Sintering behavior and microwave dielectric properties of CaTi1-x(Nb1/2Al1/2)xO3

  • Akbar Khan 1
  • Asif Ali 1
  • Izaz Khan 1
  • 1 Laboratory of Functional Materials and Devices, Department of Physics, Abdul Wali Khan University Mardan, 23200 KP, Pakistan

Abstract

CaTi1-x(Nb1/2Al1/2)xO3 with x=0.1–0.5 ceramics were processed  through solid state sintering. X-rays diffraction (XRD) patterns of the compositions showed that the samples have orthorhombic crystal structure with symmetry (Pbnm). The symmetry was further confirmed using Raman spectroscopy. A total of 13 Raman modes were detected, which were in agreement with the XRD results. Microstructure analysis of the samples showed porosity in the samples, presumably due to the substitution of Al, having high melting point. As the concentration of Al and Nb increased, relative permittivity (er), quality factor (Q×fo) and temperature coefficient of resonance frequency decreased. Optimum microwave dielectric properties were achieved for the composition x=0.5 sintered at 1650 °C for 8 h i.e., er ~27.09, Q×fo ~17378 GHz, and tf ~ -2.5 ppm/°C.

Downloads

Download data is not yet available.
Keywords: Perovskite, CaTiO3, Microwave dielectric properties

References

[1] F. Kamutzki, S. Schneider, J. Barowski, A. Gurlo, D.A.H. Hanaor, Silicate dielectric ceramics for millimetre wave applications, J. Eur. Ceram. Soc. 41 (2021) 3879–3894. https://doi.org/10.1016/j.jeurceramsoc.2021.02.048.
[2] M.T. Sebastian, R. Ubic, H. Jantunen, Microwave materials and applications, John Wiley & Sons. (2017).
[3] M.T. Sebastian, H. Wang, H. Jantunen, Low temperature co-fired ceramics with ultra-low sintering temperature: a review, Curr. Opin. Solid State Mater. Sci. 20 (2016) 151–170. https://doi.org/10.1016/j.cossms.2016.02.004.
[4] R. Muhammad, Y. Iqbal, Phase, microstructure and microwave dielectric properties of Ca1−xLaxTi1−x/4O3 (x= 0–1) ceramics, J. Mater. Sci: Mater. Elec. 26 (2015) 4870–4874. https://doi.org/10.1007/s10854-015-2995-2.
[5] T. Liu, X.Z. Zhao, W. Chen, A/B site modified CaTiO3 dielectric ceramics for microwave application, J. Am. Ceram. Soc. 89 (2006) 1153–1155. https://doi.org/10.1111/j.1551-2916.2005.00894.x.
[6] R. Muhammad, Y. Iqbal, Microwave dielectric properties of Ga3+ and Ta5+ co-doped CaTiO3, J. Mater. Sci. 51 (2016) 2958–2963. https://doi.org/10.1007/s10853-015-9604-x.
[7] C.-L. Huang, J.-T. Tsai, Y.-B. Chen, Dielectric properties of (1-y)Ca1-xLa2x/3TiO3-y(Li,Nd)1/2TiO3 ceramic system at microwave frequency, Mater. Res. Bull. 36 (2001) 547–556. https://doi.org/10.1016/S0025-5408(01)00528-1.
[8] R. Muhammad, Y. Iqbal, Structure and microwave dielectric properties of Ca0.66La0.387Ti0.88O3 ceramics, J. Mater. Sci. Mater. Elec. 26 (2015) 9092–9096. https://doi.org/10.1007/s10854-015-3596-9.
[9] A. Feteira, D.C. Sinclair, M.T. Lanagan, Structure and Microwave Dielectric Properties of Ca1−xYxTi1−xAlxO3 (CYTA) Ceramics, J. Mater. Res. 20 (2005) 2391–2399. https://doi.org/10.1557/jmr.2005.0289.
[10] J. Li, Y. Han, T. Qiu, C. Jin, Effect of bond valence on microwave dielectric properties of (1−x)CaTiO3–x(Li0.5La0.5)TiO3 ceramics, Mater. Res. Bull. 47 (2012) 2375–2379. https://doi.org/10.1016/j.materresbull.2012.05.024.
[11] H. Kagata, J. Kato, Dielectric properties of Ca-based complex perovskite at microwave frequencies, Jpn. J. Appl. Phys. 33 (1994) 5463. https://doi.org/10.1143/JJAP.33.5463.
[12] R. Muhammad, Y. Iqbal, Microwave dielectric properties of CaTi1−x(Nb0.5Ga0.5)xO3 ceramics, Mater. Lett. 153 (2015) 121–123. https://doi.org/10.1016/j.matlet.2015.04.021.
[13] H. Liu, H. Yu, Z. Tian, Z. Meng, Z. Wu, S. Ouyang, Dielectric properties of (1−x)CaTiO3–xCa(Zn1/3Nb2/3)O3 ceramic system at microwave frequency, J. Am. Ceram. Soc. 88 (2005) 453–455. https://doi.org/10.1111/j.1551-2916.2005.00064.x.
[14] R.T. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. B. 25 (1969) 925–946. https://doi.org/10.1107/S0567740869003220.
[15] I. Levin, J.Y. Chan, J.E. Maslar, T.A. Vanderah, S. Bell, Phase transitions and microwave dielectric properties in the perovskite-like Ca(Al0.5Nb0.5)O3−CaTiO3 system, J. Appl. Phys. 90 (2001) 904–914. https://doi.org/10.1063/1.1373705.
[16] H. Zheng, H. Bagshaw, G. Csete de Györgyfalva, I. Reaney, R. Ubic, J. Yarwood, Raman spectroscopy and microwave properties of CaTiO3-based ceramics, J. Appl. Phys. 94 (2003) 2948–2956. https://doi.org/10.1063/1.1598271.
[17] M. Saleem, Y. Iqbal, S. Qin, X. Wu, R. Muhammad, F. Zhu, Structural phase transition and microwave dielectric properties of Ca1−xSrxTiO3 (x=0.1–0.9) ceramics, J. Mater. Sci. Mater. Elec. 26 (2015) 1507–1511. https://doi.org/10.1007/s10854-014-2568-9.
[18] H. Zheng, I. Reaney, G.C. de Györgyfalva, R. Ubic, J. Yarwood, et al., Raman spectroscopy of CaTiO3-based perovskite solid solutions, J. Mater. Res. 19 (2004) 488–495. https://doi.org/10.1557/jmr.2004.19.2.488.
[19] H. Zheng, G.D.C. Csete de Györgyfalva, R. Quimby, H. Bagshaw, R. Ubic, et al., Raman spectroscopy of B-site order–disorder in CaTiO3-based microwave ceramics, J. Eur. Ceram. Soc. 23 (2003) 2653–2659. https://doi.org/10.1016/S0955-2219(03)00149-3.
[20] T. Hirata, K. Ishioka, M. Kitajima, Vibrational spectroscopy and X-ray diffraction of perovskite compounds Sr1−xMxTiO3 (M=Ca, Mg; 0≤ x≤ 1), J. Solid State Chem. 124 (1996) 353–359. https://doi.org/10.1006/jssc.1996.0249.
[21] S. Prosandeev, E. Cockayne, B.P. Burton, S. Kamba, J. Petzelt, et al., Lattice dynamics in PbMg1∕3Nb2∕3O3, Phys. Rev. B. 70 (2004) 134110. https://doi.org/10.1103/PhysRevB.70.134110.
[22] R. Muhammad, Y. Iqbal, Preparation and characterization of K-substituted NaCa4Nb5O17 microwave dielectric ceramics, J. Mater. Sci. Mater. Elec. 24 (2013) 2322–2326. https://doi.org/10.1007/s10854-013-1096-3.
[23] R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys. 73 (1993) 348–366. https://doi.org/10.1063/1.353856.
[24] E. Colla, I. Reaney, N. Setter, Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity, J. Appl. Phys. 74 (1993) 3414–3425. https://doi.org/10.1063/1.354569.
[25] R. Muhammad, Y. Iqbal, I.M. Reaney, New low loss A9B9O31 (A=La; B=Ti, Mg, Sc, Fe, Al, Ga) ceramics for microwave applications, J. Alloys. Compd. 646 (2015) 368–371. https://doi.org/10.1016/j.jallcom.2015.06.038.
[26] I.M. Reaney, E.L. Colla, N. Setter, Dielectric and structural characteristics of Ba-and Sr-based complex perovskites as a function of tolerance factor, Jpn. J. Appl. Phys. 33 (1994) 3984. https://doi.org/10.1143/JJAP.33.3984.
[27] I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J. Am. Ceram. Soc. 89 (2006) 2063–2072. https://doi.org/10.1111/j.1551-2916.2006.01025.x.

Cited By

Crossref Google Scholar
Sintering behavior and microwave dielectric properties of CaTi1-x(Nb1/2Al1/2)xO3
Submitted
2021-10-09
Available online
2021-11-09
How to Cite
Khan, A., Ali, A., & Khan, I. (2021). Sintering behavior and microwave dielectric properties of CaTi1-x(Nb1/2Al1/2)xO3. Synthesis and Sintering, 1(4), 197-201. https://doi.org/10.53063/synsint.2021.1467