.org/10.1016/j.tripleo.2011.03.033.
[34] V. Amalia, M.G. Putra, E.P. Hadisantoso, F. S. Rizka, Y. Rohmatulloh, Synthesis of hydroxyapatite from chicken eggshells and its applications as adsorbent of cadmium(II) metal ion in aqueous solution, AIP Conf. Proc. 2646 (2023) 030003. https://doi.org/10.1063/5.0113179.
[35] I.A. Rahman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, C.K. Chee, Size-dependent physicochemical and optical properties of silica nanoparticles, Mater. Chem. Phys. 114 (2009) 328–332. https://doi.org/10.1016/j.matchemphys.2008.09.068.
[36] A.-R. Ibrahim, X. Li, Y. Zhou, Y. Huang, W. Chen, et al., Synthesis of spongy-like mesoporous hydroxyapatite from raw waste eggshells for enhanced dissolution of ibuprofen loaded via supercritical CO2, Int. J. Mol. Sci. 16 (2015) 7960–7975. https://doi.org/10.3390/ijms16047960.
[37] A.-R. Ibrahim, Y. Zhou, X. Li, L. Chen, Y. Hong, et al., Synthesis of rod-like hydroxyapatite with high surface area and pore volume from eggshells for effective adsorption of aqueous Pb(II), Mater. Res. Bull. 62 (2015) 132–141. https://doi.org/10.1016/j.materresbull.2014.11.023.
[38] J. Kamieniak, A.M. Doyle, P.J. Kelly, C.E. Banks, Novel synthesis of mesoporous hydroxyapatite using carbon nanorods as a hard-template, Ceram. Int. 43 (2017) 5412–5416. https://doi.org/10.1016/j.ceramint.2017.01.030.
[39] G.S. Kumar, G. Karunakaran, E.K. Girija, E. Kolesnikov, N. Van Minh, et al., Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method, Ceram. Int. 44 (2018) 11257–11264. https://doi.org/10.1016/j.ceramint.2018.03.170.
[40] H. Zhou, Y. Yang, M. Yang, W. Wang, Y. Bi, Synthesis of mesoporous hydroxyapatite via a vitamin C templating hydrothermal route, Mater. Lett. 218 (2018) 52–55. https://doi.org/10.1016/j.matlet.2018.01.154.
[41] C.-W. Chen, R.E. Riman, K.S. TenHuisen, K. Brown, Mechanochemical–hydrothermal synthesis of hydroxyapatite from nonionic surfactant emulsion precursors, J. Cryst. Growth. 270 (2004) 615–623. https://doi.org/10.1016/j.jcrysgro.2004.06.051.
[42] M.M.M.G.P.G. Mantilaka, H.M.T.G.A. Pitawala, R.M.G. Rajapakse, D.G.G.P. Karunaratne, K.G. Upul Wijayantha, Formation of hollow bone-like morphology of calcium carbonate on surfactant/polymer templates, J. Cryst. Growth. 392 (2014) 52–59. https://doi.org/10.1016/j.jcrysgro.2014.02.007.
[43] Y. Hashimoto, T. Taki, T. Sato, Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions, J. Environ. Manage. 90 (2009) 1782–1789. https://doi.org/10.1016/j.jenvman.2008.11.004.

Cited By

Crossref Google Scholar
Characterization of nano-hydroxyapatite synthesized from eggshells for absorption of heavy metals
Submitted
2023-11-11
Available online
2023-12-17
How to Cite
Karamzadeh, L., Salahi, E., Mobasherpour, I., Rajabi, A., & Javaheri, M. (2023). Characterization of nano-hydroxyapatite synthesized from eggshells for absorption of heavy metals. Synthesis and Sintering, 3(4), 241-247. https://doi.org/10.53063/synsint.2023.34190