Comparing the effects of different sintering aids on spark plasma sintering of SiC ceramics

  • A. Faeghinia 1
  • 1 Ceramics Department, Materials and Energy Research Center (MERC), P.O. Box 31779-83634, Karaj, Iran

Abstract

In the present work, to improve the mechanical properties of silicon carbide different sintering aids were used. 2.5 wt% B4C, 2.5 wt% AlN, and TiC in the 5 to 7 wt% range were selected to manufacture the SiC-based sample via spark plasma sintering at 1700 °C. The results show that the use of 2.5 wt% B4C-2.5 wt% AlN additives increases the strength (1206 MPa) of the composite through the compressive stress created in the grain boundaries and decreases its fracture toughness (5.13 MPa.m1/2). But in the case of TiC-doped SiC, the toughness (7.09 MPa.m1/2) and density (3.18 g/cm3) of the sample increases compared to the pure SiC sample.

Downloads

Download data is not yet available.
Keywords: Silicon carbide, Sintering aid, Spark plasma sintering, Mechanical properties

References

[1] S. Sun, J. Yuan, W. Guo, X. Duan, D. Jia, H. Lin, Thickness effects on the sinterability, microstructure, and nanohardness of SiC‐based ceramics consolidated by spark plasma sintering, J. Am. Ceram. Soc. 107 (2024) 777–784. https://doi.org/10.1111/jace.19499.
[2] S. Singh, R. Bhaskar, K.B. Narayanan, A. Kumar, K. Debnath, Development of silicon carbide (SiC)-based composites as microwave-absorbing materials (MAMs): a review, J. Eur. Ceram. Soc. (2024). https://doi.org/10.1016/j.jeurceramsoc.2024.05.032.
[3] J. Liu, Y. Li, C. Cheng, W. Li, X. Qin, Effect of temperature on the structure and mechanical properties of SiC–TiB2 composite ceramics by solid-phase spark plasma sintering, Ceram. Int. 48 (2022) 23151–23158. https://doi.org/10.1016/j.ceramint.2022.04.296.
[4] J. Shao, M. Li, K. Chang, Y. Huang, D. Ren, et al., Fabrication and characterization of SPS sintered SiC-based ceramic from Y3Si2C2-coated SiC powders, J. Eur. Ceram. Soc. 38 (2018) 4833–4841. https://doi.org/10.1016/j.jeurceramsoc.2018.07.054.
[5] E. Akbari, M. Ghassemi Kakroudi, V. Shahedifar, H. Ghiasi, The influence of different SiC amounts on the microstructure, densification, and mechanical properties of hot‐pressed Al 2 O 3 ‐SiC composites, Int. J. Appl. Ceram. Technol. 17 (2020) 491–500. https://doi.org/10.1111/ijac.13406.
[6] Z. Zhang, C. Xu, X. Du, Z. Li, J. Wang, et al., Synthesis mechanism and mechanical properties of TiB2–SiC composites fabricated with the B4C–TiC–Si system by reactive hot pressing, J. Alloys Compd. 619 (2015) 26–30. https://doi.org/10.1016/j.jallcom.2014.09.030.
[7] D. Ahmoye, D. Bucevac, V.D. Krstic, Mechanical properties of reaction sintered SiC-TiC composite, Ceram. Int. 44 (2018) 14401–14407. https://doi.org/10.1016/j.ceramint.2018.05.050.
[8] S. Prochazka, R.M. Scanlan, Effect of boron and carbon on sintering of SiC, J. Am. Ceram. Soc. 58 (1975) 72–72. https://doi.org/10.1111/j.1151-2916.1975.tb18990.x.
[9] P. Sahani, S.K. Karak, B. Mishra, D. Chakravarty, D. Chaira, Effect of Al addition on SiC–B4C cermet prepared by pressureless sintering and spark plasma sintering methods, Int. J. Refract. Met. Hard Mater. 57 (2016) 31–41. https://doi.org/10.1016/j.ijrmhm.2016.02.005.
[10] M. khodaei, O. Yaghobizadeh, S.H. Naghavi Alhosseini, S. Esmaeeli, S.R. Mousavi, The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: A review, J. Eur. Ceram. Soc. 39 (2019) 2215–2231. https://doi.org/10.1016/j.jeurceramsoc.2019.02.042.
[11] J. Li, X. Ren, Y. Zhang, H. Hou, S. Hu, Rapid refinement of SiC particles by a novel milling process with balls of multiple sizes, J. Mater. Res. Technol. 9 (2020) 8667–8674. https://doi.org/10.1016/j.jmrt.2020.05.090.
[12] A. Zangvil, R. Ruh, Phase relationships in the silicon carbide‐aluminum nitride system, J. Am. Ceram. Soc. 71 (1988) 884–890. https://doi.org/10.1111/j.1151-2916.1988.tb07541.x.
[13] G.H. Wroblewska, E. Nold, F. Thümmler, The role of boron and carbon additions on the microstructural development of pressureless sintered silicon carbide, Ceram. Int. 16 (1990) 201–209. https://doi.org/10.1016/0272-8842(90)90067-P.
[14] A. Maître, A. Vande Put, J.P. Laval, S. Valette, G. Trolliard, Role of boron on the spark plasma sintering of an α-SiC powder, J. Eur. Ceram. Soc. 28 (2008) 1881–1890. https://doi.org/10.1016/j.jeurceramsoc.2008.01.002.
[15] N. Tamari, T. Tanaka, K. Tanaka, I. Kondoh, M. Kawahara, M. Tokita, Effect of spark plasma sintering on densification and mechanical properties of silicon carbide, J. Ceram. Soc. Japan. 103 (1995) 740–742. https://doi.org/10.2109/jcersj.103.740.
[16] Y. Zhou, K. Hirao, M. Toriyama, H. Tanaka, Very rapid densification of nanometer silicon carbide powder by pulse Electric current sintering, J. Am. Ceram. Soc. 83 (2000) 654–656. https://doi.org/10.1111/j.1151-2916.2000.tb01249.x.
[17] R.A. Alliegro, L.B. Coffin, J.R. Tinklepaugh, Pressure‐sintered silicon carbide, J. Am. Ceram. Soc. 39 (1956) 386–389. https://doi.org/10.1111/j.1151-2916.1956.tb15609.x.
[18] D.H. Stutz, S. Prochazka, J. Lorenz, Sintering and microstructure formation of β‐silicon carbide, J. Am. Ceram. Soc. 68 (1985) 479–482. https://doi.org/10.1111/j.1151-2916.1985.tb15812.x.
[19] M.S. Datta, A.K. Bandyopadhyay, B. Chaudhuri, Sintering of nano crystalline α silicon carbide by doping with boron carbide, Bull. Mater. Sci. 25 (2002) 181–189. https://doi.org/10.1007/BF02711151.
[20] A.G. Evans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc. 59 (1976) 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x.
[21] K. Raju, D.-H. Yoon, Sintering additives for SiC based on the reactivity: A review, Ceram. Int. 42 (2016) 17947–17962. https://doi.org/10.1016/j.ceramint.2016.09.022.
[22] A. Malinge, A. Coupé, Y. Le Petitcorps, R. Pailler, Pressureless sintering of beta silicon carbide nanoparticles, J. Eur. Ceram. Soc. 32 (2012) 4393–4400. https://doi.org/10.1016/j.jeurceramsoc.2012.06.008.
[23] D. Bucevac, S. Boskovic, B. Matovic, V. Krstic, Toughening of SiC matrix with in-situ created TiB2 particles, Ceram. Int. 36 (2010) 2181–2188. https://doi.org/10.1016/j.ceramint.2010.06.001.
[24] D. Jain, K.M. Reddy, A. Mukhopadhyay, B. Basu, Achieving uniform microstructure and superior mechanical properties in ultrafine grained TiB2–TiSi2 composites using innovative multi stage spark plasma sintering, Mater. Sci. Eng. A. 528 (2010) 200–207. https://doi.org/10.1016/j.msea.2010.09.022.
[25] W.J. MoberlyChan, J.J. Cao, C.J. Gilbert, R.O. Ritchie, L.C. De Jonghe, The cubic-to-hexagonal transformation to toughen SiC, Ceram. Microstruct., Springer US, Boston, MA. (1998) 177–190. https://doi.org/10.1007/978-1-4615-5393-9_15.
[26] A. Laref, S. Laref, Opto-electronic study of SiC polytypes: simulation with semi-empirical tight-binding approach, Silicon Carbide - Mater. Process. Appl. Electron. Devices, InTech. (2011). https://doi.org/10.5772/24124.
[27] S. Adachi, Hexagonal silicon carbide (2H-, 4H-, and 6H-SiC), Opt. Constants Cryst. Amorph. Semicond., Springer US, Boston, MA. (1999) 73–90. https://doi.org/10.1007/978-1-4615-5247-5_7.
[28] Z. Wang, F. Gao, N. Li, N. Qu, H. Gou, X. Hao, Density functional theory study of hexagonal carbon phases, J. Phys. Condens. Matter. 21 (2009) 235401. https://doi.org/10.1088/0953-8984/21/23/235401.
[29] C.S. Smith, Patent: Trans. AIME 175 (1948).
[30] J.B. Ferguson, H.F. Lopez, P.K. Rohatgi, K. Cho, C.-S. Kim, Impact of volume fraction and size of reinforcement particles on the grain size in metal–matrix micro and nanocomposites, Metall. Mater. Trans. A. 45 (2014) 4055–4061. https://doi.org/10.1007/s11661-014-2358-2.
[31] T. Tani, Processing, microstructure and properties of in-situ reinforced SiC matrix composites, Compos. Part A Appl. Sci. Manuf. 30 (1999) 419–423. https://doi.org/10.1016/S1359-835X(98)00129-8.
[32] W. Wang, J. Lian, H. Ru, Pressureless sintered SiC matrix toughened by in situ synthesized TiB2: Process conditions and fracture toughness, Ceram. Int. 38 (2012) 2079–2085. https://doi.org/10.1016/j.ceramint.2011.10.045.
[33] I. Sulima, P. Putyra, P. Hyjek, T. Tokarski, Effect of SPS parameters on densification and properties of steel matrix composites, Adv. Powder Technol. 26 (2015) 1152–1161. https://doi.org/10.1016/j.apt.2015.05.010.
[34] A. Kubiak, J. Rogowski, Boron and aluminum diffusion into 4H–SiC substrates, Mater. Sci. Eng. B. 176 (2011) 297–300. https://doi.org/10.1016/j.mseb.2010.06.022.
[35] W. Zhang, An overview of the synthesis of silicon carbide–boron carbide composite powders, Nanotechnol. Rev. 12 (2023) 20220571. https://doi.org/10.1515/ntrev-2022-0571.
[36] Y. Luo, S. Li, W. Pan, L. Li, Fabrication and mechanical evaluation of SiC–TiC nanocomposites by SPS, Mater. Lett. 58 (2004) 150–153. https://doi.org/10.1016/S0167-577X(03)00434-8.
[37] L. Liang, B. Wei, M. Zhang, W. Fang, L. Chen, Y. Wang, Novel TiC-based ceramic with enhanced mechanical properties by reaction hot-pressing at low temperature, J. Mater. Res. Technol. 24 (2023) 2129–2143. https://doi.org/10.1016/j.jmrt.2023.03.111.
[38] M. Yi, X. Zhang, G. Liu, B. Wang, H. Shao, G. Qiao, Comparative investigation on microstructures and mechanical properties of (TiB + TiC)/Ti-6Al-4V composites from Ti-B4C-C and Ti-TiB2-TiC systems, Mater. Charact. 140 (2018) 281–289. https://doi.org/10.1016/j.matchar.2018.04.010.
[39] Y. Cai, L. Cheng, H. Yin, X. Yin, Y. Tian, et al., Preparation and mechanical properties of Ti3SiC2/SiC functionally graded materials, Ceram. Int. 43 (2017) 6648–6658. https://doi.org/10.1016/j.ceramint.2017.02.025.
[40] M. Sakkaki, M. Foroutani, P. Zare, Effects of die geometry and insulation on the energy and electrical parameters analyses of spark plasma sintered TiC ceramics, Synth. Sinter. 4 (2024) 4–16. https://doi.org/10.53063/synsint.2024.41172.
[41] S. Mohammad Bagheri, M. Naderi, M. Vajdi, F. Sadegh Moghanlou, A. Tarlani Beris, Numerical optimization of sample and die geometric parameters to increase the attainable temperature during spark plasma sintering of TiC ceramics, Synth. Sinter. 3 (2023) 213–225. https://doi.org/10.53063/synsint.2023.34179.
[42] D.H.A. Besisa, E.M.M. Ewais, Y.M.Z. Ahmed, F.I. Elhosiny, T. Fend, D. V. Kuznetsov, Investigation of microstructure and mechanical strength of SiC/AlN composites processed under different sintering atmospheres, J. Alloys Compd. 756 (2018) 175–181. https://doi.org/10.1016/j.jallcom.2018.05.020.

Cited By

Crossref Google Scholar
Comparing the effects of different sintering aids on spark plasma sintering of SiC ceramics
Submitted
2023-11-01
Available online
2024-06-13
How to Cite
Faeghinia, A. (2024). Comparing the effects of different sintering aids on spark plasma sintering of SiC ceramics. Synthesis and Sintering, 4(2), 79-86. https://doi.org/10.53063/synsint.2024.42187

Most read articles by the same author(s)