Experimental investigation and parameter optimization of Cr2O3 atmospheric plasma spray nanocoatings

  • Seyedmahdi Hashemi 1
  • Nader Parvin 2
  • Zia Valefi 3
  • Soroush Parvizi 4
  • 1 Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, University of Toledo, OH 43606, USA
  • 2 Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
  • 3 Materials Engineering Research Center, Malek Ashtar University of Technology, Tehran, Iran
  • 4 Materials Engineering Department, Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran

Abstract

In this research, Cr2O3 ceramic nano-sized powder particles were prepared using ball milling and then were granulated to reach the proper size for spraying. Afterward, Cr2O3 nano-coatings were deposited by atmospheric plasma spraying (APS) process onto stainless steel substrates. To optimize APS parameters, spraying was carried out under six conditions with different parameters. Microstructures of the elemental/milled powder and coatings were characterized via a field emission scanning electron microscope (FESEM) equipped with energy-dispersive spectroscopy (EDS). In this research, Cr2O3 coatings were deposited under different spraying conditions to understand the effect of APS parameters on the splat formation, deposition efficiency, and porosities of the coatings. After parameter optimization, spraying was performed under a high deposition efficiency of 46.0±1.3%. The optimized Cr2O3 coatings showed porosity content, Knoop microhardness, and adhesive strengths of 8.7±2.2%, 823±27 HK0.2, and 49±4 MPa, respectively; making them a good candidate for industrial use.

Downloads

Download data is not yet available.
Keywords: Cr2O3, Ball milling, Nano, Atmospheric plasma spray, APS parameter optimization, Ceramic coating

References

[1] M.M. El Rayes, H.S. Abdo, K.A. Khalil, Erosion -Corrosion of Cermet Coating, Int. J. Electrochem. Sci. 8 (2013) 1117–1137. https://doi.org/10.1016/S1452-3981(23)14085-5.
[2] W.M. Rainforth, The wear behaviour of oxide ceramics-A Review, J. Mater. Sci. 39 (2004) 6705–6721. https://doi.org/10.1023/B:JMSC.0000045601.49480.79.
[3] A. Tiwari, R.A. Gerhardt, M. Szutkowska, Advanced Ceramic Materials, Wiley-Scrivener. (2016). https://doi.org/10.1002/9781119242598.
[4] Z.Z. Fang, H. Wang, Sintering of ultrafine and nanosized ceramic and metallic particles, Ceramic Nanocomposites, Woodhead Publishing. (2013) 431–473.
[5] C. Suryanarayana, T. Klassen, E. Ivanov, Synthesis of nanocomposites and amorphous alloys by mechanical alloying, J. Mater. Sci. 46 (2011) 6301–6315. https://doi.org/10.1007/s10853-011-5287-0.
[6] V. Chawla, B. Sidhu, D. Puri, S. Prakash, Performance of plasma sprayed nanostructured and conventional coatings, J. Aust. Ceram. Soc. 44 (2008) 56–62.
[7] M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, T.D. Xiao, Development and implementation of plasma sprayed nanostructured ceramic coatings, Surf. Coat. Technol. 146–147 (2001) 48–54. https://doi.org/10.1016/S0257-8972(01)01470-0.
[8] D. Ghosh, A.K. Shukla, H. Roy, Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications, J. Inst. Eng. (India): D. 95 (2014) 57–64. https://doi.org/10.1007/s40033-014-0034-8.
[9] R.S. Lima, B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Therm. Spray Technol. 16 (2007) 40–63. https://doi.org/10.1007/s11666-006-9010-7.
[10] N.B. Dahotre, S. Nayak, Nanocoatings for engine application, Surf. Coat. Technol. 194 (2005) 58–67. https://doi.org/10.1016/j.surfcoat.2004.05.006.
[11] R.F. Bunshah, Handbook of Hard Coatings: Deposition Technologies, Properties and Applications, William Andrew Pub., Park Ridge, N.J., Norwich, N.Y. (2001).
[12] A. Cellard, V. Garnier, G. Fantozzi, G. Baret, P. Fort, Wear resistance of chromium oxide nanostructured coatings, Ceram. Int. 35 (2009) 913–916. https://doi.org/10.1016/j.ceramint.2008.02.022.
[13] G.E. Kim, M. Brochu, Thermal spray nanostructured ceramic and metal-matrix composite coatings, Anti-Abrasive Nanocoatings, Woodhead Publishing. (2015) 481–511. https://doi.org/10.1016/B978-0-85709-211-3.00019-4.
[14] G. Bolelli, V. Cannillo, L. Lusvarghi, T. Manfredini, Wear behaviour of thermally sprayed ceramic oxide coatings, Wear. 261 (2006) 1298–1315. https://doi.org/10.1016/j.wear.2006.03.023.
[15] A. Vardelle, C. Moreau, N.J. Themelis, C. Chazelas, A Perspective on Plasma Spray Technology, Plasma Chem. Plasma Process. 35 (2015) 491–509. https://doi.org/10.1007/s11090-014-9600-y.
[16] A. Wank, B. Wielage, G. Reisel, T. Grund, E. Friesen, Performance of Thermal Spray Coatings under Dry Abrasive Wear Conditions, 4th Int. Conf. THE Coatings, Erlangen. 4 (2004).
[17] Y.J. Wang, J.Y. Xu, Q.H. Zhao, Y. Wang, B. Gao, Effects of various power process parameters on deposition efficiency of plasma-sprayed Al2O3-40% wt. TiO2 coatings, IOP Conference Series: Mater. Sci. Eng. 213 (2017) 012042. https://doi.org/10.1088/1757-899X/213/1/012042.
[18] F. Gao, X. Huang, R. Liu, Q. Yang, Optimization of Plasma Spray Process Using Statistical Methods, J. Therm. Spray Technol. 21 (2012) 176–186. https://doi.org/10.1007/s11666-011-9700-7.
[19] A. Scrivani, G. Rizzi, C.C. Berndt, Enhanced thick thermal barrier coatings that exhibit varying porosity, Mater. Sci. Eng.: A. 476 (2008) 1–7. https://doi.org/10.1016/j.msea.2007.04.035.
[20] D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian, Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology, Prog. Nat. Sci.: Mater. 22 (2012) 468–479. https://doi.org/10.1016/j.pnsc.2012.09.004.
[21] J.M. Guilemany, J. Nin, Thermal spraying methods for protection against wear, Surface Coatings for Protection against Wear, Woodhead Publishing. (2006) 249–301. https://doi.org/10.1533/9781845691561.249.
[22] P. Ctibor, I. Píš, J. Kotlan, Z. Pala, I. Khalakhan, et al., Microstructure and Properties of Plasma-Sprayed Mixture of Cr2O3 and TiO2, J. Therm. Spray Technol. 22 (2013) 1163–1169. https://doi.org/10.1007/s11666-013-9969-9.
[23] M. Szafarska, J. Iwaszko, Laser Remelting Teratment of Plasma-Sprayed Cr2O3 Oxide Coatings, Arch. Metall. Mater. 57 (2012). https://doi.org/10.2478/v10172-012-0013-8.
[24] Y. Sert, N. Toplan, Tribological behavior of a plasma-sprayed Al2O3-TiO2-Cr2O3 coating, Mater. Tehnol. 47 (2013) 181–183.
[25] S.M. Hashemi, N. Parvin, Z. Valefi, Effect of microstructure and mechanical properties on wear behavior of plasma-sprayed Cr2O3-YSZ-SiC coatings, Ceram. Int. 45 (2019) 5284–5296. https://doi.org/10.1016/j.ceramint.2018.11.226.
[26] S.M. Hashemi, N. Parvin, Z. Valefi, M. Alishahi, Comparative study on tribological and corrosion protection properties of plasma sprayed Cr2O3-YSZ-SiC ceramic coatings, Ceram. Int. 45 (2019) 21108–21119. https://doi.org/10.1016/j.ceramint.2019.07.087.
[27] J.R. Davis, Handbook of Thermal Spray Technology, ASM International. (2004).
[28] M.K. Singla, H. Singh, V. Chawla, Thermal Sprayed CNT Reinforced Nanocomposite Coatings – A Review, J. Miner. Mater. Charact. Eng. 10 (2011) 20904. https://doi.org/10.4236/jmmce.2011.108056.
[29] K.E. Schneider, V. Belashchenko, M. Dratwinski, S. Siegmann, A. Zagorski, Thermal Spraying for Power Generation Components, Wiley‐VCH Verlag GmbH & Co. KGaA. (2006). https://doi.org/10.1002/3527609342.
[30] K. Yang, X. Zhou, C. Liu, S. Tao, C. Ding, Sliding Wear Performance of Plasma-Sprayed Al2O3-Cr2O3 Composite Coatings Against Graphite under Severe Conditions, J. Therm. Spray Technol. 22 (2013). 1154–1162. https://doi.org/10.1007/s11666-013-9959-y.
[31] S. Chandra, P. Fauchais, Formation of Solid Splats during Thermal Spray Deposition, J. Therm. Spray Technol. 18 (2009) 148–180. https://doi.org/10.1007/s11666-009-9294-5.
[32] R. Gadow, A. Killinger, C. Li, Product Development with Thermally Sprayed Functional Coatings on Glass and Glass–Ceramics Substrates, Int. J. Appl. Ceram. Technol. 2 (2005) 493–503. https://doi.org/10.1111/j.1744-7402.2005.02050.x.
[33] R. Gadow, A. Killinger, C. Li, Plasma Sprayed Ceramic Coatings on Glass and Glass Ceramic Substrates, Innovative Processing and Synthesis of Ceramics, Glasses, and Composites V, John Wiley & Sons, Ltd. 129 (2006) 15–30. https://doi.org/10.1002/9781118370872.ch2.
[34] D.J. Green, An Introduction to the Mechanical Properties of Ceramics, Cambridge University Press, Cambridge. (1998). https://doi.org/10.1017/CBO9780511623103.
[35] P. Fauchais, G. Montavon, G. Bertrand, From Powders to Thermally Sprayed Coatings, J. Therm. Spray Technol. 19 (2010) 56–80. https://doi.org/10.1007/s11666-009-9435-x.
[36] A. Behera, Prediction and Analysis of Deposition Effeciency of Plasma Spray Coating Using Artificial Intelligent Method, Open J. Compos. Mater. 2 (2012) 54–60. https://doi.org/10.4236/ojcm.2012.22008.
[37] R. Gadow, M.J. Riegert-Escribano, M. Buchmann, Residual stress analysis in thermally sprayed layer composites, using the hole milling and drilling method, J. Therm. Spray Technol. 14 (2005) 100. https://doi.org/10.1361/10599630522756.
[38] C. Li, X. Zhang, Y. Chen, J. Carr, S. Jacques, et al., Understanding the residual stress distribution through the thickness of atmosphere plasma sprayed (APS) thermal barrier coatings (TBCs) by high energy synchrotron XRD; digital image correlation (DIC) and image based modelling, Acta Mater. 132 (2017) 1–12. https://doi.org/10.1016/j.actamat.2017.03.044.
[39] Y. Feng, T. Zhang, Determination of fracture toughness of brittle materials by indentation, Acta Mechanica Solida Sinica. 28 (2015) 221–234. https://doi.org/10.1016/S0894-9166(15)30010-0.
[40] V. Bolleddu, V. Racherla, P.P. Bandyopadhyay, Microstructural characterization of plasma sprayed conventional and nanostructured coatings with nitrogen as primary plasma gas, Surf. Coat. Technol. 235 (2013) 424–432. https://doi.org/10.1016/j.surfcoat.2013.07.069.
[41] V.P. Singh, A. Sil, R. Jayaganthan, Wear of Plasma Sprayed Conventional and Nanostructured Al2O3 and Cr2O3, Based Coatings, Trans. Indian Inst. Met. 65 (2011) 1–12. https://doi.org/10.1007/s12666-011-0070-0.
[42] D. Goberman, Microstructure investigation of plasma sprayed alumina 13 weight percent titania coatings from nanocrystalline feed powders, ETD Collection for University of Connecticut, Storrs, Connecticut. (2002).
[43] H. Fukanuma, R. Huang, Y. Tanaka, Y. Uesugi, Mathematical Modeling and Numerical Simulation of Splat Cooling in Plasma Spray Coatings, J. Therm. Spray Technol. 18 (2009) 965. https://doi.org/10.1007/s11666-009-9366-6.
[44] S.M. Hashemi, N. Parvin, Z. Valefi, Effect of Addition of Multimodal YSZ and SiC Powders on the Mechanical Properties of Nanostructured Cr2O3 Plasma-Sprayed Coatings, J. Therm. Spray Technol. 28 (2019) 544–562. https://doi.org/10.1007/s11666-019-00834-8.
[45] S. Liu, Y. Zhu, X. Lai, X. Zheng, R. Jia, X. Yuan, Influence of Different Heat Treatment Temperatures on the Microstructure, Corrosion, and Mechanical Properties Behavior of Fe-Based Amorphous/Nanocrystalline Coatings, Coatings. 9 (2019) 858. https://doi.org/10.3390/coatings9120858.

Cited By

Crossref Google Scholar
Experimental investigation and parameter optimization of Cr2O3 atmospheric plasma spray nanocoatings
Submitted
2021-06-30
Available online
2021-09-19
How to Cite
Hashemi, S., Parvin, N., Valefi, Z., & Parvizi, S. (2021). Experimental investigation and parameter optimization of Cr2O3 atmospheric plasma spray nanocoatings. Synthesis and Sintering, 1(3), 143-150. https://doi.org/10.53063/synsint.2021.1339