Oxidation response of ZrB2–SiC–ZrC composites prepared by spark plasma sintering

  • Mohsen Ghasilzadeh Jarvand 1
  • Zohre Balak 1
  • 1 Department of Materials Science and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract

Considering the importance and application of ultrahigh temperature ceramics in oxidizing environments, in this research, the effect of ZrC content and spark plasma sintering parameters (temperature, time and pressure) on the oxidation response of ZrB2–SiC composites has been investigated. After fabricating the ternary composite samples in different SPS conditions and with different amounts of ZrC, the post-sintering oxidation process was carried out in a box furnace at the temperature of 1400 °C. Increasing the time and temperature of the SPS process caused the decrease in the oxidation resistance of the samples. The reason for such observations was attributed to the extreme growth of grains with increasing the temperature and time of the sintering process despite the better densification of the samples. This research did not reach a clear result about the effect of SPS pressure on composites oxidation behavior. Increasing the amount of ZrC also did not have a positive effect on the oxidation resistance of the samples because this phase itself undergoes oxidation at low temperatures.

Downloads

Download data is not yet available.
Keywords: Ultrahigh temperature ceramics, Oxidation behavior, Spark plasma sintering, Processing parameters, Additive content

References

[1] D. Ni, Y. Cheng, J. Zhang, J.-X. Liu, J. Zou, et al., Advances in ultra-high temperature ceramics, composites, and coatings, J. Adv. Ceram. 11 (2022) 1–56. https://doi.org/10.1007/s40145-021-0550-6.
[2] R. Savino, M. De Stefano Fumo, D. Paterna, M. Serpico, Aerothermodynamic study of UHTC-based thermal protection systems, Aerosp. Sci. Technol. 9 (2005) 151–160. https://doi.org/10.1016/j.ast.2004.12.003.
[3] X. Jin, R. He, X. Zhang, P. Hu, Ablation behavior of ZrB2–SiC sharp leading edges, J. Alloys Compd. 566 (2013) 125–130. https://doi.org/10.1016/j.jallcom.2013.03.067.
[4] H. Istgaldi, M. Mehrabian, F. Kazemi, B. Nayebi, Reactive spark plasma sintering of ZrB2-TiC composites: Role of nano-sized carbon black additive, Synth. Sinter. 2 (2022) 67–77. https://doi.org/10.53063/synsint.2022.22107.
[5] T. Cheng, W. Li, W. Lu, Y. Shi, Heat Transfer and Failure Mode Analyses of Ultrahigh-Temperature Ceramic Thermal Protection System of Hypersonic Vehicles, Math. Probl. Eng. 2014 (2014) 412718. https://doi.org/10.1155/2014/412718.
[6] I.G. Talmy, J.A. Zaykoski, M.M. Opeka, High-temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3, and TaSi2, J. Am. Ceram. Soc. 91 (2008) 2250–2257. https://doi.org/10.1111/j.1551-2916.2008.02420.x.
[7] S. Haghgooye Shafagh, S. Jafargholinejad, S. Javadian, Beneficial effect of low BN additive on densification and mechanical properties of hot-pressed ZrB2–SiC composites, Synth. Sinter. 1 (2021) 69–75. https://doi.org/10.53063/synsint.2021.1224.
[8] H. Sahasrabudhe, A. Bandyopadhyay, Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites, JOM. 68 (2016) 822–830. https://doi.org/10.1007/s11837-015-1777-x.
[9] Z. Bahararjmand, M.A. Khalilzadeh, F. Saberi-Movahed, T.H. Lee, J. Wang, et al., Role of Si3N4 on microstructure and hardness of hot-pressed ZrB2−SiC composites, Synth. Sinter. 1 (2021) 34–40. https://doi.org/10.53063/synsint.2021.1113.
[10] M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, S.J. Causey, Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds, J. Eur. Ceram. Soc. 19 (1999) 2405–2414. https://doi.org/10.1016/S0955-2219(99)00129-6.
[11] Z. Wu, Z. Wang, G. Shi, J. Sheng, Effect of surface oxidation on thermal shock resistance of the ZrB2–SiC–ZrC ceramic, Compos. Sci. Technol. 71 (2011) 1501–1506. https://doi.org/10.1016/j.compscitech.2011.06.008.
[12] G. Shi, Z. Wang, X. Sun, Z. Wu, Effect of the surface oxidation on the flexural strength of the ZrB2–SiC–ZrC ceramic, Mater. Sci. Eng. A. 546 (2012) 162–168. https://doi.org/10.1016/j.msea.2012.03.044.
[13] Z. Wang, Z. Wu, G. Shi, The oxidation behaviors of a ZrB2–SiC–ZrC ceramic, Solid State Sci. 13 (2011) 534–538. https://doi.org/10.1016/j.solidstatesciences.2010.12.022.
[14] Y. Arai, R. Inoue, H. Tanaka, Y. Kogo, K. Goto, In-situ observation of oxidation behavior in ZrB2–SiC–ZrC ternary composites up to 1500°C using high-temperature observation system, J. Ceram. Soc. Jpn. 124 (2016) 890–897. https://doi.org/10.2109/jcersj2.16043.
[15] Y. Kubota, H. Tanaka, Y. Arai, R. Inoue, Y. Kogo, K. Goto, Oxidation behavior of ZrB2-SiC-ZrC at 1700 °C, J. Eur. Ceram. Soc. 37 (2017) 1187–1194. https://doi.org/10.1016/j.jeurceramsoc.2016.10.034.
[16] Y. Kubota, M. Yano, R. Inoue, Y. Kogo, K. Goto, Oxidation behavior of ZrB2-SiC-ZrC in oxygen-hydrogen torch environment, J. Eur. Ceram. Soc. 38 (2018) 1095–1102. https://doi.org/10.1016/j.jeurceramsoc.2017.11.024.
[17] R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, K. Goto, Initial oxidation behaviors of ZrB2-SiC-ZrC ternary composites above 2000 °C, J. Alloys Compd. 731 (2018) 310–317. https://doi.org/10.1016/j.jallcom.2017.10.034.
[18] E. Wang, X. Hou, Y. Chen, Z. Fang, J. Chen, et al., Progress in cognition of gas-solid interface reaction for non-oxide ceramics at high temperature, Crit. Rev. Solid State Mater. Sci. 46 (2021) 218–250. https://doi.org/10.1080/10408436.2020.1713047.
[19] A.N. Astapov, B.E. Zhestkov, Y.S. Pogozhev, M.V. Zinovyeva, A.Y. Potanin, E.A. Levashov, The oxidation resistance of the heterophase ZrSi2-MoSi2-ZrB2 powders – Derived coatings, Corros. Sci. 189 (2021) 109587. https://doi.org/10.1016/j.corsci.2021.109587.
[20] E.P. Simonenko, N.P. Simonenko, A.F. Kolesnikov, A.V. Chaplygin, A.S. Lysenkov, et al., Modification of HfB2–30% SiC UHTC with Graphene (1 vol %) and Its Influence on the Behavior in a Supersonic Air Jet, Russ. J. Inorg. Chem. 66 (2021) 1405–1415. https://doi.org/10.1134/S003602362109014X.
[21] R. Ghelich, R. Mehdinavaz Aghdam, M.R. Jahannama, Elevated temperature resistance of SiC-carbon/phenolic nanocomposites reinforced with zirconium diboride nanofibers, J. Compos. Mater. 52 (2018) 1239–1251. https://doi.org/10.1177/0021998317723447.
[22] E.M. Alosime, M.S. Alsuhybani, M.S. Almeataq, The oxidation behavior of ZrB2-SiC ceramic composites fabricated by plasma spray process, Materials (Basel). 14 (2021) 392. https://doi.org/10.3390/ma14020392.
[23] X. Li, A. Ermakov, V. Amarasinghe, E. Garfunkel, T. Gustafsson, L.C. Feldman, Oxidation induced stress in SiO2/SiC structures, Appl. Phys. Lett. 110 (2017) 141604. https://doi.org/10.1063/1.4979544.
[24] D. Seo, M. Sayar, K. Ogawa, SiO2 and MoSi2 formation on Inconel 625 surface via SiC coating deposited by cold spray, Surf. Coat. Technol. 206 (2012) 2851–2858. https://doi.org/10.1016/j.surfcoat.2011.12.010.
[25] S. Shimada, T. Ishil, Oxidation kinetics of zirconium carbide at relatively low temperatures, J. Am. Ceram. Soc. 73 (1990) 2804–2808. https://doi.org/10.1111/j.1151-2916.1990.tb06678.x.
[26] G. Ouyang, P.K. Ray, M.J. Kramer, M. Akinc, High‐temperature oxidation of ZrB2–SiC–AlN composites at 1600 °C, J. Am. Ceram. Soc. 99 (2016) 808–813. https://doi.org/10.1111/jace.14039.
[27] M. Sakvand, M. Shojaie-Bahaabad, L. Nikzad, Effect of graphite addition on the microstructure, mechanical properties and oxidation resistance of HfB2-SiC composites prepared by the SPS method, Int. J. Eng. 35 (2022) 1867–1876. https://doi.org/10.5829/IJE.2022.35.10A.06.
[28] N. Petry, A.S. Ulrich, B. Feng, E. Ionescu, M.C. Galetz, M. Lepple, Oxidation resistance of ZrB2‐based monoliths using polymer‐derived Si(Zr,B)CN as sintering aid, J. Am. Ceram. Soc. 105 (2022) 5380–5394. https://doi.org/10.1111/jace.18473.
[29] M. Mallik, K.K. Ray, R. Mitra, Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites, J. Eur. Ceram. Soc. 31 (2011) 199–215. https://doi.org/10.1016/j.jeurceramsoc.2010.08.018.
[30] A. Buyakov, V. Shmakov, S. Buyakova, Dual composite architectonics: Fracture toughness and self-healing of ZrB2–SiC–TaB2 based UHTC, Ceram. Int. 49 (2022) 13648–13656. https://doi.org/10.1016/j.ceramint.2022.12.241.
[31] S. Torabi, Z. Valefi, N. Ehsani, The effect of the SiC content on the high duration erosion behavior of SiC/ZrB2–SiC/ZrB2 functionally gradient coating produced by shielding shrouded plasma spray method, Ceram. Int. 48 (2022) 1699–1714. https://doi.org/10.1016/j.ceramint.2021.09.249.
[32] E. Dodi, Z. Balak, H. Kafashan, Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites, Synth. Sinter. 2 (2022) 31–37. https://doi.org/10.53063/synsint.2022.21111.
[33] L. He, Y. Sun, Q. Meng, B. Liu, J. Wu, X. Zhang, Enhanced oxidation properties of ZrB2–SiC composite with short carbon fibers at 1600 °C, Ceram. Int. 47 (2021) 15483–15490. https://doi.org/10.1016/j.ceramint.2021.02.114.
[34] S.M. Arab, M. Shahedi Asl, M. Ghassemi Kakroudi, B. Salahimehr, K. Mahmoodipour, On the oxidation behavior of ZrB2–SiC–VC composites, Int. J. Appl. Ceram. Technol. 18 (2021) 2306–2313. https://doi.org/10.1111/ijac.13858.
[35] M. Dehghanzadeh Alvari, M. Ghassemi Kakroudi, B. Salahimehr, R. Alaghmandfard, M. Shahedi Asl, M. Mohammadi, Microstructure, mechanical properties, and oxidation behavior of hot-pressed ZrB2–SiC–B4C composites, Ceram. Int. 47 (2021) 9627–9634. https://doi.org/10.1016/j.ceramint.2020.12.101.
[36] S.A.A. Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Ablation resistance of graphite coated by spark plasma sintered ZrB2–SiC based composites, Bol. Soc. Esp. Cerám. Vidr. 61 (2022) 604–610. https://doi.org/10.1016/j.bsecv.2021.05.004.
[37] W.G. Fahrenholtz, Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region, J. Am. Ceram. Soc. 90 (2007) 143–148. https://doi.org/10.1111/j.1551-2916.2006.01329.x.
[38] X.-H. Zhang, P. Hu, J.-C. Han, Structure evolution of ZrB2–SiC during the oxidation in air, J. Mater. Res. 23 (2008) 1961–1972. https://doi.org/10.1557/JMR.2008.0251.
[39] N. Li, P. Hu, X. Zhang, Y. Liu, W. Han, Effects of oxygen partial pressure and atomic oxygen on the microstructure of oxide scale of ZrB2–SiC composites at 1500°C, Corros. Sci. 73 (2013) 44–53. https://doi.org/10.1016/j.corsci.2013.03.023.
[40] D. Sciti, M. Brach, A. Bellosi, Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite, J. Mater. Res. 20 (2005) 922–930. https://doi.org/10.1557/JMR.2005.0111.
[41] E.S. Dedova, A.G. Burlachenko, Y.A. Mirovoy, A.S. Buyakov, S.P. Buyakova, Oxidation behavior of ZrB2–ZrC–SiC–ZrO2 ceramics, AIP Conf. Proc. 2310 (2020) 020071. https://doi.org/10.1063/5.0034147.

Cited By

Crossref Google Scholar
Oxidation response of ZrB2–SiC–ZrC composites prepared by spark plasma sintering
Submitted
2022-12-04
Published
2022-12-31
How to Cite
Ghasilzadeh Jarvand, M., & Balak, Z. (2022). Oxidation response of ZrB2–SiC–ZrC composites prepared by spark plasma sintering. Synthesis and Sintering, 2(4), 191-197. https://doi.org/10.53063/synsint.2022.24134

Most read articles by the same author(s)