Ultrasonic properties of Ni–Fe–B4C cermets produced by tube furnace sintering

  • Vildan Özkan Bilici 1
  • 1 Afyon Kocatepe University, Faculty of Arts and Sciences, Department of Physics, 03200, Afyonkarahisar, Turkey

Abstract

B4C–Fe–based cermets with various Ni concentrations were produced by tube furnace sintering using the powder metallurgy method. The prepared cermets were sintered at 1000 °C under the argon shroud. Ultrasonic properties such as ultrasonic wave velocities, ultrasonic longitudinal and shear attenuation values, Young's (elastic) modulus, and Poisson’s ratio were determined by the pulse-echo method using 2 MHz and 4 MHz probes. The obtained ultrasonic properties were used to characterize the properties of the samples. It was observed that ultrasonic wave velocities and Young's modulus decreased with increasing Ni concentration. At the same time, ultrasonic attenuation values and Poisson ratio increased with increasing Ni concentration. According to the results, the amount of Ni has an effective role in the structure of the cermets.

Downloads

Download data is not yet available.
Keywords: Ultrasonic properties, Powder metallurgy, Cermets

References

[1] A. Abramovich, Ultrasonic investigations of cermets elastic properties in dependence on steel concentration and temperature of sintering, IOP Conf. Series: Mater. Sci. Eng. 42 (2012) 1–4. https://doi:10.1088/1757-899X/42/1/012027.
[2] B. Rogé, J.S.R. Giguère, K.I. McRae, A. Fahr, Nondestructive evaluation of a cermet coating using ultrasonic and eddy current techniques, AIP Conf. Proc. 615 (2002) 1201–1208. https://doi.org/10.1063/1.1472931.
[3] K.T. Rarnesh, G. Ravichandran, An ultrasonic evaluation of damage in cermets, Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. (1989) 1841–1846. https://doi.org/10.1007/978-1-4613-0817-1_233.
[4] M.S. Alam, A.K. Das, Advancement in cermet-based coating on steel substrate: A review, Mater. Today: Proc. (2022) 805–810. https://doi.org/10.1016/j.matpr.2022.02.260.
[5] S. Buchholz, Z.N. Farhat, G.J. Kipouros, K.P. Plucknett, The reciprocating wear behaviour of TiC–Ni3Al cermets, Int. J. Refract. Met. Hard Mater. 33 (2012) 44–52. https://doi.org/10.1016/j.ijrmhm.2012.02.008.
[6] L. Jaworska, M. Rozmus, B. Królicka, A. Twardowska, Functionally graded cermets, J. Achieve. Mater. Manuf. Eng. 17 (2006) 73–76.
[7] P. Khalili, P. Cawley, The choice of ultrasonic inspection method for the detection of corrosion at inaccessible locations, NDT E Int. 99 (2018) 80–92. https://doi.org/10.1016/j.ndteint.2018.06.003.
[8] G.K. Sun, Z.G. Zhou, Ultrasonic imaging of particle distribution in SiCp/Al composites, Mater. Testing. 59 (2017) 166–171. https://doi.org/10.3139/120.110985.
[9] A. Bhaskar, Characterization of hollow particulate and graded composites using ultrasonic technique, Master's Theses, University of Rhode Island. (2011). https://doi.org/10.23860/thesis-ale-bhaskar-2011.
[10] M. Toozandehjani, F. Ostovan, M. Shamshirsaz, K.A. Matori, E. Shafiei, Velocity and attenuation of ultrasonic wave in Al/Al2O3 nanocomposite and their correlation to microstructural evolution during synthesizing procedure, J. Mater. Res. Technol. 15 (2021) 2529–2542. https://doi.org/10.1016/j.jmrt.2021.09.065.
[11] V. Özkan, İ.H. Sarpün, A. Erol, A. Yönetken, Influence of mean grain size with ultrasonic velocity on micro-hardness of B4C–Fe–Ni composite, J. Alloys Compd. 574 (2013) 512–519. https://doi.org/10.1016/j.jallcom.2013.05.097.
[12] M. Toozandehjani, K.A. Matori, F. Ostovan, F. Mustapha, N.I. Zahari, A. Oskoueian, On the correlation between microstructural evolution and ultrasonic properties: A review, J. Mater. Sci. 50 (2015) 2643–2665. https://doi.org/10.1007/s10853-015-8855-x.
[13] F. Thevenot, Boron carbide-A comprehensive review, J. Eur. Ceram. Soc. 6 (1990) 205–225. https://doi.org/10.1016/0955-2219(90)90048-K.
[14] O. Conde, A.J. Silvestre, J.C. Oliveira, Influence of carbon content on the crystallographic structure of boron carbide films, Surf. Coat. Technol. 125 (2000) 141–146. https://doi.org/10.1016/S0257-8972(99)00594-0.
[15] S. Koç, B. Akçay, B4C ve Al2O3 Seramik Plakaların Mekanik ve Balistik Özelliklerinin İncelenmesi, J. Polytechnic 1 (2021) 1–9. https://doi.org/10.2339/politeknik.801714.
[16] G.T. Sudha, B. Stalin, M. Ravichandran, M. Balasubramanian, Mechanical properties, characterization and wear behavior of powder metallurgy composites-A Review, Mater. Today: Proc. 22 (2020) 2582–2596. https://doi.org/10.1016/j.matpr.2020.03.389.
[17] A.M. Sankhla, K.M. Patel, M.A. Makhesana, K. Giasin, D.Y. Pimenov, et al., Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route, J. Mater. Res. Technol. 18 (2022) 282–292. https://doi.org/10.1016/j.jmrt.2022.02.094.
[18] S.K. Sharma, K.K. Saxena, K.B. Kumar, N. Kumar, The effect of reinforcements on the mechanical properties of AZ31 composites prepared by powder metallurgy: An overview, Mater. Today: Proc. (2021) 1–7. https://doi.org/10.1016/j.matpr.2021.11.639.
[19] G. Manohar, K.M. Pandey, S.R. Maity, Characterization of Boron Carbide (B4C) particle reinforced aluminium metal matrix composites fabricated by powder metallurgy techniques – A review, Mater. Today: Proc. 45 (2021) 6882–6888. https://doi.org/10.1016/j.matpr.2020.12.1087.
[20] A. Shamsipoor, B. Mousavi, M.S. Shaker, Synthesis and sintering of Fe-32Mn-6Si shape memory alloys prepared by mechanical alloying, Synth. Sinter. 2 (2022) 1–8. https://doi.org/10.53063/synsint.2022.2185.
[21] S. Lu, X. Wang, L. Teng, J. Zhang, Z. Zhou, et al., Finite element analysis and experimental investigation of ultrasonic testing of internal defects in SiCp/Al composites, Ceram. Int. 48 (2022) 5972–5982. https://doi.org/10.1016/j.ceramint.2021.11.133.
[22] A.P. Mouritz, C. Townsend, M.Z. Shah Khan, Non-destructive detection of fatigue damage in thick composites by pulse-echo ultrasonics, Compos. Sci. Technol. 60 (2000) 23–32. https://doi.org/10.1016/S0266-3538(99)00094-9.
[23] E.E. Gültekin., The effect of heating rate and sintering temperature on the elastic modulus of porcelain tiles, Ultrasonics. 83 (2018) 120–125. https://doi.org/10.1016/j.ultras.2017.06.005.
[24] S.Z. Khan, T.M. Khan, Y.F. Joya, M.A. Khan, S. Ahmed, A. Shah, Assessment of material properties of AISI 316L stainless steel using non-destructive testing, Nondestruct. Test. Eval. 31 (2016) 360–370. https://doi.org/10.1080/10589759.2015.1121265.
[25] F. Uzun, A.N. Bilge, Application of ultrasonic waves in measurement of hardness of welded carbon steels, Def. Technol. 11 (2015) 255–261. https://doi.org/10.1016/j.dt.2015.05.002.
[26] S.F. Farahmand, M.H. Soorgee, A.H. Monazzah, Evaluating the elastic properties of Al2O3–Al FGMs by longitudinal and transverse ultrasonic bulk waves velocity features, Ceram. Int. 47 (2021) 24906–24915. https://doi.org/10.1016/j.ceramint.2021.05.217.
[27] D.K. Pandey, S. Pandey, Ultrasonics: A technique of material characterization, Acoustic Waves, IntechOpen. (2010) 466. https://doi.org/10.5772/10153.
[28] N. Jai, M.-x. Su, X.-s. Cai, Particle size distribution measurement based on ultrasonic attenuation spectra using burst superposed wave, Results Phys. 13 (2019) 102273. https://doi.org/10.1016/j.rinp.2019.102273.
[29] M. Ramaniraka, S. Rakotonarivo, C. Payan, V. Garnier, Effect of the Interfacial Transition Zone on ultrasonic wave attenuation and velocity in concrete, Cem. Concr. Res. 124 (2019) 105809. https://doi.org/10.1016/j.cemconres.2019.105809.
[30] M. Ashjari, S.S. Hashemi, A. Rasoulian, Auxetic materials materials with negative Poisson’s ratio, Mater. Sci. Eng. Int. J. 1 (2017) 62‒64. https://doi.org/10.15406/mseij.2017.01.00011.

Cited By

Crossref Google Scholar
Ultrasonic properties of Ni–Fe–B4C cermets produced by tube furnace sintering
Submitted
2022-01-04
Available online
2022-04-18
How to Cite
Özkan Bilici, V. (2022). Ultrasonic properties of Ni–Fe–B4C cermets produced by tube furnace sintering. Synthesis and Sintering, 2(2), 62-66. https://doi.org/10.53063/synsint.2022.2287