Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites

  • Ebrahim Dodi 1
  • Zohre Balak 1
  • Hosein Kafashan 1
  • 1 Department of Materials Science and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract

Understanding the behavior of ultra-high temperature ceramics (UHTCs) against oxidation is of particular importance in high-temperature applications. In this study, ZrB2–SiC–HfB2 UHTC composites were fabricated by spark plasma sintering (SPS) method at different temperatures, times, and pressures to investigate the effects of sintering process variables on their oxidation resistance. Before the oxidation tests, the as-sintered samples contained ZrB2 and SiC phases with (Zr,Hf)B2 solid solution. The samples were subjected to oxidative conditions at 1400 °C and their relative mass changes were measured as a function of oxidation time up to 20 hours. FESEM and EDS equipment were used for microstructural and elemental analyzes of cross-sections of different oxide layers. Due to the oxygen diffusion, ZrO2 and SiO2 phases appeared alongside (Zr,Hf)O2 in the surface layers. After identifying the several oxides and SiC-depleted layers in the oxidation-affected zone, a schematic model for the arrangement of such layers was proposed.

Downloads

Download data is not yet available.
Keywords: UHTCs, ZrB2–SiC–HfB2, Oxidation resistance, SPS, Oxide layers, SiC-depleted area

References

[1] A. Rezapour, Z. Balak, Fracture toughness and hardness investigation in ZrB2–SiC–ZrC composite, Mater. Chem. Phys. 241 (2020) 122284. https://doi.org/10.1016/j.matchemphys.2019.122284.
[2] Y. Zhang, A. Lunghi, S. Sanvito, Pushing the limits of atomistic simulations towards ultra-high temperature: A machine-learning force field for ZrB2, Acta Mater. 186 (2020) 467–474. https://doi.org/10.1016/j.actamat.2019.12.060.
[3] K. Kavakeb, Z. Balak, H. Kafashan, Densification and flexural strength of ZrB2–30 vol% SiC with different amount of HfB2, Int. J. Refract. Met. Hard Mater. 83 (2019) 104971. https://doi.org/10.1016/j.ijrmhm.2019.104971.
[4] F. Monteverde, A. Bellosi, S. Guicciardi, Processing and properties of zirconium diboride-based composites, J. Eur. Ceram. Soc. 22 (2002) 279–288. https://doi.org/10.1016/S0955-2219(01)00284-9.
[5] Y. Liu, Y. Zu, H. Tian, J. Dai, J. Sha, Microstructure and mechanical properties of continuous carbon fiber-reinforced ZrB2-based composites via combined electrophoretic deposition and sintering, J. Eur. Ceram. Soc. 41 (2021) 1779–1787. https://doi.org/10.1016/j.jeurceramsoc.2020.10.044.
[6] B. Feng, A. Fetzer, A.S. Ulrich, M. Christian Galetz, H. Kleebe, E. Ionescu, Monolithic ZrB2based UHTC s using polymer‐derived Si(Zr,B)CN as sintering aid, J. Am. Ceram. Soc. 105 (2022) 99–110. https://doi.org/10.1111/jace.18038.
[7] S.D. Oguntuyi, O.T. Johnson, M.B. Shongwe, Spark plasma sintering of ceramic matrix composite of ZrB2 and TiB2: microstructure, densification, and mechanical properties-A review, Met. Mater. Int. 27 (2021) 2146–2159. https://doi.org/10.1007/s12540-020-00874-8.
[8] M. Vajdi, S. Mohammad Bagheri, F. Sadegh Moghanlou, A. Shams Khorrami, Numerical investigation of solar collectors as a potential source for sintering of ZrB2, Synth. Sinter. 1 (2021) 76–84. https://doi.org/10.53063/synsint.2021.128.
[9] S. Mandal, S. Chakraborty, P. Dey, A study of mechanical properties and WEDM machinability of spark plasma sintered ZrB2–B4C ceramic composites, Micron. 153 (2022) 103198. https://doi.org/10.1016/j.micron.2021.103198.
[10] O. Popov, J. Vleugels, E. Zeynalov, V. Vishnyakov, Reactive hot pressing route for dense ZrB2-SiC and ZrB2-SiC-CNT ultra-high temperature ceramics, J. Eur. Ceram. Soc. 40 (2020) 5012–5019. https://doi.org/10.1016/j.jeurceramsoc.2020.07.039.
[11] D. Zhang, P. Hu, S. Dong, C. Fang, J. Feng, X. Zhang, Microstructures and mechanical properties of Cf/ZrB2-SiC composite fabricated by nano slurry brushing combined with low-temperature hot pressing, J. Alloys Compd. 789 (2019) 755–761. https://doi.org/10.1016/j.jallcom.2019.03.147.
[12] J. Watts, G. Hilmas, W.G. Fahrenholtz, Mechanical Characterization of ZrB2–SiC Composites with Varying SiC Particle Sizes, J. Am. Ceram. Soc. 94 (2011) 4410–4418. https://doi.org/10.1111/j.1551-2916.2011.04885.x.
[13] R. Eatemadi, Z. Balak, Investigating the effect of SPS‎ parameters on densification ‎and fracture toughness of ZrB2-SiC nanocomposite‎, Ceram. Int. 45 (2019) 4763–4770. https://doi.org/10.1016/j.ceramint.2018.11.169.
[14] M. Jaberi Zamharir, M. Zakeri, M. Razavi, Challenges toward applying UHTC-based composite coating on graphite substrate by spark plasma sintering, Synth. Sinter. 1 (2021) 202–210. https://doi.org/10.53063/synsint.2021.1452.
[15] J. Watts, G. Hilmas, W.G. Fahrenholtz, Mechanical characterization of ZrB2-SiC composites with varying SiC particle sizes, J. Am. Ceram. Soc. 94 (2011) 4410–4418. https://doi.org/10.1111/j.1551-2916.2011.04885.x.
[16] S. Henderson, W.G. Fahrenholtz, G.E. Hilmas, J. Marschall, High-velocity impact resistance of ZrB2-SiC, Mechanical Properties and Performance of Engineering Ceramics II: Ceramic Engineering and Science Proceedings, John Wiley & Sons. (2006) 3–9. https://doi.org/10.1002/9780470291313.ch1.
[17] A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, Low-temperature densification of zirconium diboride ceramics by reactive hot pressing, J. Am. Ceram. Soc. 89 (2006) 3638–3645. https://doi.org/10.1111/j.1551-2916.2006.01299.x.
[18] Y. Gupta, B.V. Manoj Kumar, ZrB2–SiC composites for sliding wear contacts: Influence of SiC content and counterbody, Ceram. Int. 48 (2022) 14560–14567. https://doi.org/10.1016/j.ceramint.2022.01.349.
[19] S. Guo, Effects of VC additives on densification and elastic and mechanical properties of hot-pressed ZrB2–SiC composites, J. Mater. Sci. 53 (2018) 4010–4021. https://doi.org/10.1007/s10853-017-1850-7.
[20] E.P. Simonenko, N.P. Simonenko, V.G. Sevastyanov, N.T. Kuznetsov, ZrB2/HfB2–SiC ultra-high-temperature ceramic materials modified by carbon components: the review, Russ. J. Inorg. Chem. 63 (2018) 1772–1795. https://doi.org/10.1134/S003602361814005X.
[21] E. Dodi, Z. Balak, H. Kafashan, HfB2-doped ZrB2-30 vol.% SiC composites: oxidation resistance behavior, Mater. Res. Express. 8 (2021) 045605. https://doi.org/10.1088/2053-1591/abdf1a.
[22] S.M. Arab, M. Shahedi Asl, M. Ghassemi Kakroudi, B. Salahimehr, K. Mahmoodipour, On the oxidation behavior of ZrB2–SiC–VC composites, Int. J. Appl. Ceram. Technol. 18 (2021) 2306–2313. https://doi.org/10.1111/ijac.13858.
[23] L. He, Y. Sun, Q. Meng, B. Liu, J. Wu, X. Zhang, Enhanced oxidation properties of ZrB2–SiC composite with short carbon fibers at 1600 °C, Ceram. Int. 47 (2021) 15483–15490. https://doi.org/10.1016/j.ceramint.2021.02.114.
[24] A. Vinci, L. Zoli, D. Sciti, Influence of SiC content on the oxidation of carbon fibre reinforced ZrB2/SiC composites at 1500 and 1650 °C in air, J. Eur. Ceram. Soc. 38 (2018) 3767–3776. https://doi.org/10.1016/j.jeurceramsoc.2018.04.064.
[25] R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, K. Goto, Initial oxidation behaviors of ZrB2-SiC-ZrC ternary composites above, J. Alloy. Compd. J. 731 (2018) 310–317. https://doi.org/10.1016/j.jallcom.2017.10.034.
[26] C. Li, Y. Niu, T. Liu, L. Huang, X. Zhong, et al., Effect of WB on oxidation behavior and microstructure evolution of ZrB2-SiC coating, Corros. Sci. 155 (2019) 155–163. https://doi.org/10.1016/j.corsci.2019.04.034.
[27] H. Aghajani, E. Hadavand, N.-S. Peighambardoust, S. Khameneh-asl, Electro spark deposition of WC–TiC–Co–Ni cermet coatings on St52 steel, Surf. Interfaces. 18 (2020) 100392. https://doi.org/10.1016/j.surfin.2019.100392.
[28] F. Sadegh Moghanlou, M. Vajdi, M. Sakkaki, S. Azizi, Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride, Synth. Sinter. 1 (2021) 54–61. https://doi.org/10.53063/synsint.2021.117.
[29] N. Sadeghi, M.R. Akbarpour, H. Aghajani, A novel two-step mechanical milling approach and in-situ reactive synthesis to fabricate TiC/Graphene layer/Cu nanocomposites and investigation of their mechanical properties, Mater. Sci. Eng. A. 734 (2018) 164–170. https://doi.org/10.1016/j.msea.2018.07.101.
[30] R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, K. Goto, Oxidation of ZrB2 and its composites: a review, J. Mater. Sci. 53 (2018) 14885–14906. https://doi.org/10.1007/s10853-018-2601-0.
[31] W.G. Fahrenholtz, The ZrB2 volatility diagram, J. Am. Ceram. Soc. 88 (2005) 3509–3512. https://doi.org/10.1111/j.1551-2916.2005.00599.x.
[32] T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, A model for the oxidation of ZrB2, HfB2 and TiB2, Acta Mater. 55 (2007) 5999–6010. https://doi.org/10.1016/j.actamat.2007.07.027.
[33] S.K. Thimmappa, B.R. Golla, V. Bhanu Prasad, B. Majumdar, B. Basu, Phase stability, hardness and oxidation behaviour of spark plasma sintered ZrB2-SiC-Si3N4 composites, Ceram. Int. 45 (2019) 9061–9073. https://doi.org/10.1016/j.ceramint.2019.01.243.
[34] B.R. Golla, S.K. Thimmappa, Comparative study on microstructure and oxidation behaviour of ZrB2-20 vol% SiC ceramics reinforced with Si3N4/Ta additives, J. Alloys Compd. 797 (2019) 92–100. https://doi.org/10.1016/j.jallcom.2019.05.097.
[35] J. Zhang, H. Chen, G. Xiao, M. Yi, Z. Chen, et al., Effects of Si3N4 and WC on the oxidation resistance of ZrB2/SiC ceramic tool materials, Ceram. Int. 48 (2022) 8097–8103. https://doi.org/10.1016/j.ceramint.2021.12.011.
[36] Y. Kubota, H. Tanaka, Y. Arai, R. Inoue, Y. Kogo, K. Goto, Oxidation behavior of ZrB2-SiC-ZrC at 1700 °C, J. Eur. Ceram. Soc. 37 (2017) 1187–1194. https://doi.org/10.1016/j.jeurceramsoc.2016.10.034.
[37] Z. Xu, F. Li, Y. Wang, K. Zhao, Y. Tang, Microstructure and oxidation resistance of ZrB2–ZrC–SiC composite nanofibers fabricated via electrospinning combined with carbothermal reduction, Ceram. Int. 47 (2021) 20740–20744. https://doi.org/10.1016/j.ceramint.2021.03.317.
[38] Z. Xu, K. Zhao, F. Li, Y. Huo, Y. Tang, The oxidation behavior of ZrB2–ZrC composite nanofibers fabricated by electrospinning and carbothermal reduction, Ceram. Int. 46 (2020) 10409–10415. https://doi.org/10.1016/j.ceramint.2020.01.039.
[39] X. Jin, P. Li, C. Hou, X. Wang, X. Fan, et al., Oxidation behaviors of ZrB2 based ultra-high temperature ceramics under compressive stress, Ceram. Int. 45 (2019) 7278–7285. https://doi.org/10.1016/j.ceramint.2019.01.009.
[40] W.G. Fahrenholtz, Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region, J. Am. Ceram. Soc. 90 (2007) 143–148. https://doi.org/10.1111/j.1551-2916.2006.01329.x.
[41] P.A. Williams, R. Sakidja, J.H. Perepezko, P. Ritt, Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content, J. Eur. Ceram. Soc. 32 (2012) 3875–3883. https://doi.org/10.1016/j.jeurceramsoc.2012.05.021.
[42] M. Dehghanzadeh Alvari, M. Ghassemi Kakroudi, B. Salahimehr, R. Alaghmandfard, M. Shahedi Asl, M. Mohammadi, Microstructure, mechanical properties, and oxidation behavior of hot-pressed ZrB2–SiC–B4C composites, Ceram. Int. 47 (2021) 9627–9634. https://doi.org/10.1016/j.ceramint.2020.12.101.

Cited By

Crossref Google Scholar
Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites
Submitted
2022-03-06
Available online
2022-03-26
How to Cite
Dodi, E., Balak, Z., & Kafashan, H. (2022). Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites. Synthesis and Sintering, 2(1), 31-36. https://doi.org/10.53063/synsint.2022.21111

Most read articles by the same author(s)