Impact of bridging oxygens formation on optical properties of Fe3+ doped Li2O–Al2O3–SiO2–TiO2 glasses

  • A. Faeghinia 1
  • 1 Ceramic Department, Materials and Energy Research Center (MERC), P.O. Box 31779-83634, Karaj, Iran

Abstract

In this study, the structural chemistry of Fe3+ doped Li2O–Al2O3–SiO2–TiO2 (LAST) glasses has been analyzed utilizing UV-Vis spectroscopy. Optical parameters like absorption and extinction coefficients, indirect and direct optical band gaps, Urbach energy as well as Fermi energy level of samples were estimated via their absorption spectra. Then, it was tried to make a relationship between the variation of mentioned parameters and structural chemistry of different doped samples. Results of the investigation illustrated that even a little change in the microstructure of glassy samples has an effect on optical parameters and accordingly it could be sensible. Furthermore, it was revealed that Fe3+ ions have the role of network forming in the structure of glass by increasing the formation of bridging oxygens (BOs) in the matrix.

Downloads

Download data is not yet available.
Keywords: UV-Vis absorption spectra, Glass, Short-range order, Bridging oxygens formation, Optical parameters, Structural chemistry

References

[1] H. Aghajani, E. Hadavand, N.-S. Peighambardoust, S. Khameneh-asl, Electro spark deposition of WC–TiC–Co–Ni cermet coatings on St52 steel, Surf. Interfaces. 18 (2020) 100392. https://doi.org/10.1016/j.surfin.2019.100392.
[2] N. Sadeghi, M.R. Akbarpour, H. Aghajani, A novel two-step mechanical milling approach and in-situ reactive synthesis to fabricate TiC/Graphene layer/Cu nanocomposites and investigation of their mechanical properties, Mater. Sci. Eng. A. 734 (2018) 164–170. https://doi.org/10.1016/j.msea.2018.07.101.
[3] N.A. Golnaz, T.T. Arvin, H. Aghajani, Investigation on corrosion behavior of Cu–TiO2 nanocomposite synthesized by the use of SHS method, J. Mater. Res. Technol. 8 (2019) 2216–2222. https://doi.org/10.1016/j.jmrt.2019.01.025.
[4] A. Khan, A. Ali, I. Khan, Sintering behavior and microwave dielectric properties of CaTi1-x(Nb1/2Al1/2)xO3, Synth. Sinter. 1 (2021) 197–201. https://doi.org/10.53063/synsint.2021.1467.
[5] W. Mozgawa, M. Sitarz, M. Król, Spectroscopic characterization of silicate amorphous materials, Molecular Spectroscopy—Experiment and Theory, Springer, Cham. (2019) 457–481. https://doi.org/10.1007/978-3-030-01355-4_15.
[6] A. Ali, Y.W. Chiang, R.M. Santos, X-ray diffraction techniques for mineral characterization: a review for applications, and research directions, Minerals. 12 (2022) 205. https://doi.org/10.3390/min12020205.
[7] K.M. Ehrhardt, R.C. Radomsky, S.C. Warren, Quantifying the local structure of nanocrystals, glasses, and interfaces using TEM-based diffraction, Chem. Mater. 33 (2021) 8990–9011. https://doi.org/10.1021/acs.chemmater.1c03017.
[8] A.S. Hassanien, I. Sharma, Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-x Sbx Se50 Te35 thin films: Influences of Sb upon some optical characterizations and physical parameters, J. Alloys Compd. 798 (2019) 750–763. https://doi.org/10.1016/j.jallcom.2019.05.252.
[9] A.S. Abouhaswa, E. Kavaz, A novel B2O3-Na2O-BaO-HgO glass system: synthesis, physical, optical and nuclear shielding features, Ceram. Int. 46 (2020) 16166–16177. https://doi.org/10.1016/j.ceramint.2020.03.172.
[10] R. Divina, G. Sathiyapriya, K. Marimuthu, A. Askin, M.I. Sayyed, Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses, J. Non. Cryst. Solids. 545 (2020) 120269. https://doi.org/10.1016/j.jnoncrysol.2020.120269.
[11] A.F.A. El-Rehim, E.A.A. Wahab, M.M.A. Halaka, K.S. Shaaban, Optical properties of SiO2–TiO2–La2O3–Na2O–Y2O3 glasses and a novel process of preparing the parent glass-ceramics, Silicon. 14 (2022) 373–384. https://doi.org/10.1007/s12633-021-01002-w.
[12] R. Lachheb, A. Herrmann, K. Damak, C. Rüssel, R. Maâlej, Optical absorption and photoluminescence properties of chromium in different host glasses, J. Lumin. 186 (2017) 152–157. https://doi.org/10.1016/j.jlumin.2017.02.030.
[13] C. Lin, J. Liu, L. Han, H. Gui, J. Song, et al., Study on the structure, thermal and optical properties in Cr2O3-incorporated MgO-Al2O3-SiO2-B2O3 glass, J. Non. Cryst. Solids. 500 (2018) 235–242. https://doi.org/10.1016/j.jnoncrysol.2018.08.004.
[14] M.S. Shakeri, M. Rezvani, Optical properties and structural evaluation of Li2O–Al2O3–SiO2–TiO2 glassy semiconductor containing passive agent CeO2, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 83 (2011) 592–597. https://doi.org/10.1016/j.saa.2011.09.009.
[15] A. Arvind, A. Sarkar, V.K. Shrikhande, A.K. Tyagi, G.P. Kothiyal, The effect of TiO2 addition on the crystallization and phase formation in lithium aluminum silicate (LAS) glasses nucleated by P2O5, J. Phys. Chem. Solids. 69 (2008) 2622–2627. https://doi.org/10.1016/j.jpcs.2008.06.003.
[16] A. Mekki, D. Holland, K.A. Ziq, C.F. McConville, Structural and magnetic properties of sodium iron germanate glasses, J. Non. Cryst. Solids. 272 (2000) 179–190. https://doi.org/10.1016/S0022-3093(00)00235-0.
[17] R. Parmar, R.S. Kundu, R. Punia, P. Aghamkar, N. Kishore, Effect of Fe2O3 on the physical and structural properties of bismuth silicate glasses, AIP Conf. Proc. (2013) 653–654. https://doi.org/10.1063/1.4810396.
[18] U. Selvaraj, K.J. Rao, Characterization studies of molybdophosphate glasses and a model of structural defects, J. Non. Cryst. Solids. 72 (1985) 315–334. https://doi.org/10.1016/0022-3093(85)90187-5.
[19] Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses, Ceram. Int. 45 (2019) 20724–20732. https://doi.org/10.1016/j.ceramint.2019.07.056.
[20] M.S. Shakeri, M. Rezvani, Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 79 (2011) 1920–1925. https://doi.org/10.1016/j.saa.2011.05.090.
[21] T.F. Tadros, Basic Principles of Dispersions, Handbook of Colloid and Interface Science, De Gruyter, Berlin, Boston. (2018). https://doi.org/10.1515/9783110541953.
[22] K. Bahedi, M. Addou, A. Mrigal, H. Ftouhi, A. Talbi, et al., A spectroscopic study for determining linear optical and predicting nonlinear optical properties of sprayed ZnO:W thin films: an effect of morphology, Opt. Rev. 29 (2022) 25–33. https://doi.org/10.1007/s10043-021-00718-9.
[23] K.S. Shaaban, A.M. Ali, Y.B. Saddeek, K.A. Aly, A. Dahshan, S.A. Amin, Synthesis, mechanical and optical features of Dy2O3 doped lead alkali borosilicate glasses, Silicon. 11 (2019) 1853–1861. https://doi.org/10.1007/s12633-018-0004-0.
[24] J. Tauc, Amorphous and Liquid Semiconductors, Springer, New York, NY. (1974). https://doi.org/10.1007/978-1-4615-8705-7.
[25] A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, et al., Effect of the band gap and the defect states present within band gap on the non-linear optical absorption behaviour of yttrium aluminium iron garnets, Opt. Mater. 108 (2020) 110163. https://doi.org/10.1016/j.optmat.2020.110163.
[26] F. El-Diasty, F.A. Abdel Wahab, M. Abdel-Baki, Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions, J. Appl. Phys. 100 (2006) 093511. https://doi.org/10.1063/1.2362926.
[27] N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials, 2nd ed., Oxford University Press, New York. (1979).
[28] X. Zhang, H. Su, Y. Zhao, T. Tan, Antimicrobial activities of hydrophilic polyurethane/titanium dioxide complex film under visible light irradiation, J. Photochem. Photobiol. A: Chem. 199 (2008) 123–129. https://doi.org/10.1016/j.jphotochem.2008.05.002.
[29] V. Khani, P. Alizadeh, M.S. Shakeri, Optical properties of transparent glass–ceramics containing lithium–mica nanocrystals: Crystallization effect, Mater. Res. Bull. 48 (2013) 3579–3584. https://doi.org/10.1016/j.materresbull.2013.05.061.
[30] D.M. Sagar, R.R. Cooney, S.L. Sewall, E.A. Dias, M.M. Barsan, et al., Size dependent, state-resolved studies of exciton-phonon couplings in strongly confined semiconductor quantum dots, Phys. Rev. B. 77 (2008) 235321. https://doi.org/10.1103/PhysRevB.77.235321.
[31] S.R. Munishwar, P.P. Pawar, S. Ughade, R.S. Gedam, Size dependent effect of electron-hole recombination of CdS quantum dots on emission of Dy3+ ions in boro-silicate glasses through energy transfer, J. Alloys Compd. 725 (2017) 115–122. https://doi.org/10.1016/j.jallcom.2017.07.146.
[32] A.S. Abouhaswa, Y.S. Rammah, G.M. Turky, Characterization of zinc lead-borate glasses doped with Fe3+ ions: optical, dielectric, and ac-conductivity investigations, J. Mater. Sci. Mater. Electron. 31 (2020) 17044–17054. https://doi.org/10.1007/s10854-020-04262-1.
[33] F. Yakuphanoglu, G. Barım, I. Erol, The effect of FeCl3 on the optical constants and optical band gap of MBZMA-co-MMA polymer thin films, Phys. B: Condens. Matter. 391 (2007) 136–140. https://doi.org/10.1016/j.physb.2006.09.009.
[34] P. Pradubkorn, S. Maensiri, E. Swatsitang, P. Laokul, Preparation and characterization of hollow TiO2 nanospheres: The effect of Fe3+ doping on their microstructure and electronic structure, Curr. Appl. Phys. 20 (2020) 178–185. https://doi.org/10.1016/j.cap.2019.11.002.
[35] S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds, J. Colloid Interface Sci. 450 (2015) 213–223. https://doi.org/10.1016/j.jcis.2015.03.018.
[36] G. Kaur, M. Kumar, A. Arora, O.P. Pandey, K. Singh, Influence of Y2O3 on structural and optical properties of SiO2–BaO–ZnO–xB2O3–(10−x) Y2O3 glasses and glass ceramics, J. Non. Cryst. Solids. 357 (2011) 858–863. https://doi.org/10.1016/j.jnoncrysol.2010.11.103.
[37] G. Kaur, O.P. Pandey, K. Singh, Effect of modifiers field strength on optical, structural and mechanical properties of lanthanum borosilicate glasses, J. Non. Cryst. Solids. 358 (2012) 2589–2596. https://doi.org/10.1016/j.jnoncrysol.2012.06.006.
[38] A.A. Ali, M.H. Shaaban, Optical and electrical properties of Nd3+ doped TeBiY borate glasses, Silicon. 10 (2018) 1503–1511. https://doi.org/10.1007/s12633-017-9633-y.
[39] B. Kressdorf, T. Meyer, M. ten Brink, C. Seick, S. Melles, et al., Orbital-order phase transition in Pr1−x Cax MnO3 probed by photovoltaics, Phys. Rev. B. 103 (2021) 235122. https://doi.org/10.1103/PhysRevB.103.235122.
[40] A.C. Hannon, S. Vaishnav, O.L.G. Alderman, P.A. Bingham, The structure of sodium silicate glass from neutron diffraction and modeling of oxygen‐oxygen correlations, J. Am. Ceram. Soc. 104 (2021) 6155–6171. https://doi.org/10.1111/jace.17993.

Cited By

Crossref Google Scholar
Impact of bridging oxygens formation on optical properties of Fe3+ doped Li2O–Al2O3–SiO2–TiO2 glasses
Submitted
2021-12-25
Published
2022-03-13
How to Cite
Faeghinia, A. (2022). Impact of bridging oxygens formation on optical properties of Fe3+ doped Li2O–Al2O3–SiO2–TiO2 glasses. Synthesis and Sintering, 2(1), 14-19. https://doi.org/10.53063/synsint.2022.2179