Sol-gel zinc oxide nanoparticles: advances in synthesis and applications

  • Parisa Shafiee 1
  • Mehdi Reisi Nafchi 2
  • Sara Eskandarinezhad 3
  • Shirin Mahmoudi 4
  • Elahe Ahmadi 5
  • 1 Catalyst and Nano Material Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
  • 2 Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • 3 Department of Mining and Metallurgy, Yazd University, Yazd, Iran
  • 4 Semiconductor Department, Materials and Energy Research Center, Karaj, Iran
  • 5 Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Zinc oxide nanoparticles (ZnO) exhibit numerous characteristics such as biocompatibility, UV protection, antibacterial activity, high thermal conductivity, binding energy, and high refractive index that make them ideal candidates to be applied in a variety of products like solar cells, rubber, cosmetics, as well as medical and pharmaceutical products. Different strategies for ZnO nanoparticles’ preparation have been applied: sol-gel method, co-precipitation method, etc. The sol-gel method is an economic and efficient chemical technique for nanoparticle (NPs) generation that has the ability to adjust the structural and optical features of the NPs. Nanostructures are generated from an aqueous solution including metallic precursors, chemicals for modifying pH using either a gel or a sol as a yield. Among the various approaches, the sol-gel technique was revealed to be one of the desirable techniques for the synthesis of ZnO nanoparticles. In this review, we explain some novel investigations about the synthesis of zinc oxide nanoparticles via sol-gel technique and applications of sol-gel zinc oxide nanoparticles. Furthermore, we study recent sol-gel ZnO nanoparticles, their significant characteristics, and their applications in biomedical applications, antimicrobial packaging, drug delivery, semiconductors, biosensors, catalysts, photoelectron devices, and textiles.

Downloads

Download data is not yet available.
Keywords: Zinc oxide nanoparticles, Sol-gel synthesis, Applications of sol-gel zinc oxide

References

[1] A.G. Mamalis, Recent advances in nanotechnology, J. Mater. Process. Technol. 181 (2007) 52–58. https://doi.org/10.1016/j.jmatprotec.2006.03.052.
[2] L. Shao, J. Chen, Synthesis and application of nanoparticles by a high gravity method, China Particuology. 3 (2005) 134–135. https://doi.org/10.1016/S1672-2515(07)60180-8.
[3] A. Khaleel, P.N. Kapoor, K.J. Klabunde, Nanocrystalline metal oxides as new adsorbents for air purification, Nanostruct. Mater. 11 (1999) 459–468. https://doi.org/10.1016/S0965-9773(99)00329-3.
[4] M. Lin, Y. Zhao, S. Wang, M. Liu, Z. Duan, et al., Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications, Biotechnol. Adv. 30 (2012) 1551–1561. https://doi.org/10.1016/j.biotechadv.2012.04.009.
[5] R. Baron, F.W. Campbell, I. Streeter, L. Xiao, R.G. Compton, Facile method for the construction of random nanoparticle arrays on a carbon support for the development of well-defined catalytic surfaces, Int. J. Electrochem. Sci. 3 (2008) 556–565.
[6] K. Nakahara, H. Takasu, Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy, Appl. Phys. Lett. 79 (2001) 4139–4141. https://doi.org/10.1063/1.1424066.
[7] J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J. Nanotechnol. 9 (2018) 1050–1074. https://doi.org/10.3762/bjnano.9.98.
[8] F. Sharifianjazi, A.H. Pakseresht, M. Shahedi Asl, A. Esmaeilkhanian, H. Nargesi khoramabadi, et al., Hydroxyapatite consolidated by zirconia: applications for dental implant, J. Compos. Compd. 2 (2020) 26–34. https://doi.org/10.29252/jcc.2.1.4.
[9] Z.L. Wang Lin, Oxide nanobelts and nanowires-growth, properties and applications, J. Nanosci. Nanotechnol. 8 (2008) 27–55. https://doi.org/10.1166/jnn.2008.N08.
[10] M.H. Habibi, R. Sheibani, Nanostructure silver-doped zinc oxide films coating on glass prepared by sol–gel and photochemical deposition process: Application for removal of mercaptan, J. Ind. Eng. Chem. 19 (2013) 161–165. https://doi.org/10.1016/j.jiec.2012.07.019.
[11] M. Khanpour, A. Morsali, Synthesis and characterization of one-dimensional zinc (II) coordination polymers as precursors for preparation of ZnO nanoparticles via thermal decomposition, J. Inorg. Organomet. Polym. Mater. 21 (2011) 360–364. https://doi.org/10.1007/s10904-010-9450-x.
[12] M.H. Habibi, E. Askari, Thermal and structural studies of zinc zirconate nanoscale composite derived from sol–gel process, J. Therm. Anal. Calorim. 111 (2013) 227–233. https://doi.org/10.1007/s10973-012-2205-x.
[13] Z.M. Khoshhesab, M. Sarfaraz, Z. Houshyar, Influences of urea on preparation of zinc oxide nanostructures through chemical precipitation in ammonium hydrogencarbonate solution, Synth. React. Inorg. Metal-Organic Nano-Metal Chem. 42 (2012) 1363–1368. https://doi.org/10.1080/15533174.2012.680119.
[14] M. Edrissi, M. Soleymani, S. Akbari, Parameters Optimization Based on the Taguchi Robust Design for the Synthesis of CuO–ZnO Nanocomposite Using the Surfactant-Assisted Coprecipitation Method, Synth. React. Inorg. Metal-Organic Nano-Metal Chem. 41 (2011) 1282–1287. https://doi.org/10.1080/15533174.2011.594841.
[15] Z.M. Khoshhesab, M. Sarfaraz, M.A. Asadabad, Preparation of ZnO nanostructures by chemical precipitation method, Synth. React. Inorg. Metal-Organic Nano-Metal Chem. 41 (2011) 814–819. https://doi.org/10.1080/15533174.2011.591308.
[16] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.
[17] E. Asadi, A. Fassadi Chimeh, A.H. Vakili Tahmorsati, S. Hosseini, S. Rahimi, et al. A review of clinical applications of graphene quantum dot-based composites. J. Compos. Compd. 1 (2019) 31–40. https://jourcc.com/index.php/jourcc/article/view/jcc116.
[18] V.K.H. Bui, M.K. Kumar, M. Alinaghibeigi, S. Moolayadukkam, S. Eskandarinejad, et al., A review on zinc oxide composites for energy storage applications: solar cells, batteries, and supercapacitors, J. Compos. Compd. 3 (2021) 182–193. https://doi.org/10.52547/jcc.3.3.6.
[19] F. Niazvand, A. Cheshmi, M. Zand, R. NasrAzadani, B. Kumari, et al., An overview of the development of composites containing Mg and Zn for drug delivery, J. Compos. Compd. 2 (2020) 193–204. https://doi.org/10.29252/jcc.2.4.4.
[20] A.K. Zak, W.H.abd. Majid, H.Z. Wang, R. Yousefi, A. Moradi Golsheikh, Z.F. Ren, Sonochemical synthesis of hierarchical ZnO nanostructures, Ultrason. Sonochem. 20 (2013) 395–400. https://doi.org/10.1016/j.ultsonch.2012.07.001.
[21] R. Zamiri, A. Zakaria, H. Abbastabar Ahangar, M. Darroudi, A. Khorsand Zak, G.P.C. Drummen, Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation, J. Alloys Compd. 516 (2012) 41–48. https://doi.org/10.1016/j.jallcom.2011.11.118.
[22] C.-L. Kuo, C.-L. Wang, H.-H. Ko, W.-S. Hwang, K.-m. Chang, et al., Synthesis of zinc oxide nanocrystalline powders for cosmetic applications, Ceram. Int. 36 (2010) 693–698. https://doi.org/10.1016/j.ceramint.2009.10.011.
[23] C. Deng, H. Hu, G. Shao, C. Han, Facile template-free sonochemical fabrication of hollow ZnO spherical structures, Mater. Lett. 64 (2010) 852–855. https://doi.org/10.1016/j.matlet.2010.01.039.
[24] P. Jajarmi, Fabrication of pure ZnO nanoparticles by polymerization method, Mater. Lett. 63 (2009) 2646–2648. https://doi.org/10.1016/j.matlet.2009.08.062.
[25] R. Song, Y. Liu, L. He, Synthesis and characterization of mercaptoacetic acid-modified ZnO nanoparticles, Solid State Sci. 10 (2008) 1563–1567. https://doi.org/10.1016/j.solidstatesciences.2008.02.006.
[26] H. Xu, H. Wang, Y. Zhang, W. He, M. Zhu, et al., Hydrothermal synthesis of zinc oxide powders with controllable morphology, Ceram. Int. 30 (2004) 93–97. https://doi.org/10.1016/S0272-8842(03)00069-5.
[27] O. Singh, N. Kohli, R.C. Singh, Precursor controlled morphology of zinc oxide and its sensing behaviour, Sens. Actuators B: Chem. 178 (2013) 149–154. https://doi.org/10.1016/j.snb.2012.12.053.
[28] S. Nasibi, K. Alimohammadi, L. Bazli, S. Eskandarinezhad, A. Mohammadi, N. Sheysi, TZNT alloy for surgical implant applications: A systematic review, J. Compos. Compd. 2 (2020) 62–68. https://doi.org/10.29252/jcc.2.2.1.
[29] F.A. Alharthi, N. Al-Zaqri, A. El marghany, A.A. Alghamdi, A.Q. Alorabi, et al., Synthesis of nanocauliflower ZnO photocatalyst by potato waste and its photocatalytic efficiency against dye, J. Mater. Sci. Mater. 31 (2020) 11538–11547. https://doi.org/10.1007/s10854-020-03701-3.
[30] H.N. khoramabadi, M. Arefian, M. Hojjati, I. Tajzad, A. Mokhtarzade, et al., A review of Polyvinyl alcohol/Carboxymethyl cellulose (PVA/CMC) composites for various applications, J. Compos. Compd. 2 (2020) 69–76. https://doi.org/10.29252/jcc222.
[31] A. Kazemzadeh, M.A. Meshkat, H. Kazemzadeh, M. Moradi, R. Bahrami, R. Pouriamanesh, Preparation of graphene nanolayers through surfactant-assisted pure shear milling method, J. Compos. Compd. 1 (2019) 22–26. https://doi.org/10.29252/jcc.1.1.4.
[32] E.I. Naik, H.S. Bhojya Naik, R. Viswanath, B.R. Kirthan, M.C. Prabhakara, Effect of zirconium doping on the structural, optical, electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol-gel method, Chem. Data Collect. 29 (2020) 100505. https://doi.org/10.1016/j.cdc.2020.100505.
[33] S. Mourad, J. El Ghoul, K. Khirouni, Role of indium doping on structural and electrical properties of ZnO nanoparticles prepared by sol–gel method, J. Mater. Sci. Mater. 31 (2020) 6372–6384. https://doi.org/10.1007/s10854-020-03193-1.
[34] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, J. Nanosci. Nanotechnol. (2009) 320–329. https://doi.org/10.1142/9789814287005_0033.
[35] A. Kumar, Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor, J. Mol. Struct. 1220 (2020) 128654. https://doi.org/10.1016/j.molstruc.2020.128654.
[36] H.W. Jang, A. Zareidoost, M. Moradi, A. Abuchenari, A. Bakhtiari, et al., Photosensitive nanocomposites: environmental and biological applications, J. Compos. Compd. 2 (2020) 50–60. https://doi.org/10.29252/jcc.2.1.7.
[37] S. Saadi, B. Nazari, Recent developments and applications of nanocomposites in solar cells: a review, J. Compos. Compd. 1 (2019) 41–50. https://doi.org/10.29252/jcc.1.1.7.
[38] A. Kumar, N. Yadav, M. Bhatt, N.K. Mishra, P. Chaudhary, R. Singh, Sol-gel derived nanomaterials and it’s applications: a review, Res. J. Chem. Sci. 5 (2015) 98–105.
[39] T.M. Mahato, G.K. Prasad, B. Singh, J. Acharya, A.R. Srivastava, R. Vijayaraghavan, Nanocrystalline zinc oxide for the decontamination of sarin, J. Hazard. Mater. 165 (2009) 928–932. https://doi.org/10.1016/j.jhazmat.2008.10.126.
[40] M. Ristić, S. Musić, M. Ivanda, S. Popović, Sol–gel synthesis and characterization of nanocrystalline ZnO powders, J. Alloys Compd. 397 (2005) L1–L4. https://doi.org/10.1016/j.jallcom.2005.01.045.
[41] B.B. Lakshmi, P.K. Dorhout, C.R. Martin, Sol− gel template synthesis of semiconductor nanostructures, Chem. Mater. 9 (1997) 857–862. https://doi.org/10.1021/cm9605577.
[42] J. Daraei, Production and characterization of PCL (Polycaprolactone) coated TCP/nanoBG composite scaffolds by sponge foam method for orthopedic applications. J. Compos. Compd. 2 (2020) 44–49. https://doi.org/10.29252/jcc.2.1.6.
[43] S. Yue, Z. Yan, Y. Shi, G. Ran, Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol–gel method, Mater. Lett. 98 (2013) 246–249. https://doi.org/10.1016/j.matlet.2013.02.037.
[44] J. Mayekar, V. Dahr, S. Radha, To study the role of temperature and sodium hydroxide concentration in the synthesis of zinc oxide nanoparticles, Int. J. Sci. Res. Pub. 3 (2013) 2250–3153.
[45] S. Zavar, A novel three component synthesis of 2-amino-4H-chromenes derivatives using nano ZnO catalyst. Arab. J. Chem. 10 (2017) S67–S70. https://doi.org/10.1016/j.arabjc.2012.07.011.
[46] A. Abuchenari, M. Moradi, The Effect of Cu-substitution on the microstructure and magnetic properties of Fe-15% Ni alloy prepared by mechanical alloying, J. Compos. Compd. 1 (2019) 10–15. https://doi.org/10.29252/jcc.1.1.2.
[47] S. Sabir, M. Arshad, S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications, Sci. World J. 2014 (2014) 925494. https://doi.org/10.1155/2014/925494.
[48] Z. Goudarzi, A. Ijadi, A. Bakhtiari, S. Eskandarinezhad, N. Azizabadi, M. Asgari Jazi, Sr-doped bioactive glasses for biological applications, J. Comp. Compd. 2 (2020) 105–109. https://doi.org/10.29252/jcc.2.2.7.
[49] X.Y. Kong, Z.L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, Nano Letters. 3 (2003) 1625–1631. https://doi.org/10.1021/nl034463p.
[50] D. Gnanasangeetha, D.S. Thambavani, Biogenic production of zinc oxide nanoparticles using Acalypha indica, J. Chem. Biolog. Physic. Sci. 4 (2013) 238–246.
[51] L. Bazli, H. Nargesi khoramabadi, A. Modarresi Chahardehi, H. Arsad, B. Malekpouri, et al., Factors influencing the failure of dental implants: A Systematic Review, J. Comp. Compd. 2 (2020) 18–25. https://doi.org/10.29252/jcc.2.1.3.
[52] C.Y. Lee, Effect of phosphorus dopant on photoluminescence and field-emission characteristics of Mg 0.1 Zn 0.9 O nanowires, J. Appl. Phys. 99 (2006) 024303. https://doi.org/10.1063/1.2161420.
[53] C. Chen, J. Liu, P. Liu, B. Lu, Investigation of photocatalytic degradation of Methyl Orange by Using nano-sized ZnO catalysts, Chem. Eng. J. 144 (2008) 509–513. https://doi.org/10.4236/aces.2011.11002.
[54] K. Zhang, Q. Van Le, Bioactive glass coated zirconia for dental implants: a review, J. Comp. Compd. 2 (2020) 10–17. https://doi.org/10.29252/jcc.2.1.2.
[55] M. Ferdosi Heragh, S. Eskandarinezhad, A. Dehghan, Ni-Cu matrix composite reinforced with CNTs: preparation, characterization, wear and corrosion behavior, inhibitory effects, J. Comp. Compd. 2 (2020) 123–128. https://doi.org/10.29252/jcc.2.3.3.
[56] M. Hudlikar, S. Joglekar, M. Dhaygude, K. Kodam, Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach, J. Nanopart. Res. 14 (2012) 1–6. https://doi.org/10.1007/s11051-012-0865-x.
[57] G. Singhal, R. Bhavesh, K. Kasariya, A. Ranjan Sharma, R. Pal Singh, Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopart. Res. 13 (2011) 2981–2988. https://doi.org/10.1007/s11051-010-0193-y.
[58] A.H. Shahbaz, M. Esmaeilian, R. NasrAzadani, K. Gavanji, The effect of MgF2 addition on the mechanical properties of hydroxyapatite synthesized via powder metallurgy, J. Comp. Compd. 1 (2019) 16–21. https://doi.org/10.29252/jcc.1.1.3.
[59] L. Bazli, M. Yusuf, A. Farahani, Application of composite conducting polymers for improving the corrosion behavior of various substrates: A Review, J. Comp. Compd. 2 (2020) 228–240. https://doi.org/10.29252/jcc.2.4.7.
[60] A. Jafari Rad, Synthesis of copper oxide nanoparticles on activated carbon for pollutant removal in Tartrazine structure, J. Comp. Compd. 2 (2020) 99–104. https://doi.org/10.29252/jcc.2.2.6.
[61] K. Sun, M.T. McDowell, A.C. Nielander, S. Hu, M.R. Shaner, et al., J. Phys. Chem. Lett. 6 (2015) 592–598. https://doi.org/10.1021/jz5026195.
[62] A.G. Scheuermann, J. P. Lawrence, K.W. Kemp, T. Ito, A. Walsh, et al., Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes, Nat. Mater. 15 (2016) 99–105. https://doi.org/10.1038/nmat4451.
[63] H. Qi, J. Wolfe, D. Fichou, Z. Chen, Cu2O photocathode for low bias photoelectrochemical water splitting enabled by NiFe-layered double hydroxide co-catalyst, Sci. Rep. 6 (2016) 1–8. https://doi.org/10.1038/srep30882.
[64] L. Bazli, M. Siavashi, A. Shiravi, A review of carbon nanotube/TiO2 composite prepared via sol-gel method, J. Comp. Compd. 1 (2019) 1–9. https://doi.org/10.29252/jcc.1.1.1.
[65] Z. Irshad, M. Adnan, J.K. Lee, Controlling phase and morphology of all-dip-coating processed HC (NH2) 2PbI3 perovskite layers from an aqueous halide-free lead precursor, J. Phys. Chem. Solids. 160 (2022) 110374. https://doi.org/10.1016/j.jpcs.2021.110374.
[66] I. Tajzad, E. Ghasali, Production methods of CNT-reinforced Al matrix composites: a review, J. Comp. Compd. 2 (2020) 1–9. https://doi.org/10.29252/jcc.2.1.1.
[67] S. Gupta, M. Tripathi, A review on the synthesis of TiO2 nanoparticles by solution route, Open Chem. J. 10 (2012) 279–294. https://doi.org/10.2478/s11532-011-0155-y.
[68] A. Abuchenari, K. Hardani, S. Abazari, F. Naghdi, M. Ahmady Keleshteri, et al., Clay-reinforced nanocomposites for the slow release of chemical fertilizers and water retention, J. Comp. Compd. 2 (2020) 85–91. https://doi.org/10.29252/jcc.2.2.4.
[69] N. Hassan, M.R. Hashim, M. Bououdina, One-dimensional ZnO nanostructure growth prepared by thermal evaporation on different substrates: ultraviolet emission as a function of size and dimensionality, Ceram. Int. 39 (2013) 7439–7444. https://doi.org/10.1016/j.ceramint.2013.02.088.
[70] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194–200. https://doi.org/10.1016/j.jhazmat.2007.12.033.
[71] M. Hossain, C.Y.H. Lim, Growth of zinc oxide nanowires and nanobelts for gas sensing applications, J. Nanocryst. Mater. 23 (2005) 27–30. https://doi.org/10.4028/www.scientific.net/JMNM.23.27.
[72] H.M. Yadav, J.-S. Kim, S.H. Pawar, Developments in photocatalytic antibacterial activity of nano TiO2: A review, Korean. J. Chem. Eng. 33 (2016) 1989–1998. https://doi.org/10.1007/s11814-016-0118-2.
[73] C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited, Appl. Catal. A. 304 (2006) 55–61. https://doi.org/10.1016/j.apcata.2006.02.020.
[74] D. Ju, H. Xu, J. Zhang, J. Guo, B. Cao, Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing, Sens. Actuators B: Chem. 201(2014) 444–451. https://doi.org/10.1016/j.snb.2014.04.072.
[75] S. Yue, J. Lu, J. Zhang, Synthesis of three-dimensional ZnO superstructures by a one-pot solution process, Mater. Chem. Phys. 117 (2009) 4–8. https://doi.org/10.1016/j.matchemphys.2009.05.010.
[76] R. Adnan, N.A. Razana, I. Abdul Rahman, M. Akhyar Farrukh, Synthesis and Characterization of High Surface Area Tin Oxide Nanoparticles via the Sol‐Gel Method as a Catalyst for the Hydrogenation of Styrene, J. Chin. Chem. Soc. 57 (2010) 222–229. https://doi.org/10.1002/jccs.201000034.
[77] A. Sagasti, N. Bouropoulos, D. Kouzoudis, A. Panagiotopoulos, E. Topoglidis, J. Gutiérrez, Nanostructured ZnO in a metglas/ZnO/hemoglobin modified electrode to detect the oxidation of the hemoglobin simultaneously by cyclic voltammetry and magnetoelastic resonance, Materials. 10 (2017) 849. https://doi.org/10.3390/ma10080849.
[78] T. Nagase, T. Ooie, J. Sakakibara, A novel approach to prepare zinc oxide films: excimer laser irradiation of sol–gel derived precursor films, Thin Solid Films. 357 (1999) 151–158. https://doi.org/10.1016/S0040-6090(99)00645-8.
[79] Y. Zhang, E. Xie, Nature of room-temperature ferromagnetism from undoped ZnO nanoparticles, Appl. Phys. A. 99 (2010) 955–960. https://doi.org/10.1007/s00339-010-5703-3.
[80] J.T. Chen, J. Wang, R.F. Zhuo, D. Yan, J.J. Feng, et al., The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process, Appl. Surf. Sci. 255 (2009) 3959–3964. https://doi.org/10.1016/j.apsusc.2008.10.086.
[81] K. Gold, B. Slay, M. Knackstedt, A.K. Gaharwar, Antimicrobial activity of metal and metal‐oxide based nanoparticles, Adv. Therap. 1 (2018) 1700033. https://doi.org/10.1002/adtp.201700033.
[82] Z. Sadowski, A. Pawlowska, Synthesis of metal oxide nanoparticles and its biomedical applications, Pharm. Technol. (2017) 91–111. https://doi.org/10.1007/978-3-319-70299-5_4.
[83] G. Sangeetha, S. Rajeshwari, R. Venckatesh, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties, Mater. Res. Bull. 46 (2011) 2560–2566. https://doi.org/10.1016/j.materresbull.2011.07.046.
[84] M. Darroudi, Z. Sabouri, R. Kazemi Oskuee, A. Khorsand Zak, Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth, Ceram. Int. 39 (2013) 9195–9199. https://doi.org/10.1016/j.ceramint.2013.05.021.
[85] O.V. Salata, Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. 2 (2004) 1–6. https://doi.org/10.1186/1477-3155-2-3.
[86] M.D. Newman, M. Stotland, J.I. Ellis, The safety of nanosized particles in titanium dioxide–and zinc oxide–based sunscreens, J. Am. Acad. Dermatol. 61 (2009) 685–692. https://doi.org/10.1016/j.jaad.2009.02.051.
[87] Z. Huang, X. Zheng, D. Yan, G. Yin, X. Liao, et al., Toxicological effect of ZnO nanoparticles based on bacteria, Langmuir. 24 (2008) 4140–4144. https://doi.org/10.1021/la7035949.
[88] L.K. Limbach, P. Wick, P. Manser, R.N. Grass, A. Bruinink, W.J. Stark, Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress, Environ. Sci. Technol. 41 (2007) 4158–4163. https://doi.org/10.1021/es062629t.
[89] M. Husseiny, M. Abd El-Aziz, Y. Badr, M.A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 67 (2007) 1003–1006. https://doi.org/10.1016/j.saa.2006.09.028.
[90] M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation, Nanotechnol. Biol. Med. 7 (2011) 184–192. https://doi.org/10.1016/j.nano.2010.10.001.
[91] H. Zhang, Y. Shan, L. Dong, A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer. J. Biomed. Nanotech. 10 (2014) 1450–1457. https://doi.org/10.1166/jbn.2014.1961.
[92] F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, Enhanced photostability from CdSe (S)/ZnO core/shell quantum dots and their use in biolabeling, Eur. J. Inorg. Chem. 2011 (2011) 794–801. https://doi.org/10.1002/ejic.201000790.
[93] H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: Biological synthesis and biomedical applications, Ceram. Int. 43 (2017) 907–914. https://doi.org/10.1016/j.ceramint.2016.10.051.
[94] A. Khorsand Zak, R. Razali, W.H.B. Abd Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles, Int. J. Nanomed. 6 (2011) 1399–1403. https://doi.org/10.2147/IJN.S19693.
[95] A.K. Barui, R. Kotcherlakota, C.R. Patra, Biomedical applications of zinc oxide nanoparticles, in Inorganic frameworks as smart nanomedicines, Elsevier. (2018) 239–278. https://doi.org/10.1016/B978-0-12-813661-4.00006-7.
[96] S. Rajeshkumar, D. Sandhiya, Biomedical applications of zinc oxide nanoparticles synthesized using eco-friendly method, Nanoparticles and their Biomedical Applications, Springer, Singapore. (2020) 65–93. https://doi.org/10.1007/978-981-15-0391-7_3.
[97] H. Khalilpour, P. Shafiee, A. Darbandi, M. Yusuf, S. Mahmoudi, et al., Application of Polyoxometalate-based composites for sensor systems: A review, J. Comp. Compd. 3 (2021) 129–139. https://doi.org/10.52547/jcc.3.2.6.
[98] J.W. Rasmussen, E. Martinez, P. Louka, D. G Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications, Expert Opin. Drug Deliv. 7 (2010) 1063–1077. https://doi.org/10.1517/17425247.2010.502560.
[99] K.M. Hambidge, C. Hambidge, M. Jacobs, J.D. Baum, Low levels of zinc in hair, anorexia, poor growth, and hypogeusia in children, Pediatr. Res. 6 (1972) 868–874. https://doi.org/10.1203/00006450-197212000-00003.
[100] N. Roohani, R. Hurrell, R. Kelishadi, R. Schulin, Zinc and its importance for human health: An integrative review, J. Res. Med. Sci. 18 (2013) 144–157.
[101] R. Roy, S. Kumar, A.K. Verma, A. Sharma, B.P. Chaudhari, et al., Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice, Int. Immunol. 26 (2014) 159–172. https://doi.org/10.1093/intimm/dxt053.
[102] H.H. Sandstead, Understanding zinc: recent observations and interpretations, J. Lab. Clin. Med. 124 (1994) 322–327.
[103] J.T. Seil, T.J. Webster, Antibacterial effect of zinc oxide nanoparticles combined with ultrasound, Nanotechnology. 23 (2012) 495101. https://doi.org/10.1088/0957-4484/23/49/495101.
[104] X. Zhu, I. Yuri, X. Gan, I. Suzuki, G. Li, Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation, Biosens. Bioelectron. 22 (2007) 1600–1604. https://doi.org/10.1016/j.bios.2006.07.007.
[105] P. Shafiee, S.A. Alavi, M. Rezaei, F. Jokar, Promoted Ni–Co–Al2O3 nanostructured catalysts for CO2 methanation, Int. J. Hydrog. Energy. 47 (2021) 2399–2411. https://doi.org/10.1016/j.ijhydene.2021.10.197.
[106] N. Jain, A. Bhargava, J. C. Tarafdar, S. K. Singh, J. Panwar, A biomimetic approach towards synthesis of zinc oxide nanoparticles, Appl. Microbiol. Biotechnol. 97 (2013) 859–869. https://doi.org/10.1007/s00253-012-3934-2.
[107] C. Jayaseelan, A. Abdul Rahuman, A. Vishnu Kirthi, S. Marimuthu, T. Santhoshkumar, et al., Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fung, Spectrochim. Acta A Mol. Biomol. Spectrosc. 90 (2012) 78–84. https://doi.org/10.1016/j.saa.2012.01.006.
[108] C.H. Ramamurthy, K.S. Sampath, P. Arunkumar, M. Suresh Kumar, V. Sujatha, et al., Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells, Bioprocess. Biosyst. Eng. 36 (2013) 1131–1139. https://doi.org/10.1007/s00449-012-0867-1.
[109] X. Wang, H. Chen, Y. Zheng, M. Ma, Y. Chen, et al., Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation, Biomaterials. 34 (2013) 2057–2068. https://doi.org/10.1016/j.biomaterials.2012.11.044.
[110] M.J. Akhtar, M. Ahamed, S. Kumar, M. Majeed Khan, J. Ahmad, S.A. Alrokayan, Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species, Int. J. Nanomed. 7 (2012) 845–857. https://doi.org/10.2147/IJN.S29129.
[111] B.E. Urban, P.B Neogi, S.J. Butler, Y. Fujita, A. Neogi, Second harmonic imaging of plants tissues and cell implosion using two‐photon process in ZnO nanoparticles, J. Biophoton. 5 (2012) 283–291. https://doi.org/10.1002/jbio.201100076.
[112] Y. Kumar, V. Singh, A. Pandey, M. Genwa, P.L. Meena, Synthesis, characterization and antibacterial activity of ZnO nanoparticles, AIP Conf. Proc. 2265 (2020) 030119. https://doi.org/10.1063/5.0017120.
[113] Q. Yuan, S. Hein, R.D.K. Misra, New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response, Acta Biomater. 6 (2010) 2732–2739. https://doi.org/10.1016/j.actbio.2010.01.025.
[114] F.S. Rezaei, F. Sharifianjazi, A. Esmaeilkhanian, E. Salehi, Chitosan films and scaffolds for regenerative medicine applications: A review, Carbohydr. Polym. 273 (2021) 118631. https://doi.org/10.1016/j.carbpol.2021.118631.
[115] C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev. 63 (2011) 789–808. https://doi.org/10.1016/j.addr.2011.03.008.
[116] J. Li, S. Wu, C. Wu, L. Qiu, G. Zhu, et al., Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery, Nanoscale. 8 (2016) 8600–8606. https://doi.org/10.1039/C6NR00600K.
[117] J.D. Obayemi, K.A. Malatesta, O.S. Odusanya, D. Yiporo, W. Yu, et al., Abstract C60: injectable, biodegradable micro-and nano-particles loaded with prodigiosin-based drug for localized anticancer drug delivery, Cancer Epidemiol. Biomarkers Prev. 25 (2016). https://doi.org/10.1158/1538-7755.DISP15-C60.
[118] Q. Li, Y. Wen, J. Wen, Y.-P. Zhang, X.-D. Xu, et al., A new biosafe reactive oxygen species (ROS)-responsive nanoplatform for drug delivery, RSC Adv. 6 (2016) 38984–38989. https://doi.org/10.1039/C5RA25913D.
[119] A. Bakhtiari, A. Cheshmi, M. Naeimi, S. Mohammadi Fathabad, M. Aliasghari, et al., Synthesis and characterization of the novel 80S bioactive glass: bioactivity,‎ biocompatibility, cytotoxicity, J. Comp. Compd. 2 (2020) 110–114. https://doi.org/10.29252/jcc.2.3.1.
[120] B.S. Bolu, E.M. Gecici, R. Sanyal, Combretastatin A-4 conjugated antiangiogenic micellar drug delivery systems using dendron–polymer conjugates, Mol. Pharmaceutics. 13 (2016) 1482–1490. https://doi.org/10.1021/acs.molpharmaceut.5b00931.
[121] W.C. Carlyle, J.B. McClain, A.R. Tzafriri, L. Bailey, B.G. Zani, et al., Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug, J. Control. Release. 162 (2012) 561–567. https://doi.org/10.1016/j.jconrel.2012.07.004.
[122] Y. Zhang, J. Zhou, C. Yang, W. Wang, L. Chu, et al., Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors, Int. J. Nanomed. 11 (2015) 1119–1130. https://doi.org/10.2147/IJN.S101649.
[123] H. Tu, Y. Lu, Y. Wu, J. Tian, Y. Zhan, et al., Fabrication of rectorite-contained nanoparticles for drug delivery with a green and one-step synthesis method, Int. J. Pharm. 493 (2015) 426–433. https://doi.org/10.1016/j.ijpharm.2015.07.063.
[124] P.V. Asharani, Y.L. Wu, Z. Gong, S. Valiyaveettil, Toxicity of silver nanoparticles in zebrafish models, Nanotechnology. 19 (2008) 255102. https://doi.org/10.1088/0957-4484/19/25/255102.
[125] Z.-Y. Zhang, H.-M. Xiong, Photoluminescent ZnO nanoparticles and their biological applications, Materials. 8 (2015) 3101–3127. https://doi.org/10.3390/ma8063101.
[126] L. Bazli, S. Eskandarinezhad, N. Kakur, V. Ramachandran, A. Bacigalupe, et al., Electrical properties of polymer blend composites based on Silicone rubber/EPDM/clay for high voltage insulators, J. Comp. Compd. 3 (2021) 18–24. https://doi.org/10.52547/jcc.3.1.3.
[127] A. Abuchenari, H. Ghazanfari, M. Siavashi, M. Sabetzadeh, S. Talebi, et al., A review on development and application of self-healing thermal barrier composite coatings, J. Comp. Compd. 2 (2020) 147–154. https://doi.org/10.29252/jcc.2.3.6.
[128] F. Barragh Jam, H. Bangi Houri, M. Ferdosi, Characterization of TiB2 reinforced aluminum matrix composite synthesized by in situ stir casting method, J. Comp. Compd. 2 (2020) 163–170. https://doi.org/10.29252/jcc.2.4.1.
[129] M.S. Roberts, M.J. Roberts, T.A. Robertson, W. Sanchez, C. Thörling, et al., In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver, J. Biophoton. 1 (2008) 478–493. https://doi.org/10.1002/jbio.200810058.
[130] A.V. Zvyagin, X. Zhao, A. Gierden, W. Sanchez, J. Ross, M.S. Roberts, Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo, J. Biomed. Opt. 13 (2008) 064031. https://doi.org/10.1117/1.3041492.
[131] K.K. Jain, Applications of nanobiotechnology in clinical diagnostics, Clin. Chem. 53 (2007) 2002–2009. https://doi.org/10.1373/clinchem.2007.090795.
[132] F. Sharifianjazi, A. Jafari Rad, A. Bakhtiari, F. Niazvand, A. Esmaeilkhanian, et al., Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): A systematic review, Biomed. Mater. 17 (2021) 012002. https://doi.org/10.1088/1748-605X/ac41fd.
[133] R. Devi, M. Thakur, P.C. Pundir, Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film, Biosens. Bioelectron. 26 (2011) 3420–3426. https://doi.org/10.1016/j.bios.2011.01.014.
[134] X. Ren, D. Chen, X. Meng, F. Tang, X. Hou, et al., Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor, J. Colloid Interface Sci. 334 (2009) 183–187. https://doi.org/10.1016/j.jcis.2009.02.043.
[135] H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, A strategy for ZnO nanorod mediated multi-mode cancer treatment, Biomaterials. 32 (2011) 1906–1914. https://doi.org/10.1016/j.biomaterials.2010.11.027.
[136] R. Khan, A. Kaushik, P.R. Solanki, A.A. Ansari, M.K. Pandey, B.D. Malhotra, Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta. 616 (2008) 207–213. https://doi.org/10.1016/j.aca.2008.04.010.
[137] M.F. Khan, A.H. Ansari, M. Hameedullah, E. Ahmad, F.M. Husain, et al., Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics, Sci. Rep. 6 (2016) 27689. https://doi.org/10.1038/srep27689.
[138] S. Pal, S. Bhand, Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen, Microchim. Acta. 182 (2015) 1643–1651. https://doi.org/10.1007/s00604-015-1489-5.
[139] P.K. Pandey, P.H. Kass, M.L. Soupir, S. Biswas, V.P. Singh, Contamination of water resources by pathogenic bacteria, AMB Expr. 4 (2014) 51. https://doi.org/10.1186/s13568-014-0051-x.
[140] M. Vajdi, F. Sadegh Moghanlou, F. Sharifianjazi, M. Shahedi Asl, M. Shokouhimehr, A review on the Comsol Multiphysics studies of heat transfer in advanced ceramics, J. Comp. Compd. 2 (2020) 35–43. https://doi.org/10.29252/jcc.2.1.5.
[141] M. Pagliaro, R. Ciriminna, M. Yusuf, S. Eskandarinezhad, I.A. Wani, et al., Application of nanocellulose composites in the environmental engineering as a catalyst, flocculants, and energy storages: A review, J. Comp. Compd. 3 (2021) 114–128. https://doi.org/10.52547/jcc.3.2.5.
[142] S. Eskandarinezhad, R. Khosravi, M. Amarzadeh, P. Mondal, F.J.C. Magalhães Filho, Application of different Nanocatalysts in industrial effluent treatment: A review, J. Comp. Compd. 3 (2021) 43–56. https://doi.org/10.52547/jcc.3.1.5.
[143] S. Sarwar, S. Chakraborti, S. Bera, I. Ali Sheikh, K.M. Hoque, P. Chakrabarti, The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. Nanomed.: Nanotechnol. Biol. Med. 12 (2016) 1499–1509. https://doi.org/10.1016/j.nano.2016.02.006.
[144] A. Kazemzadeh, H. Kazemzadeh, Determination of Hg2+ by diphenylcarbazone compound in polymer film, J. Comp. Compd. 1 (2019) 27–30. https://doi.org/10.29252/jcc.1.1.5.
[145] F. Sharifianjazi, A. Esmaeilkhanian, L. Bazli, S. Eskandarinezhad, S. Khaksar, et al., A review on recent advances in dry reforming of methane over Ni-and Co-based nanocatalysts, Int. J. Hydrog. Energy. 47 (2021) 42213–42233. https://doi.org/10.1016/j.ijhydene.2021.11.172.
[146] A. Hakamy, Influence of SiO2 nanoparticles on the microstructure, mechanical properties, and thermal stability of Portland cement nanocomposites, J. Taibah Univ. Sci. 15 (2021) 909–917. https://doi.org/10.1080/16583655.2021.2011594.
[147] K.K. Maniam, S. Paul, Progress in novel electrodeposited bond coats for thermal barrier coating systems, Materials. 14 (2021) 4214. https://doi.org/10.3390/ma14154214.
[148] L. Saei Fard, N. Sadat Peighambardoust, H. Won Jang, A. Dehghan, N. Nehzat Khosh Saligheh, et al., The rechargeable aluminum-ion battery with different composite cathodes: A review, J. Comp. Compd. 2 (2020) 138–146. https://doi.org/10.29252/jcc.2.3.5.
[149] M. Amiri, S. Padervand, V. Tavakoli Targhi, S.M. Mousavi Khoei, Investigation of aluminum oxide coatings created by electrolytic plasma method in different potential regimes, J. Comp. Compd. 2 (2020) 115–122. https://doi.org/10.29252/jcc.2.3.2.
[150] L.K. Foong, Z. Lyu, Sintering and mechanical behavior of SiC and WC co-added TiC-based composites densified by hot-pressing, Ceram. Int. 47 (2021) 6479–6486. https://doi.org/10.1016/j.ceramint.2020.10.231.
[151] Y. Yang, X.W. Sun, B.K. Tay, G.F. You, S.T. Tan, K.L. Teo, A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation, Appl. Phys. Lett. 93 (2008) 253107. https://doi.org/10.1063/1.3054639.
[152] S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernnyak, et al., Electrically pumped waveguide lasing from ZnO nanowires, Nat. Nanotechnol. 6 (2011) 506–510. https://doi.org/10.1038/nnano.2011.97.
[153] M.A. Rahman, J.A. Scott, A. Gentle, M.R. Phillips, C. Ton-That, A facile method for bright, colour-tunable light-emitting diodes based on Ga-doped ZnO nanorods, Nanotechnology. 29 (2018) 425707. https://doi.org/10.1088/1361-6528/aad7d2.
[154] W.Z. Liu, H.Y. Xu, J.G. Ma, C.Y. Liu, Y.X. Liu, Y.C. Liu, Effect of oxygen-related surface adsorption on the efficiency and stability of ZnO nanorod array ultraviolet light-emitting diodes, Appl. Phys. Lett. 100 (2012) 203101. https://doi.org/10.1063/1.4717714.
[155] G. Singh, E.M. Joyce, J. Beddow, T. James Mason, Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics, J. Microbiol. Biotechnol. 2 (2012) 106–120.
[156] E.V. Lobiak, E.V. Shlyakhova, L.G. Bulusheva, P.E. Plyusnin, Y.V. Shubin, A.V. Okotrub, Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes, J. Alloys Compd. 621 (2015) 351–356. https://doi.org/10.1016/j.jallcom.2014.09.220.
[157] Y. Zamani, A. Zareein, L. Bazli, R. NasrAzadani, B. Pasha Mahammod, et al., Nanodiamond-containing composites for tissue scaffolds and surgical implants: A review, J. Comp. Compd. 2 (2020) 215–227. https://doi.org/10.29252/jcc.2.4.6.
[158] M. Bazli, L. Bazli, R. Rahmani, S. Mansoor, M. Ahmadi, R. Pouriamanesh, Concrete filled FRP–PVC tubular columns used in the construction sector: A review, J. Comp. Compd. 2 (2020) 155–162. https://doi.org/10.29252/jcc.2.3.7.
[159] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chem. 19 (2016) 211–216. https://doi.org/10.1016/j.proche.2016.03.095.
[160] V.-S. Mănoiu, A. Aloman, Obtaining silver nanoparticles by sonochemical methods, U.P.B. Sci. Bull. Series B. 72 (2010) 179–186.

Cited By

Crossref Google Scholar
Sol-gel zinc oxide nanoparticles: advances in synthesis and applications
Submitted
2021-12-15
Published
2021-12-29
How to Cite
Shafiee, P., Reisi Nafchi, M., Eskandarinezhad, S., Mahmoudi, S., & Ahmadi, E. (2021). Sol-gel zinc oxide nanoparticles: advances in synthesis and applications. Synthesis and Sintering, 1(4), 242-254. https://doi.org/10.53063/synsint.2021.1477