Microstructure and mechanical properties of Ti3SiC2 MAX phases sintered by hot pressing

  • Sheida Haji Amiri 1
  • Nasser Pourmohammadie Vafa 1
  • 1 Department of Materials Science and Engineering, University of Tabriz, Tabriz, Iran

Abstract

This study aimed to investigate the effect of sintering temperature on Ti3SiC2 samples' microstructure and mechanical properties, including three-point flexural strength, Vickers hardness, and fracture toughness. Therefore, Ti3SiC2 samples were sintered under a vacuum atmosphere at a pressure of 35 MPa for 30 minutes at two temperatures of 1500 and 1550 °C by hot pressing. The microstructure obtained from the fracture cross-section of the samples shows that by increasing the sintering temperature to 1550 °C the microstructure of this sample becomes larger than the sintered sample at 1500 °C. Also, increasing the sintering temperature to 1550 °C causes the decomposition of Ti3SiC2 to TiC, which can be seen in the X-ray diffraction pattern (XRD). In addition, the relative density of the sintered sample at 1550 °C is 98.08% which is higher than that of the sintered sample at 1500 °C with the result of 89%. On the other hand, the three-point flexural strength (227.5 MPa), the Vickers hardness (~9 GPa), and the fracture toughness (8.6 MPa.m1/2) of the sintered sample at 1500 °C are higher due to the fine-grained structure.

Downloads

Download data is not yet available.
Keywords: MAX phase, Ti3SiC2, Hot pressing, Microstructure, Mechanical properties

References

[1] I. Kero, R. Tegman, M.-L. Antti, Effect of the amounts of silicon on the in situ synthesis of Ti3SiC2 based composites made from TiC/Si powder mixtures, Ceram. Int. 36 (2010) 375–379. https://doi.org/10.1016/j.ceramint.2009.07.029.
[2] J. Zeng, S. Ren, J. Lu, Phase Evolution of Ti3SiC2 Annealing in Vacuum at Elevated Temperatures, Int. J. Appl. Ceram. Technol. 10 (2013) 527–539. https://doi.org/10.1111/j.1744-7402.2012.02760.x.
[3] M.W. Barsoum, MAX Phases, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (2013). https://doi.org/10.1002/9783527654581.
[4] O. Dezellus, B. Gardiola, J. Andrieux, S. Lay, Experimental evidence of copper insertion in a crystallographic structure of Ti3SiC2 MAX phase, Scr. Mater. 104 (2015) 17–20. https://doi.org/10.1016/j.scriptamat.2015.03.015.
[5] P. Istomin, E. Istomina, A. Nadutkin, V. Grass, A. Leonov, et al., Fabrication of Ti3SiC2 and Ti4SiC3 MAX phase ceramics through reduction of TiO2 with SiC, Ceram. Int. 43 (2017) 16128–16135. https://doi.org/10.1016/j.ceramint.2017.08.180.
[6] N. Atazadeh, M. Saeedi Heydari, H.R. Baharvandi, N. Ehsani, Reviewing the effects of different additives on the synthesis of the Ti3SiC2 MAX phase by mechanical alloying technique, Int. J. Refract. Met. Hard Mater. 61 (2016) 67–78. https://doi.org/10.1016/j.ijrmhm.2016.08.003.
[7] J.L. Huang, H.H. Lu, Microstructural and Mechanical Properties of Ti3SiC2 Composites, Key Eng. Mater. 403 (2008) 189–192. https://doi.org/10.4028/www.scientific.net/KEM.403.189.
[8] X. Liu, H. Zhang, Y. Jiang, Y. He, Characterization and application of porous Ti3SiC2 ceramic prepared through reactive synthesis, Mater. Des. 79 (2015). https://doi.org/10.1016/j.matdes.2015.03.061.
[9] H. Foratirad, H.R. Baharvandi, M. Ghanadi Maragheh, Synthesis of nanolayered Ti3SiC2 MAX phase via infiltration of porous TiC preform produced by the gelcasting process, Mater. Lett. 180 (2016) 219–222. https://doi.org/10.1016/j.matlet.2016.05.181.
[10] M. Zhu, R. Wang, C. Chen, H.B. Zhang, G.J. Zhang, Comparison of corrosion behavior of Ti3SiC2 and Ti3AlC2 in NaCl solutions with Ti, Ceram. Int. 43 (2017) 5708–5714. https://doi.org/10.1016/j.ceramint.2017.01.111.
[11] T. El-Raghy, M.W. Barsoum, Processing and Mechanical Properties of Ti3SiC2: I, Reaction Path and Microstructure Evolution, J. Am. Ceram. Soc. 82 (2004) 2849–2854. https://doi.org/10.1111/j.1151-2916.1999.tb02166.x.
[12] L. Shannahan, M.W. Barsoum, L. Lamberson, Dynamic fracture behavior of a MAX phase Ti3SiC2, Eng. Fract. Mech. 169 (2017) 54–66. https://doi.org/10.1016/j.engfracmech.2016.11.006.
[13] J. Zhang, L. Wang, W. Jiang, L. Chen, High temperature oxidation behavior and mechanism of Ti3SiC2–SiC nanocomposites in air, Compos. Sci. Technol. 68 (2008) 1531–1538. https://doi.org/10.1016/j.compscitech.2007.10.029.
[14] Y. Cai, X. Yin, H. Yin, Effects of SiC amount on phase compositions and properties of Ti3SiC2-based composites, J. Cent. South Univ. 22 (2015). https://doi.org/10.1007/s11771-015-2489-7.
[15] R. Radhakrishnan, J. Williams, M. Akinc, Synthesis and high-temperature stability of Ti3SiC2, J. Alloys Compd. 285 (1999) 85–88. https://doi.org/10.1016/S0925-8388(99)00003-1.
[16] S.-B. Li, J.-X. Xie, L.-T. Zhang, L.-F. Cheng, In situ synthesis of Ti3SiC2/SiC composite by displacement reaction of Si and TiC, Mater. Sci. Eng. A. 381 (2004) 51–56. https://doi.org/10.1016/j.msea.2004.03.046.
[17] S.-B. Li, J.-X. Xie, L.-T. Zhang, L.-F. Cheng, Mechanical properties and oxidation resistance of Ti3SiC2/SiC composite synthesized by in situ displacement reaction of Si and TiC, Mater. Lett. 57 (2003) 3048–3056. https://doi.org/10.1016/S0167-577X(02)01429-5.
[18] X. Tong, T. Okano, T. Iseki, T. Yano, Synthesis and high temperature mechanical properties of Ti3SiC2/SiC composite, J. Mater. Sci. 30 (1995). https://doi.org/10.1007/BF01209221.
[19] X. Guo, J. Wang, S. Yang, L. Gao, B. Qian, Preparation of Ti3SiC2 powders by the molten salt method, Mater. Lett. 111 (2013) 211–213. https://doi.org/10.1016/j.matlet.2013.08.077.
[20] J. Zhang, L. Wang, L. Shi, W. Jiang, L. Chen, Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method, Scr. Mater. 56 (2007) 241–244. https://doi.org/10.1016/j.scriptamat.2006.09.029.
[21] H. Li, L.M. Peng, M. Gong, J.H. Zhao, L.H. He, C.Y. Guo, Preparation and characterization of Ti3SiC2 powder, Ceram. Int. 30 (2004) 2289–2294. https://doi.org/10.1016/j.ceramint.2004.01.009.
[22] L. Jaworska, Diamond Composites with TiC, SiC and Ti3SiC2 Bonding Phase, High Press. Res. 22 (2002) 531–533. https://doi.org/10.1080/08957950212434.
[23] M. Radovic, M.W. Barsoum, MAX phases: bridging the gap between metals and ceramics, Am. Ceram. Soc. Bull. 92 (2013) 20.
[24] L.H. Ho-Duc, T. El-Raghy, M.W. Barsoum, Synthesis and characterization of 0.3 Vf TiC–Ti3SiC2 and 0.3 Vf SiC–Ti3SiC2 composites, J. Alloys Compd. 350 (2003) 303–312. https://doi.org/10.1016/S0925-8388(02)00985-4.
[25] C.N. Ghosh, Synthesis and Tribological Characterization of In-situ Spark Plasma Sintered Ti3SiC2 and Ti3SiC2-TiC Composites, M.S. Thesis, Dhaka. (2009).
[26] J.-Y. Wang, Y.-C. Zhou, Polymorphism of Ti3SiC2 ceramic: First-principles investigations, Phys. Rev. B. 69 (2004) 144108. https://doi.org/10.1103/PhysRevB.69.144108.
[27] S. Li, G.-M. Song, Y. Zhou, A dense and fine-grained SiC/Ti3Si(Al)C2 composite and its high-temperature oxidation behavior, J. Eur. Ceram. Soc. 32 (2012) 3435–3444. https://doi.org/10.1016/j.jeurceramsoc.2012.04.029.
[28] H. Abderrazak, F. Turki, F. Schoenstein, M. Abdellaoui, N. Jouini, Influence of mechanical alloying on Ti3SiC2 formation via spark plasma sintering technique from Ti/SiC/C powders, Ceram. Int. 39 (2013) 5365–5372. https://doi.org/10.1016/j.ceramint.2012.12.042.
[29] M.Z. Sun, A. Murugaiah, T. Zhen, A. Zhou, M. Barsoum, Microstructure and mechanical properties of porous TiSiC, Acta Mater. 53 (2005). https://doi.org/10.1016/j.actamat.2005.05.034.
[30] E. Tabares, A. Jiménez-Morales, S.A. Tsipas, Study of the synthesis of MAX phase Ti3SiC2 powders by pressureless sintering, Bol. Soc. Esp. Ceram. 60 (2021). https://doi.org/10.1016/j.bsecv.2020.01.004.
[31] W. Zhou, B. Mei, J. Zhu, Fabrication of high-purity ternary carbide Ti3AlC2 by spark plasma sintering (SPS) technique, Ceram. Int. 33 (2007) 1399–1402. https://doi.org/10.1016/j.ceramint.2006.04.018.
[32] J. Nickl, K. Schweitzer, P. Luxenberg, Gasphasenabscheidung im system TiSiC, J. Less Common Met. 26 (1972) 335–353. https://doi.org/10.1016/0022-5088(72)90083-5.
[33] B.Y. Liang, S.Z. Jin, M.Z. Wang, Low-temperature fabrication of high purity Ti3SiC2, J. Alloys Compd. 460 (2008) 440–443. https://doi.org/10.1016/j.jallcom.2007.05.074.
[34] Y.Y. Zhu, S.S. Li, L. Li, A.G. Zhou, Synthesis and Decomposition of Ti3SiC2 under 1-5GPa at 1400°C, Key Eng. Mater. 602–603 (2014) 499–502. https://doi.org/10.4028/www.scientific.net/KEM.602-603.499.
[35] S. Haji Amiri, M. Ghassemi Kakroudi, T. Rabizadeh, M. Shahedi Asl, Characterization of hot-pressed Ti3SiC2–SiC composites, Int. J. Refract. Met. Hard Mater. 90 (2020) 105232. https://doi.org/10.1016/j.ijrmhm.2020.105232.
[36] S. Haji Amiri, M. Ghassemi Kakroudi, N. Pourmohammadie Vafa, M. Shahedi Asl, Synthesis and Sintering of Ti3SiC2–SiC Composites through Reactive Hot-Pressing of TiC and Si Precursors, Silicon. (2021). https://doi.org/10.1007/s12633-021-01207-z.
[37] T. El-Raghy, M.W. Barsoum, Diffusion kinetics of the carburization and silicidation of Ti3SiC2, J. Appl. Phys. 83 (1998) 112–119. https://doi.org/10.1063/1.366707.
[38] C. Racault, F. Langlais, R. Naslain, Solid-state synthesis and characterization of the ternary phase Ti3SiC2, J. Mater. Sci. 29 (1994) 3384–3392. https://doi.org/10.1007/BF00352037.
[39] H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications, William Andrew Inc. (2013).
[40] A. Pourebrahim, H. Baharvandi, H. Foratirad, N. Ehsani, Low temperature synthesis of high-purity Ti3SiC2 via additional Si through spark plasma sintering, J. Alloys Compd. 789 (2019) 313–322. https://doi.org/10.1016/j.jallcom.2019.03.062.
[41] L.H. Ho-Duc, Synthesis and Characterization of the Properties of Ti3SiC2/SiC and Ti3SiC2/TiC Composites, Mater. Sci. Eng. (2002).
[42] R. Radhakrishnan, C.H. Henager, J.L. Brimhall, S.B. Bhaduri, Synthesis of Ti3SiC2SiC and TiSi2SiC composites using displacement reactions in the Ti-Si-C system, Scr. Mater. 34 (1996) 1809–1814. https://doi.org/10.1016/1359-6462(95)00663-X.
[43] S. Haghgooye Shafagh, S. Jafargholinejad, S. Javadian, Beneficial effect of low BN additive on densification and mechanical properties of hot-pressed ZrB2–SiC composites, Synth. Sinter. 1 (2021) 69–75. https://doi.org/10.53063/synsint.2021.1224.
[44] S. Jafargholinejad, S. Soleymani, Effects of carbon nano-additives on characteristics of TiC ceramics prepared by field-assisted sintering, Synth. Sinter. 1 (2021) 62–68. https://doi.org/10.53063/synsint.2021.1123.

Cited By

Crossref Google Scholar
Microstructure and mechanical properties of Ti3SiC2 MAX phases sintered by hot pressing
Submitted
2021-11-22
Available online
2021-12-27
How to Cite
Haji Amiri, S., & Pourmohammadie Vafa, N. (2021). Microstructure and mechanical properties of Ti3SiC2 MAX phases sintered by hot pressing. Synthesis and Sintering, 1(4), 216-222. https://doi.org/10.53063/synsint.2021.1472